亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper examines the uplink transmission of a single-antenna handsheld user to a cluster of satellites, with a focus on utilizing the inter-satellite links to enable cooperative signal detection. Two cases are studied: one with full CSI and the other with partial CSI between satellites. The two cases are compared in terms of capacity, overhead, and bit error rate. Additionally, the impact of channel estimation error is analyzed in both designs, and robust detection techniques are proposed to handle channel uncertainty up to a certain level. The performance of each case is demonstrated, and a comparison is made with conventional satellite communication schemes where only one satellite can connect to a user. The results of our study reveal that the proposed constellation with a total of 3168 satellites in orbit can enable a capacity of 800 Mbits/sec through cooperation of $12$ satellites with and occupied bandwidth of 500 MHz. In contrast, conventional satellite communication approaches with the same system parameters yield a significantly lower capacity of less than 150 Mbits/sec for the nearest satellite.

相關內容

Networked control systems are closed-loop feedback control systems containing system components that may be distributed geographically in different locations and interconnected via a communication network such as the Internet. The quality of network communication is a crucial factor that significantly affects the performance of remote control. This is due to the fact that network uncertainties can occur in the transmission of packets in the forward and backward channels of the system. The two most significant among these uncertainties are network time delay and packet loss. To overcome these challenges, the networked predictive control system has been proposed to provide improved performance and robustness using predictive controllers and compensation strategies. In particular, the model predictive control method is well-suited as an advanced approach compared to conventional methods. In this paper, a networked model predictive control system consisting of a model predictive control method and compensation strategies is implemented to control and stabilize a robot arm as a physical system. In particular, this work aims to analyze the performance of the system under the influence of network time delay and packet loss. Using appropriate performance and robustness metrics, an in-depth investigation of the impacts of these network uncertainties is performed. Furthermore, the forward and backward channels of the network are examined in detail in this study.

Aiming at providing wireless communication systems with environment-perceptive capacity, emerging integrated sensing and communication (ISAC) technologies face multiple difficulties, especially in balancing the performance trade-off between the communication and radar functions. In this paper, we introduce a reconfigurable intelligent surface (RIS) to assist both data transmission and target detection in a dual-functional ISAC system. To formulate a general optimization framework, diverse communication performance metrics have been taken into account including famous capacity maximization and mean-squared error (MSE) minimization. Whereas the target detection process is modeled as a general likelihood ratio test (GLRT) due to the practical limitations, and the monotonicity of the corresponding detection probability is proved. For the single-user and single-target (SUST) scenario, the minimum transmit power of the ISAC transceiver has been revealed. By exploiting the optimal conditions of the BS design, we validate that the BS is able to realize the maximum power allocation scheme and derive the optimal BS precoder in a semi-closed form. Moreover, an alternating direction method of multipliers (ADMM) based RIS design is proposed to address the optimization of unit-modulus RIS phase shifts. For the sake of further enhancing computational efficiency, we also develop a low-complexity RIS design based on Riemannian gradient descent. Furthermore, the ISAC transceiver design for the multiple-users and multiple-targets (MUMT) scenario is also investigated, where a zero-forcing (ZF) radar receiver is adopted to cancel the interferences. Then optimal BS precoder is derived under the maximum power allocation scheme, and the RIS phase shifts can be optimized by extending the proposed ADMM-based RIS design. Numerical simulation results verify the performance of our proposed transceiver designs.

In this paper, we propose a safety-critical controller based on time-varying control barrier functions (CBFs) for a robot with an unicycle model in the continuous-time domain to achieve navigation and dynamic collision avoidance. Unlike previous works, our proposed approach can control both linear and angular velocity to avoid collision with obstacles, overcoming the limitation of confined control performance due to the lack of control variable. To ensure that the robot reaches its destination, we also design a control Lyapunov function (CLF). Our safety-critical controller is formulated as a quadratic program (QP) optimization problem that incorporates CLF and CBFs as constraints, enabling real-time application for navigation and dynamic collision avoidance. Numerical simulations are conducted to verify the effectiveness of our proposed approach.

Multiple-input multiple-output (MIMO) has become a key technology for contemporary wireless communication systems. For typical MIMO systems, antenna arrays are separated by half of the signal wavelength, which are termed collocated arrays. In this paper, we ask the following question: For future wireless communication systems, is it possible to achieve better performance than collocated arrays by using sparse arrays, whose element spacing is larger than half wavelength? The answer to this question is not immediately clear since while sparse arrays may achieve narrower beam for the main lobe, they also generate undesired grating lobes. In this paper, we show that the answer to the above question is affirmative. To this end, we first provide an insightful explanation by investigating the key properties of beam patterns of sparse and collocated arrays, together with the typical distribution of spatial angle difference \Delta, which all critically impact the inter-user interference (IUI). In particular, we show that sparse arrays are less likely to experience severe IUI than collocated arrays, since the probability of \Delta typically reduces with the increasing of |\Delta|. This naturally helps to reject those higher-order grating lobes of sparse arrays, especially when users are densely located. Then we provide a rigorous derivation of the achievable data rate for sparse and collocated arrays, and derive the condition under which sparse arrays strictly outperform collocated counterparts. Finally, numerical results are provided to validate our theoretical studies.

Future wireless networks, in particular, 5G and beyond, are anticipated to deploy dense Low Earth Orbit (LEO) satellites to provide global coverage and broadband connectivity with reliable data services. However, new challenges for interference management have to be tackled due to the large scale of dense LEO satellite networks. Rate-Splitting Multiple Access (RSMA), widely studied in terrestrial communication systems and Geostationary Orbit (GEO) satellite networks, has emerged as a novel, general, and powerful framework for interference management and multiple access strategies for future wireless networks. In this paper, we propose a multilayer interference management scheme for spectrum sharing in heterogeneous GEO and LEO satellite networks, where RSMA is implemented distributedly at GEO and LEO satellites, namely Distributed-RSMA (D-RSMA), to mitigate the interference and boost the user fairness of the system. We study the problem of jointly optimizing the GEO/LEO precoders and message splits to maximize the minimum rate among User Terminals (UTs) subject to a transmit power constraint at all satellites. A Semi-Definite Programming (SDP)-based algorithm is proposed to solve the original non-convex optimization problem. Numerical results demonstrate the effectiveness and network load robustness of our proposed D-RSMA scheme for multilayer satellite networks. Because of the data sharing and the interference management capability, D-RSMA provides significant max-min fairness performance gains when compared to several benchmark schemes.

Physical layer security is a field of study that continues to gain importance over time. It encompasses a range of algorithms applicable to various aspects of communication systems. While research in the physical layer has predominantly focused on secrecy capacity, which involves logical and digital manipulations to achieve secure communication, there is limited exploration of directly manipulating electromagnetic fields to enhance security against eavesdroppers. In this paper, we propose a novel system that utilizes the Mueller calculation to establish a theoretical framework for manipulating electromagnetic fields in the context of physical layer security. We develop fundamental expressions and introduce new metrics to analyze the system's performance analytically. Additionally, we present three techniques that leverage polarization to enhance physical layer security.

Next-generation wireless networks strive for higher communication rates, ultra-low latency, seamless connectivity, and high-resolution sensing capabilities. To meet these demands, terahertz (THz)-band signal processing is envisioned as a key technology offering wide bandwidth and sub-millimeter wavelength. Furthermore, THz integrated sensing and communications (ISAC) paradigm has emerged jointly access spectrum and reduced hardware costs through a unified platform. To address the challenges in THz propagation, THz-ISAC systems employ extremely large antenna arrays to improve the beamforming gain for communications with high data rates and sensing with high resolution. However, the cost and power consumption of implementing fully digital beamformers are prohibitive. While hybrid analog/digital beamforming can be a potential solution, the use of subcarrier-independent analog beamformers leads to the beam-squint phenomenon where different subcarriers observe distinct directions because of adopting the same analog beamformer across all subcarriers. In this paper, we develop a sparse array architecture for THz-ISAC with hybrid beamforming to provide a cost-effective solution. We analyze the antenna selection problem under beam-squint influence and introduce a manifold optimization approach for hybrid beamforming design. To reduce computational and memory costs, we propose novel algorithms leveraging grouped subarrays, quantized performance metrics, and sequential optimization. These approaches yield a significant reduction in the number of possible subarray configurations, which enables us to devise a neural network with classification model to accurately perform antenna selection.

The state of the art in human computer conversation leaves something to be desired and, indeed, talking to a computer can be down-right annoying. This paper describes an approach to identifying ``opportunities for improvement'' in these systems by looking for abuse in the form of swear words. The premise is that humans swear at computers as a sanction and, as such, swear words represent a point of failure where the system did not behave as it should. Having identified where things went wrong, we can work backward through the transcripts and, using conversation analysis (CA) work out how things went wrong. Conversation analysis is a qualitative methodology and can appear quite alien - indeed unscientific - to those of us from a quantitative background. The paper starts with a description of Conversation analysis in its modern form, and then goes on to apply the methodology to transcripts of frustrated and annoyed users in the DARPA Communicator project. The conclusion is that there is at least one species of failure caused by the inability of the Communicator systems to handle mixed initiative at the discourse structure level. Along the way, I hope to demonstrate that there is an alternative future for computational linguistics that does not rely on larger and larger text corpora.

Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.

Artificial Intelligence (AI) is rapidly becoming integrated into military Command and Control (C2) systems as a strategic priority for many defence forces. The successful implementation of AI is promising to herald a significant leap in C2 agility through automation. However, realistic expectations need to be set on what AI can achieve in the foreseeable future. This paper will argue that AI could lead to a fragility trap, whereby the delegation of C2 functions to an AI could increase the fragility of C2, resulting in catastrophic strategic failures. This calls for a new framework for AI in C2 to avoid this trap. We will argue that antifragility along with agility should form the core design principles for AI-enabled C2 systems. This duality is termed Agile, Antifragile, AI-Enabled Command and Control (A3IC2). An A3IC2 system continuously improves its capacity to perform in the face of shocks and surprises through overcompensation from feedback during the C2 decision-making cycle. An A3IC2 system will not only be able to survive within a complex operational environment, it will also thrive, benefiting from the inevitable shocks and volatility of war.

北京阿比特科技有限公司