亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A linear code over $\mathbb{F}_q$ with the Hamming metric is called $\Delta$-divisible if the weights of all codewords are divisible by $\Delta$. They have been introduced by Harold Ward a few decades ago. Applications include subspace codes, partial spreads, vector space partitions, and distance optimal codes. The determination of the possible lengths of projective divisible codes is an interesting and comprehensive challenge.

相關內容

The angular synchronization problem aims to accurately estimate (up to a constant additive phase) a set of unknown angles $\theta_1, \dots, \theta_n\in[0, 2\pi)$ from $m$ noisy measurements of their offsets $\theta_i-\theta_j \;\mbox{mod} \; 2\pi.$ Applications include, for example, sensor network localization, phase retrieval, and distributed clock synchronization. An extension of the problem to the heterogeneous setting (dubbed $k$-synchronization) is to estimate $k$ groups of angles simultaneously, given noisy observations (with unknown group assignment) from each group. Existing methods for angular synchronization usually perform poorly in high-noise regimes, which are common in applications. In this paper, we leverage neural networks for the angular synchronization problem, and its heterogeneous extension, by proposing GNNSync, a theoretically-grounded end-to-end trainable framework using directed graph neural networks. In addition, new loss functions are devised to encode synchronization objectives. Experimental results on extensive data sets demonstrate that GNNSync attains competitive, and often superior, performance against a comprehensive set of baselines for the angular synchronization problem and its extension, validating the robustness of GNNSync even at high noise levels.

Lov\'asz (1967) showed that two graphs $G$ and $H$ are isomorphic if and only if they are homomorphism indistinguishable over the class of all graphs, i.e. for every graph $F$, the number of homomorphisms from $F$ to $G$ equals the number of homomorphisms from $F$ to $H$. Recently, homomorphism indistinguishability over restricted classes of graphs such as bounded treewidth, bounded treedepth and planar graphs, has emerged as a surprisingly powerful framework for capturing diverse equivalence relations on graphs arising from logical equivalence and algebraic equation systems. In this paper, we provide a unified algebraic framework for such results by examining the linear-algebraic and representation-theoretic structure of tensors counting homomorphisms from labelled graphs. The existence of certain linear transformations between such homomorphism tensor subspaces can be interpreted both as homomorphism indistinguishability over a graph class and as feasibility of an equational system. Following this framework, we obtain characterisations of homomorphism indistinguishability over several natural graph classes, namely trees of bounded degree and graphs of bounded pathwidth, answering a question of Dell et al. (2018), and graphs of bounded treedepth.

We study the existence of finite characterisations for modal formulas. A finite characterisation of a modal formula $\varphi$ is a finite collection of positive and negative examples that distinguishes $\varphi$ from every other, non-equivalent modal formula, where an example is a finite pointed Kripke structure. This definition can be restricted to specific frame classes and to fragments of the modal language: a modal fragment $L$ admits finite characterisations with respect to a frame class $F$ if every formula $\varphi\in L$ has a finite characterisation with respect to $L$ consting of examples that are based on frames in $F$. Finite characterisations are useful for illustration, interactive specification, and debugging of formal specifications, and their existence is a precondition for exact learnability with membership queries. We show that the full modal language admits finite characterisations with respect to a frame class $F$ only when the modal logic of $F$ is locally tabular. We then study which modal fragments, freely generated by some set of connectives, admit finite characterisations. Our main result is that the positive modal language without the truth-constants $\top$ and $\bot$ admits finite characterisations w.r.t. the class of all frames. This result is essentially optimal: finite characterizability fails when the language is extended with the truth constant $\top$ or $\bot$ or with all but very limited forms of negation.

We present a generalization of first-order unification to a term algebra where variable indexing is part of the object language. We exploit variable indexing by associating some sequences of variables ($X_0,\ X_1,\ X_2,\dots$) with a mapping $\sigma$ whose domain is the variable sequence and whose range consist of terms that may contain variables from the sequence. From a given term $t$, an infinite sequence of terms may be produced by iterative application of $\sigma$. Given a unification problem $U$ and mapping $\sigma$, the \textit{schematic unification problem} asks whether all unification problems $U$, $\sigma(U)$, $\sigma(\sigma(U))$, $\dots$ are unifiable. We provide a terminating and sound algorithm. Our algorithm is \textit{complete} if we further restrict ourselves to so-called $\infty$-stable problems. We conjecture that this additional requirement is unnecessary for completeness. Schematic unification is related to methods of inductive proof transformation by resolution and inductive reasoning.

(I) We revisit the algorithmic problem of finding all triangles in a graph $G=(V,E)$ with $n$ vertices and $m$ edges. According to a result of Chiba and Nishizeki (1985), this task can be achieved by a combinatorial algorithm running in $O(m \alpha) = O(m^{3/2})$ time, where $\alpha= \alpha(G)$ is the graph arboricity. We provide a new very simple combinatorial algorithm for finding all triangles in a graph and show that is amenable to the same running time analysis. We derive these worst-case bounds from first principles and with very simple proofs that do not rely on classic results due to Nash-Williams from the 1960s. (II) We extend our arguments to the problem of finding all small complete subgraphs of a given fixed size. We show that the dependency on $m$ and $\alpha$ in the running time $O(\alpha^{\ell-2} \cdot m)$ of the algorithm of Chiba and Nishizeki for listing all copies of $K_\ell$, where $\ell \geq 3$, is asymptotically tight. (III) We give improved arboricity-sensitive running times for counting and/or detection of copies of $K_\ell$, for small $\ell \geq 4$. A key ingredient in our algorithms is, once again, the algorithm of Chiba and Nishizeki. Our new algorithms are faster than all previous algorithms in certain high-range arboricity intervals for every $\ell \geq 7$.

We show that the principal types of the closed terms of the affine fragment of $\lambda$-calculus, with respect to a simple type discipline, are structurally isomorphic to their interpretations, as partial involutions, in a natural Geometry of Interaction model \`a la Abramsky. This permits to explain in elementary terms the somewhat awkward notion of linear application arising in Geometry of Interaction, simply as the resolution between principal types using an alternate unification algorithm. As a consequence, we provide an answer, for the purely affine fragment, to the open problem raised by Abramsky of characterising those partial involutions which are denotations of combinatory terms.

A nearest neighbor representation of a Boolean function $f$ is a set of vectors (anchors) labeled by $0$ or $1$ such that $f(\vec{x}) = 1$ if and only if the closest anchor to $x$ is labeled by $1$. This model was introduced by Hajnal, Liu, and Tur\'an (2022), who studied bounds on the number of anchors required to represent Boolean functions under different choices of anchors (real vs. Boolean vectors) as well as the more expressive model of $k$-nearest neighbors. We initiate the study of the representational power of nearest and $k$-nearest neighbors through Boolean circuit complexity. To this end, we establish a connection between Boolean functions with polynomial nearest neighbor complexity and those that can be efficiently represented by classes based on linear inequalities -- min-plus polynomial threshold functions -- previously studied in relation to threshold circuits. This extends an observation of Hajnal et al. (2022). We obtain exponential lower bounds on the $k$-nearest neighbors complexity of explicit $n$-variate functions, assuming $k \leq n^{1-\epsilon}$. Previously, no superlinear lower bound was known for any $k>1$. Next, we further extend the connection between nearest neighbor representations and circuits to the $k$-nearest neighbors case. As a result, we show that proving superpolynomial lower bounds for the $k$-nearest neighbors complexity of an explicit function for arbitrary $k$ would require a breakthrough in circuit complexity. In addition, we prove an exponential separation between the nearest neighbor and $k$-nearest neighbors complexity (for unrestricted $k$) of an explicit function. These results address questions raised by Hajnal et al. (2022) of proving strong lower bounds for $k$-nearest neighbors and understanding the role of the parameter $k$. Finally, we devise new bounds on the nearest neighbor complexity for several explicit functions.

We prove the completeness of a first-order analogue of the Fischer Servi logic $\mathsf{FS}$ with respect to its expected birelational semantics. To this end we introduce the notion of the $\textit{trace model}$ and, much like in a canonical model argument, prove a truth lemma. We conclude by examining a number of other first-order Fischer Servi logics, including the first-order analogue of $\mathsf{FSS4}$, whose completeness can be similarly proved.

Multidimensional scaling (MDS) is the act of embedding proximity information about a set of $n$ objects in $d$-dimensional Euclidean space. As originally conceived by the psychometric community, MDS was concerned with embedding a fixed set of proximities associated with a fixed set of objects. Modern concerns, e.g., that arise in developing asymptotic theories for statistical inference on random graphs, more typically involve studying the limiting behavior of a sequence of proximities associated with an increasing set of objects. Standard results from the theory of point-to-set maps imply that, if $n$ is fixed and a sequence of proximities converges, then the limit of the embedded structures is the embedded structure of the limiting proximities. But what if $n$ increases? It then becomes necessary to reformulate MDS so that the entire sequence of embedding problems can be viewed as a sequence of optimization problems in a fixed space. We present such a reformulation and derive some consequences.

We propose a convenient matrix-free neural architecture for the multigrid method. The architecture is simple enough to be implemented in less than fifty lines of code, yet it encompasses a large number of distinct multigrid solvers. We argue that a fixed neural network without dense layers can not realize an efficient iterative method. Because of that, standard training protocols do not lead to competitive solvers. To overcome this difficulty, we use parameter sharing and serialization of layers. The resulting network can be trained on linear problems with thousands of unknowns and retains its efficiency on problems with millions of unknowns. From the point of view of numerical linear algebra network's training corresponds to finding optimal smoothers for the geometric multigrid method. We demonstrate our approach on a few second-order elliptic equations. For tested linear systems, we obtain from two to five times smaller spectral radius of the error propagation matrix compare to a basic linear multigrid with Jacobi smoother.

北京阿比特科技有限公司