In many large-scale inverse problems, such as computed tomography and image deblurring, characterization of sharp edges in the solution is desired. Within the Bayesian approach to inverse problems, edge-preservation is often achieved using Markov random field priors based on heavy-tailed distributions. Another strategy, popular in statistics, is the application of hierarchical shrinkage priors. An advantage of this formulation lies in expressing the prior as a conditionally Gaussian distribution depending of global and local hyperparameters which are endowed with heavy-tailed hyperpriors. In this work, we revisit the shrinkage horseshoe prior and introduce its formulation for edge-preserving settings. We discuss a sampling framework based on the Gibbs sampler to solve the resulting hierarchical formulation of the Bayesian inverse problem. In particular, one of the conditional distributions is high-dimensional Gaussian, and the rest are derived in closed form by using a scale mixture representation of the heavy-tailed hyperpriors. Applications from imaging science show that our computational procedure is able to compute sharp edge-preserving posterior point estimates with reduced uncertainty.
Assigning weights to a large pool of objects is a fundamental task in a wide variety of applications. In this article, we introduce the concept of structured high-dimensional probability simplexes, in which most components are zero or near zero and the remaining ones are close to each other. Such structure is well motivated by (i) high-dimensional weights that are common in modern applications, and (ii) ubiquitous examples in which equal weights -- despite their simplicity -- often achieve favorable or even state-of-the-art predictive performance. This particular structure, however, presents unique challenges partly because, unlike high-dimensional linear regression, the parameter space is a simplex and pattern switching between partial constancy and sparsity is unknown. To address these challenges, we propose a new class of double spike Dirichlet priors to shrink a probability simplex to one with the desired structure. When applied to ensemble learning, such priors lead to a Bayesian method for structured high-dimensional ensembles that is useful for forecast combination and improving random forests, while enabling uncertainty quantification. We design efficient Markov chain Monte Carlo algorithms for implementation. Posterior contraction rates are established to study large sample behaviors of the posterior distribution. We demonstrate the wide applicability and competitive performance of the proposed methods through simulations and two real data applications using the European Central Bank Survey of Professional Forecasters data set and a data set from the UC Irvine Machine Learning Repository (UCI).
The inclusion of intermittent and renewable energy sources has increased the importance of demand forecasting in power systems. Smart meters can play a critical role in demand forecasting due to the measurement granularity they provide. Despite their virtue, smart meters used for forecasting face some constraints as consumers' privacy concerns, reluctance of utilities and vendors to share data with competitors or third parties, and regulatory constraints. This paper examines a collaborative machine learning method, federated learning extended with privacy preserving techniques for short-term demand forecasting using smart meter data as a solution to the previous constraints. The combination of privacy preserving techniques and federated learning enables to ensure consumers' confidentiality concerning both their data, the models generated using it (Differential Privacy), and the communication mean (Secure Aggregation). To evaluate this paper's collaborative secure federated learning setting, we explore current literature to select the baseline for our simulations and evaluation. We simulate and evaluate several scenarios that explore how traditional centralized approaches could be projected in the direction of a decentralized, collaborative and private system. The results obtained over the evaluations provided decent performance and in a privacy setting using differential privacy almost perfect privacy budgets (1.39,$10e^{-5}$) and (2.01,$10e^{-5}$) with a negligible performance compromise.
Privacy has become a major concern in machine learning. In fact, the federated learning is motivated by the privacy concern as it does not allow to transmit the private data but only intermediate updates. However, federated learning does not always guarantee privacy-preservation as the intermediate updates may also reveal sensitive information. In this paper, we give an explicit information-theoretical analysis of a federated expectation maximization algorithm for Gaussian mixture model and prove that the intermediate updates can cause severe privacy leakage. To address the privacy issue, we propose a fully decentralized privacy-preserving solution, which is able to securely compute the updates in each maximization step. Additionally, we consider two different types of security attacks: the honest-but-curious and eavesdropping adversary models. Numerical validation shows that the proposed approach has superior performance compared to the existing approach in terms of both the accuracy and privacy level.
Full Waveform Inversion (FWI) is a successful and well-established inverse method for reconstructing material models from measured wave signals. In the field of seismic exploration, FWI has proven particularly successful in the reconstruction of smoothly varying material deviations. In contrast, non-destructive testing (NDT) often requires the detection and specification of sharp defects in a specimen. If the contrast between materials is low, FWI can be successfully applied to these problems as well. However, so far the method is not fully suitable to image defects such as voids, which are characterized by a high contrast in the material parameters. In this paper, we introduce a dimensionless scaling function $\gamma$ to model voids in the forward and inverse scalar wave equation problem. Depending on which material parameters this function $\gamma$ scales, different modeling approaches are presented, leading to three formulations of mono-parameter FWI and one formulation of two-parameter FWI. The resulting problems are solved by first-order optimization, where the gradient is computed by an ajdoint state method. The corresponding Fr\'echet kernels are derived for each approach and the associated minimization is performed using an L-BFGS algorithm. A comparison between the different approaches shows that scaling the density with $\gamma$ is most promising for parameterizing voids in the forward and inverse problem. Finally, in order to consider arbitrary complex geometries known a priori, this approach is combined with an immersed boundary method, the finite cell method (FCM).
Distributed privacy-preserving regression schemes have been developed and extended in various fields, where multiparty collaboratively and privately run optimization algorithms, e.g., Gradient Descent, to learn a set of optimal parameters. However, traditional Gradient-Descent based methods fail to solve problems which contains objective functions with L1 regularization, such as Lasso regression. In this paper, we present Federated Coordinate Descent, a new distributed scheme called FCD, to address this issue securely under multiparty scenarios. Specifically, through secure aggregation and added perturbations, our scheme guarantees that: (1) no local information is leaked to other parties, and (2) global model parameters are not exposed to cloud servers. The added perturbations can eventually be eliminated by each party to derive a global model with high performance. We show that the FCD scheme fills the gap of multiparty secure Coordinate Descent methods and is applicable for general linear regressions, including linear, ridge and lasso regressions. Theoretical security analysis and experimental results demonstrate that FCD can be performed effectively and efficiently, and provide as low MAE measure as centralized methods under tasks of three types of linear regressions on real-world UCI datasets.
Ciphertexts of an order-preserving encryption (OPE) scheme preserve the order of their corresponding plaintexts. However, OPEs are vulnerable to inference attacks that exploit this preserved order. At another end, differential privacy has become the de-facto standard for achieving data privacy. One of the most attractive properties of DP is that any post-processing (inferential) computation performed on the noisy output of a DP algorithm does not degrade its privacy guarantee. In this paper, we propose a novel differentially private order preserving encryption scheme, OP$\epsilon$. Under OP$\epsilon$, the leakage of order from the ciphertexts is differentially private. As a result, in the least, OP$\epsilon$ ensures a formal guarantee (specifically, a relaxed DP guarantee) even in the face of inference attacks. To the best of our knowledge, this is the first work to combine DP with a property-preserving encryption scheme. We demonstrate OP$\epsilon$'s practical utility in answering range queries via extensive empirical evaluation on four real-world datasets. For instance, OP$\epsilon$ misses only around $4$ in every $10K$ correct records on average for a dataset of size $\sim732K$ with an attribute of domain size $\sim18K$ and $\epsilon= 1$.
Variational Bayesian posterior inference often requires simplifying approximations such as mean-field parametrisation to ensure tractability. However, prior work has associated the variational mean-field approximation for Bayesian neural networks with underfitting in the case of small datasets or large model sizes. In this work, we show that invariances in the likelihood function of over-parametrised models contribute to this phenomenon because these invariances complicate the structure of the posterior by introducing discrete and/or continuous modes which cannot be well approximated by Gaussian mean-field distributions. In particular, we show that the mean-field approximation has an additional gap in the evidence lower bound compared to a purpose-built posterior that takes into account the known invariances. Importantly, this invariance gap is not constant; it vanishes as the approximation reverts to the prior. We proceed by first considering translation invariances in a linear model with a single data point in detail. We show that, while the true posterior can be constructed from a mean-field parametrisation, this is achieved only if the objective function takes into account the invariance gap. Then, we transfer our analysis of the linear model to neural networks. Our analysis provides a framework for future work to explore solutions to the invariance problem.
We study the security of Probabilistic Data Structures (PDS) for handling Approximate Membership Queries (AMQ); prominent examples of AMQ-PDS are Bloom and Cuckoo filters. AMQ-PDS are increasingly being deployed in environments where adversaries can gain benefit from carefully selecting inputs, for example to increase the false positive rate of an AMQ-PDS. They are also being used in settings where the inputs are sensitive and should remain private in the face of adversaries who can access an AMQ-PDS through an API or who can learn its internal state by compromising the system running the AMQ-PDS. We develop simulation-based security definitions that speak to correctness and privacy of AMQ-PDS. Our definitions are general and apply to a broad range of adversarial settings. We use our definitions to analyse the behaviour of both Bloom filters and insertion-only Cuckoo filters. We show that these AMQ-PDS can be provably protected through replacement or composition of hash functions with keyed pseudorandom functions in their construction. We also examine the practical impact on storage size and computation of providing secure instances of Bloom and insertion-only Cuckoo filters.
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.