亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Budget pacing is a popular service that has been offered by major internet advertising platforms since their inception. Budget pacing systems seek to optimize advertiser returns subject to budget constraints by smoothly spending advertiser budgets. In the past few years, autobidding products that provide real-time bidding as a service to advertisers have seen a prominent rise in adoption. A popular autobidding strategy is value maximization subject to return-on-spend (ROS) constraints. For historical/business reasons, the systems that govern these two services, namely budget pacing and ROS pacing, are not always a unified and coordinated entity that optimizes a global objective subject to both constraints. The purpose of this work is to theoretically and empirically compare algorithms with different degrees of coordination between these two pacing systems. In particular, we compare (a) a fully-decoupled sequential algorithm that first constructs the advertiser's ROS-pacing bid and then lowers that bid for budget pacing; (b) a minimally-coupled min-pacing algorithm that runs these two services independently, obtains the bid multipliers from both of them and applies the minimum of the two multipliers as the effective multiplier; and (c) a fully-coupled dual-based algorithm that optimally combines the dual variables from both the systems. Our main contribution is to theoretically analyze the min-pacing algorithm and show that it attains similar guarantees to the fully-coupled canonical dual-based algorithm. On the other hand, we show that the sequential algorithm, even though appealing by virtue of being fully decoupled, could badly violate the constraints. We validate our theoretical findings empirically by showing that the min-pacing algorithm performs almost as well as the canonical dual-based algorithm on a semi-synthetic dataset based on a large online advertising platform's data.

相關內容

Deep neural networks were significantly vulnerable to adversarial examples manipulated by malicious tiny perturbations. Although most conventional adversarial attacks ensured the visual imperceptibility between adversarial examples and corresponding raw images by minimizing their geometric distance, these constraints on geometric distance led to limited attack transferability, inferior visual quality, and human-imperceptible interpretability. In this paper, we proposed a supervised semantic-transformation generative model to generate adversarial examples with real and legitimate semantics, wherein an unrestricted adversarial manifold containing continuous semantic variations was constructed for the first time to realize a legitimate transition from non-adversarial examples to adversarial ones. Comprehensive experiments on MNIST and industrial defect datasets showed that our adversarial examples not only exhibited better visual quality but also achieved superior attack transferability and more effective explanations for model vulnerabilities, indicating their great potential as generic adversarial examples. The code and pre-trained models were available at //github.com/shuaili1027/MAELS.git.

We investigate the problem of autonomous racing among teams of cooperative agents that are subject to realistic racing rules. Our work extends previous research on hierarchical control in head-to-head autonomous racing by considering a generalized version of the problem while maintaining the two-level hierarchical control structure. A high-level tactical planner constructs a discrete game that encodes the complex rules using simplified dynamics to produce a sequence of target waypoints. The low-level path planner uses these waypoints as a reference trajectory and computes high-resolution control inputs by solving a simplified formulation of a racing game with a simplified representation of the realistic racing rules. We explore two approaches for the low-level path planner: training a multi-agent reinforcement learning (MARL) policy and solving a linear-quadratic Nash game (LQNG) approximation. We evaluate our controllers on simple and complex tracks against three baselines: an end-to-end MARL controller, a MARL controller tracking a fixed racing line, and an LQNG controller tracking a fixed racing line. Quantitative results show our hierarchical methods outperform the baselines in terms of race wins, overall team performance, and compliance with the rules. Qualitatively, we observe the hierarchical controllers mimic actions performed by expert human drivers such as coordinated overtaking, defending against multiple opponents, and long-term planning for delayed advantages.

In many applications, the labeled data at the learner's disposal is subject to privacy constraints and is relatively limited. To derive a more accurate predictor for the target domain, it is often beneficial to leverage publicly available labeled data from an alternative domain, somewhat close to the target domain. This is the modern problem of supervised domain adaptation from a public source to a private target domain. We present two $(\epsilon, \delta)$-differentially private adaptation algorithms for supervised adaptation, for which we make use of a general optimization problem, recently shown to benefit from favorable theoretical learning guarantees. Our first algorithm is designed for regression with linear predictors and shown to solve a convex optimization problem. Our second algorithm is a more general solution for loss functions that may be non-convex but Lipschitz and smooth. While our main objective is a theoretical analysis, we also report the results of several experiments first demonstrating that the non-private versions of our algorithms outperform adaptation baselines and next showing that, for larger values of the target sample size or $\epsilon$, the performance of our private algorithms remains close to that of the non-private formulation.

Modern data aggregation often involves a platform collecting data from a network of users with various privacy options. Platforms must solve the problem of how to allocate incentives to users to convince them to share their data. This paper puts forth an idea for a \textit{fair} amount to compensate users for their data at a given privacy level based on an axiomatic definition of fairness, along the lines of the celebrated Shapley value. To the best of our knowledge, these are the first fairness concepts for data that explicitly consider privacy constraints. We also formulate a heterogeneous federated learning problem for the platform with privacy level options for users. By studying this problem, we investigate the amount of compensation users receive under fair allocations with different privacy levels, amounts of data, and degrees of heterogeneity. We also discuss what happens when the platform is forced to design fair incentives. Under certain conditions we find that when privacy sensitivity is low, the platform will set incentives to ensure that it collects all the data with the lowest privacy options. When the privacy sensitivity is above a given threshold, the platform will provide no incentives to users. Between these two extremes, the platform will set the incentives so some fraction of the users chooses the higher privacy option and the others chooses the lower privacy option.

We consider the problem of efficiently routing jobs that arrive into a central queue to a system of heterogeneous servers. Unlike homogeneous systems, a threshold policy, that routes jobs to the slow server(s) when the queue length exceeds a certain threshold, is known to be optimal for the one-fast-one-slow two-server system. But an optimal policy for the multi-server system is unknown and non-trivial to find. While Reinforcement Learning (RL) has been recognized to have great potential for learning policies in such cases, our problem has an exponentially large state space size, rendering standard RL inefficient. In this work, we propose ACHQ, an efficient policy gradient based algorithm with a low dimensional soft threshold policy parameterization that leverages the underlying queueing structure. We provide stationary-point convergence guarantees for the general case and despite the low-dimensional parameterization prove that ACHQ converges to an approximate global optimum for the special case of two servers. Simulations demonstrate an improvement in expected response time of up to ~30% over the greedy policy that routes to the fastest available server.

One of the most important challenges of Smart City Applications is to adapt the system to interact with non-expert users. Robot imitation frameworks aim to simplify and reduce times of robot programming by allowing users to program directly through demonstrations. In classical frameworks, actions are modeled using joint or Cartesian space trajectories. Other features, such as visual ones, are not always well represented with these pure geometrical approaches. Continuous Goal-Directed Actions (CGDA) is an alternative to these methods, as it encodes actions as changes of any feature that can be extracted from the environment. As a consequence of this, the robot joint trajectories for execution must be fully computed to comply with this feature-agnostic encoding. This is achieved using Evolutionary Algorithms (EA), which usually requires too many evaluations to perform this evolution step in the actual robot. Current strategies involve performing evaluations in a simulation, transferring the final joint trajectory to the actual robot. Smart City applications involve working in highly dynamic and complex environments, where having a precise model is not always achievable. Our goal is to study the tractability of performing these evaluations directly in a real-world scenario. Two different approaches to reduce the number of evaluations using EA, are proposed and compared. In the first approach, Particle Swarm Optimization (PSO)-based methods have been studied and compared within CGDA: naive PSO, Fitness Inheritance PSO (FI-PSO), and Adaptive Fuzzy Fitness Granulation with PSO (AFFG-PSO). The second approach studied the introduction of geometrical and velocity constraints within CGDA. The effects of both approaches were analyzed and compared in the wax and paint actions, two CGDA commonly studied use cases. Results from this paper depict an important reduction in the number of evaluations.

Next location prediction is a discipline that involves predicting a users next location. Its applications include resource allocation, quality of service, energy efficiency, and traffic management. This paper proposes an energy-efficient, small, and low parameter machine learning (ML) architecture for accurate next location prediction, deployable on modest base stations and edge devices. To accomplish this we ran a hundred hyperparameter experiments on the full human mobility patterns of an entire city, to determine an exact ML architecture that reached a plateau of accuracy with the least amount of model parameters. We successfully achieved a reduction in the number of model parameters within published ML architectures from 202 million down to 2 million. This reduced the total size of the model parameters from 791 MB down to 8 MB. Additionally, this decreased the training time by a factor of four, the amount of graphics processing unit (GPU) memory needed for training by a factor of twenty, and the overall accuracy was increased from 80.16% to 82.54%. This improvement allows for modest base stations and edge devices which do not have a large amount of memory or storage, to deploy and utilize the proposed ML architecture for next location prediction.

Many problems in robotics involve creating or breaking multiple contacts nearly simultaneously or in an indeterminate order. We present a novel general purpose numerical integrator based on the theory of Event Selected Systems (ESS). Many multicontact models are ESS, which has recently been shown to imply that despite a discontinuous vector field, the flow of these systems is continuous, piecewise smooth, and has a well defined orbital derivative for all trajectories, which can be rapidly computed. We provide an elementary proof that our integrator is first-order accurate and verify numerically that it is in fact second-order accurate as its construction anticipated. We also compare our integrator, implemented in NumPy, to a MuJoCo simulation on models with 2 to 100 contacts, and confirm that the increase in simulation time per contact is nearly identical. The results suggest that this novel integrator can be invaluable for modelling and control in many robotics applications.

Primary motivation for this work was the need to implement hardware accelerators for a newly proposed ANN structure called Auto Resonance Network (ARN) for robotic motion planning. ARN is an approximating feed-forward hierarchical and explainable network. It can be used in various AI applications but the application base was small. Therefore, the objective of the research was twofold: to develop a new application using ARN and to implement a hardware accelerator for ARN. As per the suggestions given by the Doctoral Committee, an image recognition system using ARN has been implemented. An accuracy of around 94% was achieved with only 2 layers of ARN. The network also required a small training data set of about 500 images. Publicly available MNIST dataset was used for this experiment. All the coding was done in Python. Massive parallelism seen in ANNs presents several challenges to CPU design. For a given functionality, e.g., multiplication, several copies of serial modules can be realized within the same area as a parallel module. Advantage of using serial modules compared to parallel modules under area constraints has been discussed. One of the module often useful in ANNs is a multi-operand addition. One problem in its implementation is that the estimation of carry bits when the number of operands changes. A theorem to calculate exact number of carry bits required for a multi-operand addition has been presented in the thesis which alleviates this problem. The main advantage of the modular approach to multi-operand addition is the possibility of pipelined addition with low reconfiguration overhead. This results in overall increase in throughput for large number of additions, typically seen in several DNN configurations.

Recommender systems play a fundamental role in web applications in filtering massive information and matching user interests. While many efforts have been devoted to developing more effective models in various scenarios, the exploration on the explainability of recommender systems is running behind. Explanations could help improve user experience and discover system defects. In this paper, after formally introducing the elements that are related to model explainability, we propose a novel explainable recommendation model through improving the transparency of the representation learning process. Specifically, to overcome the representation entangling problem in traditional models, we revise traditional graph convolution to discriminate information from different layers. Also, each representation vector is factorized into several segments, where each segment relates to one semantic aspect in data. Different from previous work, in our model, factor discovery and representation learning are simultaneously conducted, and we are able to handle extra attribute information and knowledge. In this way, the proposed model can learn interpretable and meaningful representations for users and items. Unlike traditional methods that need to make a trade-off between explainability and effectiveness, the performance of our proposed explainable model is not negatively affected after considering explainability. Finally, comprehensive experiments are conducted to validate the performance of our model as well as explanation faithfulness.

北京阿比特科技有限公司