The theme of the present paper is numerical integration of $C^r$ functions using randomized methods. We consider variance reduction methods that consist in two steps. First the initial interval is partitioned into subintervals and the integrand is approximated by a piecewise polynomial interpolant that is based on the obtained partition. Then a randomized approximation is applied on the difference of the integrand and its interpolant. The final approximation of the integral is the sum of both. The optimal convergence rate is already achieved by uniform (nonadaptive) partition plus the crude Monte Carlo; however, special adaptive techniques can substantially lower the asymptotic factor depending on the integrand. The improvement can be huge in comparison to the nonadaptive method, especially for functions with rapidly varying $r$th derivatives, which has serious implications for practical computations. In addition, the proposed adaptive methods are easily implementable and can be well used for automatic integration.
In this paper, we will outline a novel data-driven method for estimating functions in a multivariate nonparametric regression model based on an adaptive knot selection for B-splines. The underlying idea of our approach for selecting knots is to apply the generalized lasso, since the knots of the B-spline basis can be seen as changes in the derivatives of the function to be estimated. This method was then extended to functions depending on several variables by processing each dimension independently, thus reducing the problem to a univariate setting. The regularization parameters were chosen by means of a criterion based on EBIC. The nonparametric estimator was obtained using a multivariate B-spline regression with the corresponding selected knots. Our procedure was validated through numerical experiments by varying the number of observations and the level of noise to investigate its robustness. The influence of observation sampling was also assessed and our method was applied to a chemical system commonly used in geoscience. For each different framework considered in this paper, our approach performed better than state-of-the-art methods. Our completely data-driven method is implemented in the glober R package which will soon be available on the Comprehensive R Archive Network (CRAN).
Global optimization of decision trees has shown to be promising in terms of accuracy, size, and consequently human comprehensibility. However, many of the methods used rely on general-purpose solvers for which scalability remains an issue. Dynamic programming methods have been shown to scale much better because they exploit the tree structure by solving subtrees as independent subproblems. However, this only works when an objective can be optimized separately for subtrees. We explore this relationship in detail and show necessary and sufficient conditions for such separability and generalize previous dynamic programming approaches into a framework that can optimize any combination of separable objectives and constraints. Experiments on four application domains show the general applicability of this framework, while outperforming the scalability of general-purpose solvers by a large margin.
It is more and more frequently the case in applications that the data we observe come from one or more random variables taking values in an infinite dimensional space, e.g. curves. The need to have tools adapted to the nature of these data explains the growing interest in the field of functional data analysis. The model we study in this paper assumes a linear dependence between a quantity of interest and several covariates, at least one of which has an infinite dimension. To select the relevant covariates in this context, we investigate adaptations of the Lasso method. Two estimation methods are defined. The first one consists in the minimization of a Group-Lasso criterion on the multivariate functional space H. The second one minimizes the same criterion but on a finite dimensional subspaces of H whose dimension is chosen by a penalized least squares method. We prove oracle inequalities of sparsity in the case where the design is fixed or random. To compute the solutions of both criteria in practice, we propose a coordinate descent algorithm. A numerical study on simulated and real data illustrates the behavior of the estimators.
Given $n$ samples of a function $f\colon D\to\mathbb C$ in random points drawn with respect to a measure $\varrho_S$ we develop theoretical analysis of the $L_2(D, \varrho_T)$-approximation error. For a parituclar choice of $\varrho_S$ depending on $\varrho_T$, it is known that the weighted least squares method from finite dimensional function spaces $V_m$, $\dim(V_m) = m < \infty$ has the same error as the best approximation in $V_m$ up to a multiplicative constant when given exact samples with logarithmic oversampling. If the source measure $\varrho_S$ and the target measure $\varrho_T$ differ we are in the domain adaptation setting, a subfield of transfer learning. We model the resulting deterioration of the error in our bounds. Further, for noisy samples, our bounds describe the bias-variance trade off depending on the dimension $m$ of the approximation space $V_m$. All results hold with high probability. For demonstration, we consider functions defined on the $d$-dimensional cube given in unifom random samples. We analyze polynomials, the half-period cosine, and a bounded orthonormal basis of the non-periodic Sobolev space $H_{\mathrm{mix}}^2$. Overcoming numerical issues of this $H_{\text{mix}}^2$ basis, this gives a novel stable approximation method with quadratic error decay. Numerical experiments indicate the applicability of our results.
The rise of artificial intelligence (AI) hinges on the efficient training of modern deep neural networks (DNNs) for non-convex optimization and uncertainty quantification, which boils down to a non-convex Bayesian learning problem. A standard tool to handle the problem is Langevin Monte Carlo, which proposes to approximate the posterior distribution with theoretical guarantees. In this thesis, we start with the replica exchange Langevin Monte Carlo (also known as parallel tempering), which proposes appropriate swaps between exploration and exploitation to achieve accelerations. However, the na\"ive extension of swaps to big data problems leads to a large bias, and bias-corrected swaps are required. Such a mechanism leads to few effective swaps and insignificant accelerations. To alleviate this issue, we first propose a control variates method to reduce the variance of noisy energy estimators and show a potential to accelerate the exponential convergence. We also present the population-chain replica exchange based on non-reversibility and obtain an optimal round-trip rate for deep learning. In the second part of the thesis, we study scalable dynamic importance sampling algorithms based on stochastic approximation. Traditional dynamic importance sampling algorithms have achieved success, however, the lack of scalability has greatly limited their extensions to big data. To handle this scalability issue, we resolve the vanishing gradient problem and propose two dynamic importance sampling algorithms. Theoretically, we establish the stability condition for the underlying ordinary differential equation (ODE) system and guarantee the asymptotic convergence of the latent variable to the desired fixed point. Interestingly, such a result still holds given non-convex energy landscapes.
In this work we study systems consisting of a group of moving particles. In such systems, often some important parameters are unknown and have to be estimated from observed data. Such parameter estimation problems can often be solved via a Bayesian inference framework. However in many practical problems, only data at the aggregate level is available and as a result the likelihood function is not available, which poses challenge for Bayesian methods. In particular, we consider the situation where the distributions of the particles are observed. We propose a Wasserstein distance based sequential Monte Carlo sampler to solve the problem: the Wasserstein distance is used to measure the similarity between the observed and the simulated particle distributions and the sequential Monte Carlo samplers is used to deal with the sequentially available observations. Two real-world examples are provided to demonstrate the performance of the proposed method.
It is known that standard stochastic Galerkin methods encounter challenges when solving partial differential equations with high dimensional random inputs, which are typically caused by the large number of stochastic basis functions required. It becomes crucial to properly choose effective basis functions, such that the dimension of the stochastic approximation space can be reduced. In this work, we focus on the stochastic Galerkin approximation associated with generalized polynomial chaos (gPC), and explore the gPC expansion based on the analysis of variance (ANOVA) decomposition. A concise form of the gPC expansion is presented for each component function of the ANOVA expansion, and an adaptive ANOVA procedure is proposed to construct the overall stochastic Galerkin system. Numerical results demonstrate the efficiency of our proposed adaptive ANOVA stochastic Galerkin method.
Solving partial differential equations (PDEs) is a central task in scientific computing. Recently, neural network approximation of PDEs has received increasing attention due to its flexible meshless discretization and its potential for high-dimensional problems. One fundamental numerical difficulty is that random samples in the training set introduce statistical errors into the discretization of loss functional which may become the dominant error in the final approximation, and therefore overshadow the modeling capability of the neural network. In this work, we propose a new minmax formulation to optimize simultaneously the approximate solution, given by a neural network model, and the random samples in the training set, provided by a deep generative model. The key idea is to use a deep generative model to adjust random samples in the training set such that the residual induced by the approximate PDE solution can maintain a smooth profile when it is being minimized. Such an idea is achieved by implicitly embedding the Wasserstein distance between the residual-induced distribution and the uniform distribution into the loss, which is then minimized together with the residual. A nearly uniform residual profile means that its variance is small for any normalized weight function such that the Monte Carlo approximation error of the loss functional is reduced significantly for a certain sample size. The adversarial adaptive sampling (AAS) approach proposed in this work is the first attempt to formulate two essential components, minimizing the residual and seeking the optimal training set, into one minmax objective functional for the neural network approximation of PDEs.
Over the last decade, approximating functions in infinite dimensions from samples has gained increasing attention in computational science and engineering, especially in computational uncertainty quantification. This is primarily due to the relevance of functions that are solutions to parametric differential equations in various fields, e.g. chemistry, economics, engineering, and physics. While acquiring accurate and reliable approximations of such functions is inherently difficult, current benchmark methods exploit the fact that such functions often belong to certain classes of holomorphic functions to get algebraic convergence rates in infinite dimensions with respect to the number of (potentially adaptive) samples $m$. Our work focuses on providing theoretical approximation guarantees for the class of $(\boldsymbol{b},\varepsilon)$-holomorphic functions, demonstrating that these algebraic rates are the best possible for Banach-valued functions in infinite dimensions. We establish lower bounds using a reduction to a discrete problem in combination with the theory of $m$-widths, Gelfand widths and Kolmogorov widths. We study two cases, known and unknown anisotropy, in which the relative importance of the variables is known and unknown, respectively. A key conclusion of our paper is that in the latter setting, approximation from finite samples is impossible without some inherent ordering of the variables, even if the samples are chosen adaptively. Finally, in both cases, we demonstrate near-optimal, non-adaptive (random) sampling and recovery strategies which achieve close to same rates as the lower bounds.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.