亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Outlier detection can serve as an extremely important tool for researchers from a wide range of fields. From the sectors of banking and marketing to the social sciences and healthcare sectors, outlier detection techniques are very useful for identifying subjects that exhibit different and sometimes peculiar behaviours. When the data set available to the researcher consists of both discrete and continuous variables, outlier detection presents unprecedented challenges. In this paper we propose a novel method that detects outlying observations in settings of mixed-type data, while reducing the required user interaction and providing general guidelines for selecting suitable hyperparameter values. The methodology developed is being assessed through a series of simulations on data sets with varying characteristics and achieves very good performance levels. Our method demonstrates a high capacity for detecting the majority of outliers while minimising the number of falsely detected non-outlying observations. The ideas and techniques outlined in the paper can be used either as a pre-processing step or in tandem with other data mining and machine learning algorithms for developing novel approaches to challenging research problems.

相關內容

Relating speech to EEG holds considerable importance but is challenging. In this study, a deep convolutional network was employed to extract spatiotemporal features from EEG data. Self-supervised speech representation and contextual text embedding were used as speech features. Contrastive learning was used to relate EEG features to speech features. The experimental results demonstrate the benefits of using self-supervised speech representation and contextual text embedding. Through feature fusion and model ensemble, an accuracy of 60.29% was achieved, and the performance was ranked as No.2 in Task 1 of the Auditory EEG Challenge (ICASSP 2024). The code to implement our work is available on Github: //github.com/bobwangPKU/EEG-Stimulus-Match-Mismatch.

Clusters of similar or dissimilar objects are encountered in many fields. Frequently used approaches treat the central object of each cluster as latent. Yet, often objects of one or more types cluster around objects of another type. Such arrangements are common in biomedical images of cells, in which nearby cell types likely interact. Quantifying spatial relationships may elucidate biological mechanisms. Parent-offspring statistical frameworks can be usefully applied even when central objects (parents) differ from peripheral ones (offspring). We propose the novel multivariate cluster point process (MCPP) to quantify multi-object (e.g., multi-cellular) arrangements. Unlike commonly used approaches, the MCPP exploits locations of the central parent object in clusters. It accounts for possibly multilayered, multivariate clustering. The model formulation requires specification of which object types function as cluster centers and which reside peripherally. If such information is unknown, the relative roles of object types may be explored by comparing fit of different models via the deviance information criterion (DIC). In simulated data, we compared DIC of a series of models; the MCPP correctly identified simulated relationships. It also produced more accurate and precise parameter estimates than the classical univariate Neyman-Scott process model. We also used the MCPP to quantify proposed configurations and explore new ones in human dental plaque biofilm image data. MCPP models quantified simultaneous clustering of Streptococcus and Porphyromonas around Corynebacterium and of Pasteurellaceae around Streptococcus and successfully captured hypothesized structures for all taxa. Further exploration suggested the presence of clustering between Fusobacterium and Leptotrichia, a previously unreported relationship.

The problem of estimating a parameter in the drift coefficient is addressed for $N$ discretely observed independent and identically distributed stochastic differential equations (SDEs). This is done considering additional constraints, wherein only public data can be published and used for inference. The concept of local differential privacy (LDP) is formally introduced for a system of stochastic differential equations. The objective is to estimate the drift parameter by proposing a contrast function based on a pseudo-likelihood approach. A suitably scaled Laplace noise is incorporated to meet the privacy requirements. Our key findings encompass the derivation of explicit conditions tied to the privacy level. Under these conditions, we establish the consistency and asymptotic normality of the associated estimator. Notably, the convergence rate is intricately linked to the privacy level, and is some situations may be completely different from the case where privacy constraints are ignored. Our results hold true as the discretization step approaches zero and the number of processes $N$ tends to infinity.

In statistical inference, retrodiction is the act of inferring potential causes in the past based on knowledge of the effects in the present and the dynamics leading to the present. Retrodiction is applicable even when the dynamics is not reversible, and it agrees with the reverse dynamics when it exists, so that retrodiction may be viewed as an extension of inversion, i.e., time-reversal. Recently, an axiomatic definition of retrodiction has been made in a way that is applicable to both classical and quantum probability using ideas from category theory. Almost simultaneously, a framework for information flow in in terms of semicartesian categories has been proposed in the setting of categorical probability theory. Here, we formulate a general definition of retrodiction to add to the information flow axioms in semicartesian categories, thus providing an abstract framework for retrodiction beyond classical and quantum probability theory. More precisely, we extend Bayesian inference, and more generally Jeffrey's probability kinematics, to arbitrary semicartesian categories.

A completely nonparametric method for the estimation of mixture cure models is proposed. A nonparametric estimator of the incidence is extensively studied and a nonparametric estimator of the latency is presented. These estimators, which are based on the Beran estimator of the conditional survival function, are proved to be the local maximum likelihood estimators. An i.i.d. representation is obtained for the nonparametric incidence estimator. As a consequence, an asymptotically optimal bandwidth is found. Moreover, a bootstrap bandwidth selection method for the nonparametric incidence estimator is proposed. The introduced nonparametric estimators are compared with existing semiparametric approaches in a simulation study, in which the performance of the bootstrap bandwidth selector is also assessed. Finally, the method is applied to a database of colorectal cancer from the University Hospital of A Coru\~na (CHUAC).

In this paper, a direct finite element method is proposed for solving interface problems on simple unfitted meshes. The fact that the two interface conditions form a $H^{\frac12}(\Gamma)\times H^{-\frac12}(\Gamma)$ pair leads to a simple and direct weak formulation with an integral term for the mutual interaction over the interface, and the well-posedness of this weak formulation is proved. Based on this formulation, a direct finite element method is proposed to solve the problem on two adjacent subdomains separated by the interface by conforming finite element and conforming mixed finite element, respectively. The well-posedness and an optimal a priori analysis are proved for this direct finite element method under some reasonable assumptions. A simple lowest order direct finite element method by using the linear element method and the lowest order Raviart-Thomas element method is proposed and analyzed to admit the optimal a priori error estimate by verifying the aforementioned assumptions. Numerical tests are also conducted to verify the theoretical results and the effectiveness of the direct finite element method.

Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work we present a higher-order GNN model trained to predict the fourth-order stiffness tensor of periodic strut-based lattices. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate the benefits of the encoded equivariance and energy conservation in terms of predictive performance and reduced training requirements.

Adversarial generative models, such as Generative Adversarial Networks (GANs), are widely applied for generating various types of data, i.e., images, text, and audio. Accordingly, its promising performance has led to the GAN-based adversarial attack methods in the white-box and black-box attack scenarios. The importance of transferable black-box attacks lies in their ability to be effective across different models and settings, more closely aligning with real-world applications. However, it remains challenging to retain the performance in terms of transferable adversarial examples for such methods. Meanwhile, we observe that some enhanced gradient-based transferable adversarial attack algorithms require prolonged time for adversarial sample generation. Thus, in this work, we propose a novel algorithm named GE-AdvGAN to enhance the transferability of adversarial samples whilst improving the algorithm's efficiency. The main approach is via optimising the training process of the generator parameters. With the functional and characteristic similarity analysis, we introduce a novel gradient editing (GE) mechanism and verify its feasibility in generating transferable samples on various models. Moreover, by exploring the frequency domain information to determine the gradient editing direction, GE-AdvGAN can generate highly transferable adversarial samples while minimizing the execution time in comparison to the state-of-the-art transferable adversarial attack algorithms. The performance of GE-AdvGAN is comprehensively evaluated by large-scale experiments on different datasets, which results demonstrate the superiority of our algorithm. The code for our algorithm is available at: //github.com/LMBTough/GE-advGAN

The detection of toxic language in the Arabic language has emerged as an active area of research in recent years, and reviewing the existing datasets employed for training the developed solutions has become a pressing need. This paper offers a comprehensive survey of Arabic datasets focused on online toxic language. We systematically gathered a total of 54 available datasets and their corresponding papers and conducted a thorough analysis, considering 18 criteria across four primary dimensions: availability details, content, annotation process, and reusability. This analysis enabled us to identify existing gaps and make recommendations for future research works. For the convenience of the research community, the list of the analysed datasets is maintained in a GitHub repository (//github.com/Imene1/Arabic-toxic-language).

Deep Learning (DL) is the most widely used tool in the contemporary field of computer vision. Its ability to accurately solve complex problems is employed in vision research to learn deep neural models for a variety of tasks, including security critical applications. However, it is now known that DL is vulnerable to adversarial attacks that can manipulate its predictions by introducing visually imperceptible perturbations in images and videos. Since the discovery of this phenomenon in 2013~[1], it has attracted significant attention of researchers from multiple sub-fields of machine intelligence. In [2], we reviewed the contributions made by the computer vision community in adversarial attacks on deep learning (and their defenses) until the advent of year 2018. Many of those contributions have inspired new directions in this area, which has matured significantly since witnessing the first generation methods. Hence, as a legacy sequel of [2], this literature review focuses on the advances in this area since 2018. To ensure authenticity, we mainly consider peer-reviewed contributions published in the prestigious sources of computer vision and machine learning research. Besides a comprehensive literature review, the article also provides concise definitions of technical terminologies for non-experts in this domain. Finally, this article discusses challenges and future outlook of this direction based on the literature reviewed herein and [2].

北京阿比特科技有限公司