亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Virtual Reality (VR) applications often require users to perform actions with two hands when performing tasks and interacting with objects in virtual environments. Although bimanual interactions in VR can resemble real-world interactions -- thus increasing realism and improving immersion -- they can also pose significant accessibility challenges to people with limited mobility, such as for people who have full use of only one hand. An opportunity exists to create accessible techniques that take advantage of users' abilities, but designers currently lack structured tools to consider alternative approaches. To begin filling this gap, we propose Two-in-One, a design space that facilitates the creation of accessible methods for bimanual interactions in VR from unimanual input. Our design space comprises two dimensions, bimanual interactions and computer assistance, and we provide a detailed examination of issues to consider when creating new unimanual input techniques that map to bimanual interactions in VR. We used our design space to create three interaction techniques that we subsequently implemented for a subset of bimanual interactions and received user feedback through a video elicitation study with 17 people with limited mobility. Our findings explore complex tradeoffs associated with autonomy and agency and highlight the need for additional settings and methods to make VR accessible to people with limited mobility.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · Cognition · Automator · CEP架構 · CAP ·
2024 年 6 月 2 日

Multimodal large language models (MLLMs) have shown remarkable potential as human-like autonomous language agents to interact with real-world environments, especially for graphical user interface (GUI) automation. However, those GUI agents require comprehensive cognition ability including exhaustive perception and reliable action response. We propose a Comprehensive Cognitive LLM Agent, CoCo-Agent, with two novel approaches, comprehensive environment perception (CEP) and conditional action prediction (CAP), to systematically improve the GUI automation performance. First, CEP facilitates the GUI perception through different aspects and granularity, including screenshots and complementary detailed layouts for the visual channel and historical actions for the textual channel. Second, CAP decomposes the action prediction into sub-problems: action type prediction and action target conditioned on the action type. With our technical design, our agent achieves new state-of-the-art performance on AITW and META-GUI benchmarks, showing promising abilities in realistic scenarios. Code is available at //github.com/xbmxb/CoCo-Agent.

In Federated Learning (FL), a set of clients collaboratively train a machine learning model (called global model) without sharing their local training data. The local training data of clients is typically non-i.i.d. and heterogeneous, resulting in varying contributions from individual clients to the final performance of the global model. In response, many contribution evaluation methods were proposed, where the server could evaluate the contribution made by each client and incentivize the high-contributing clients to sustain their long-term participation in FL. Existing studies mainly focus on developing new metrics or algorithms to better measure the contribution of each client. However, the security of contribution evaluation methods of FL operating in adversarial environments is largely unexplored. In this paper, we propose the first model poisoning attack on contribution evaluation methods in FL, termed ACE. Specifically, we show that any malicious client utilizing ACE could manipulate the parameters of its local model such that it is evaluated to have a high contribution by the server, even when its local training data is indeed of low quality. We perform both theoretical analysis and empirical evaluations of ACE. Theoretically, we show our design of ACE can effectively boost the malicious client's perceived contribution when the server employs the widely-used cosine distance metric to measure contribution. Empirically, our results show ACE effectively and efficiently deceive five state-of-the-art contribution evaluation methods. In addition, ACE preserves the accuracy of the final global models on testing inputs. We also explore six countermeasures to defend ACE. Our results show they are inadequate to thwart ACE, highlighting the urgent need for new defenses to safeguard the contribution evaluation methods in FL.

Credential theft and remote attacks are the most serious threats to user authentication mechanisms. The crux of these problems is that we cannot control such behaviors. However, if a password does not contain user secrets, stealing it is useless. If unauthorized inputs are invalidated, remote attacks can be disabled. Thus, credential secrets and account input fields can be controlled. Rather than encrypting passwords, we design a dual-password login-authentication mechanism, where a user-selected secret-free login password is converted into an untypable authentication password. Subsequently, the authenticatable functionality of the login password and the typable functionality of the authentication password can be disabled or invalidated to prevent credential theft and remote attacks. Thus, the usability-security tradeoff and password reuse issues are resolved; local authentication password storage is no longer necessary. More importantly, the password converter acts as an open hashing algorithm, meaning that its intermediate elements can be used to define a truly unique identity for the login process to implement a novel dual-identity authentication scheme. In particular, the system-managed elements are concealed, inaccessible, and independent of any personal information and therefore can be used to define a perfect unforgeable process identifier to identify unauthorized inputs.

Network function (NF) offloading on SmartNICs has been widely used in modern data centers, offering benefits in host resource saving and programmability. Co-running NFs on the same SmartNICs can cause performance interference due to onboard resource contention. Therefore, to meet performance SLAs while ensuring efficient resource management, operators need mechanisms to predict NF performance under such contention. However, existing solutions lack SmartNIC-specific knowledge and exhibit limited traffic awareness, leading to poor accuracy for on-NIC NFs. This paper proposes Tomur, a novel performance predictive system for on-NIC NFs. Tomur builds upon the key observation that co-located NFs contend for multiple resources, including onboard accelerators and the memory subsystem. It also facilitates traffic awareness according to the behaviors of individual resources to maintain accuracy as the external traffic attributes vary. Evaluation using BlueField-2 SmartNIC shows that Tomur improves the prediction accuracy by 78.8% and reduces SLA violations by 92.2% compared to state-of-the-art approaches, and enables new practical usecases.

Expressive speech-to-speech translation (S2ST) is a key research topic in seamless communication, which focuses on the preservation of semantics and speaker vocal style in translated speech. Early works synthesized speaker style aligned speech in order to directly learn the mapping from speech to target speech spectrogram. Without reliance on style aligned data, recent studies leverage the advances of language modeling (LM) and build cascaded LMs on semantic and acoustic tokens. This work proposes SeamlessExpressiveLM, a single speech language model for expressive S2ST. We decompose the complex source-to-target speech mapping into intermediate generation steps with chain-of-thought prompting. The model is first guided to translate target semantic content and then transfer the speaker style to multi-stream acoustic units. Evaluated on Spanish-to-English and Hungarian-to-English translations, SeamlessExpressiveLM outperforms cascaded LMs in both semantic quality and style transfer, meanwhile achieving better parameter efficiency.

Non-fungible tokens (NFTs) are becoming increasingly popular in Play-to-Earn (P2E) Web3 applications as a means of incentivizing user engagement. In Web3, users with NFTs ownership are entitled to monetize them. However, due to lack of objective NFT valuation, which makes NFT value determination challenging, P2E applications ecosystems have experienced inflation. In this paper, we propose a method that enables NFT inflation value management in P2E applications. Our method leverages the contribution-rewards model proposed by Curve Finance and the automated market maker (AMM) of decentralized exchanges. In decentralized systems, P2E Web3 applications inclusive, not all participants contribute in good faith. Therefore, rewards are provided to incentivize contribution. Our mechanism proves that burning NFTs, indicating the permanent removal of NFTs, contributes to managing inflation by reducing the number of NFTs in circulation. As a reward for this contribution, our method mints a compensation (CP) token as an ERC-20 token, which can be exchanged for NFTs once enough tokens have been accumulated. To further increase the value of the CP token, we suggest using governance tokens and CP tokens to create liquidity pools for AMM. The value of the governance token is determined by the market, and the CP token derives its value from the governance token in AMM. The CP token can determine its worth based on the market value of the governance token. Additionally, since CP tokens are used for exchanging NFTs, the value of the NFT is ultimately determined by the value of the CP token. To further illustrate our concept, we show how to adjust burning rewards based on factors such as the probability of upgrading NFTs' rarity or the current swap ratio of governance and CP tokens in AMM.

Federated Semi-Supervised Learning (FSSL) leverages both labeled and unlabeled data on clients to collaboratively train a model.In FSSL, the heterogeneous data can introduce prediction bias into the model, causing the model's prediction to skew towards some certain classes. Existing FSSL methods primarily tackle this issue by enhancing consistency in model parameters or outputs. However, as the models themselves are biased, merely constraining their consistency is not sufficient to alleviate prediction bias. In this paper, we explore this bias from a Bayesian perspective and demonstrate that it principally originates from label prior bias within the training data. Building upon this insight, we propose a debiasing method for FSSL named FedDB. FedDB utilizes the Average Prediction Probability of Unlabeled Data (APP-U) to approximate the biased prior.During local training, FedDB employs APP-U to refine pseudo-labeling through Bayes' theorem, thereby significantly reducing the label prior bias. Concurrently, during the model aggregation, FedDB uses APP-U from participating clients to formulate unbiased aggregate weights, thereby effectively diminishing bias in the global model. Experimental results show that FedDB can surpass existing FSSL methods. The code is available at //github.com/GuogangZhu/FedDB.

The rapid development of language models (LMs) brings unprecedented accessibility and usage for both models and users. On the one hand, powerful LMs achieve state-of-the-art performance over numerous downstream NLP tasks. On the other hand, more and more attention is paid to unrestricted model accesses that may bring malicious privacy risks of data leakage. To address these issues, many recent works propose privacy-preserving language models (PPLMs) with differential privacy (DP). Unfortunately, different DP implementations make it challenging for a fair comparison among existing PPLMs. In this paper, we present PrivLM-Bench, a multi-perspective privacy evaluation benchmark to empirically and intuitively quantify the privacy leakage of LMs. Instead of only reporting DP parameters, PrivLM-Bench sheds light on the neglected inference data privacy during actual usage. PrivLM-Bench first clearly defines multi-faceted privacy objectives. Then, PrivLM-Bench constructs a unified pipeline to perform private fine-tuning. Lastly, PrivLM-Bench performs existing privacy attacks on LMs with pre-defined privacy objectives as the empirical evaluation results. The empirical attack results are used to fairly and intuitively evaluate the privacy leakage of various PPLMs. We conduct extensive experiments on three datasets of GLUE for mainstream LMs.

Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy---using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71 by [16]. Our codes are publicly available at //github.com/google-research/google-research/tree/master/cluster_gcn.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

北京阿比特科技有限公司