In this contribution, we discuss the modeling and model reduction framework known as the Loewner framework. This is a data-driven approach, applicable to large-scale systems, which was originally developed for applications to linear time-invariant systems. In recent years, this method has been extended to a number of additional more complex scenarios, including linear parametric or nonlinear dynamical systems. We will provide here an overview of the latter two, together with time-domain extensions. Additionally, the application of the Loewner framework is illustrated by a collection of practical test cases. Firstly, for data-driven complexity reduction of the underlying model, and secondly, for dealing with control applications of complex systems (in particular, with feedback controller design).
Reduced basis approximations of Optimal Control Problems (OCPs) governed by steady partial differential equations (PDEs) with random parametric inputs are analyzed and constructed. Such approximations are based on a Reduced Order Model, which in this work is constructed using the method of weighted Proper Orthogonal Decomposition. This Reduced Order Model then is used to efficiently compute the reduced basis approximation for any outcome of the random parameter. We demonstrate that such OCPs are well-posed by applying the adjoint approach, which also works in the presence of admissibility constraints and in the case of non linear-quadratic OCPs, and thus is more general than the conventional Lagrangian approach. We also show that a step in the construction of these Reduced Order Models, known as the aggregation step, is not fundamental and can in principle be skipped for noncoercive problems, leading to a cheaper online phase. Numerical applications in three scenarios from environmental science are considered, in which the governing PDE is steady and the control is distributed. Various parameter distributions are taken, and several implementations of the weighted Proper Orthogonal Decomposition are compared by choosing different quadrature rules.
The paper develops a general flexible framework for Network Autoregressive Processes (NAR), wherein the response of each node linearly depends on its past values, a prespecified linear combination of neighboring nodes and a set of node-specific covariates. The corresponding coefficients are node-specific, while the framework can accommodate heavier than Gaussian errors with both spatial-autorgressive and factor based covariance structures. We provide a sufficient condition that ensures the stability (stationarity) of the underlying NAR that is significantly weaker than its counterparts in previous work in the literature. Further, we develop ordinary and generalized least squares estimators for both a fixed, as well as a diverging number of network nodes, and also provide their ridge regularized counterparts that exhibit better performance in large network settings, together with their asymptotic distributions. We also address the issue of misspecifying the network connectivity and its impact on the aforementioned asymptotic distributions of the various NAR parameter estimators. The framework is illustrated on both synthetic and real air pollution data.
Dynamic mode decomposition (DMD) has recently become a popular tool for the non-intrusive analysis of dynamical systems. Exploiting the proper orthogonal decomposition as dimensionality reduction technique, DMD is able to approximate a dynamical system as a sum of (spatial) basis evolving linearly in time, allowing for a better understanding of the physical phenomena or for a future forecasting. We propose in this contribution an extension of the DMD to parametrized dynamical systems, focusing on the future forecasting of the output of interest in a parametric context. Initially, all the snapshots -- for different parameters and different time instants -- are projected to the reduced space, employing the DMD (or one of its variants) to approximate the reduced snapshots for a future instants. Still exploiting the low dimension of the reduced space, the predicted reduced snapshots are then combined using a regression technique, enabling the possibility to approximate any untested parametric configuration in any future instant. We are going to present here the algorithmic core of the aforementioned method, presenting at the end three different test cases with incremental complexity: a simple dynamical system with a linear parameter dependency, a heat problem with nonlinear parameter dependency and a fluid dynamics problem with nonlinear parameter dependency.
A new Las Vegas algorithm is presented for the composition of two polynomials modulo a third one, over an arbitrary field. When the degrees of these polynomials are bounded by $n$, the algorithm uses $O(n^{1.43})$ field operations, breaking through the $3/2$ barrier in the exponent for the first time. The previous fastest algebraic algorithms, due to Brent and Kung in 1978, require $O(n^{1.63})$ field operations in general, and ${n^{3/2+o(1)}}$ field operations in the particular case of power series over a field of large enough characteristic. If using cubic-time matrix multiplication, the new algorithm runs in ${n^{5/3+o(1)}}$ operations, while previous ones run in $O(n^2)$ operations. Our approach relies on the computation of a matrix of algebraic relations that is typically of small size. Randomization is used to reduce arbitrary input to this favorable situation.
We study the ability of neural networks to calculate feedback control signals that steer trajectories of continuous time non-linear dynamical systems on graphs, which we represent with neural ordinary differential equations (neural ODEs). To do so, we present a neural-ODE control (NODEC) framework and find that it can learn feedback control signals that drive graph dynamical systems into desired target states. While we use loss functions that do not constrain the control energy, our results show, in accordance with related work, that NODEC produces low energy control signals. Finally, we evaluate the performance and versatility of NODEC against well-known feedback controllers and deep reinforcement learning. We use NODEC to generate feedback controls for systems of more than one thousand coupled, non-linear ODEs that represent epidemic processes and coupled oscillators.
We develop a weak-form sparse identification method for interacting particle systems (IPS) with the primary goals of reducing computational complexity for large particle number $N$ and offering robustness to either intrinsic or extrinsic noise. In particular, we use concepts from mean-field theory of IPS in combination with the weak-form sparse identification of nonlinear dynamics algorithm (WSINDy) to provide a fast and reliable system identification scheme for recovering the governing stochastic differential equations for an IPS when the number of particles per experiment $N$ is on the order of several thousand and the number of experiments $M$ is less than 100. This is in contrast to existing work showing that system identification for $N$ less than 100 and $M$ on the order of several thousand is feasible using strong-form methods. We prove that under some standard regularity assumptions the scheme converges with rate $\mathcal{O}(N^{-1/2})$ in the ordinary least squares setting and we demonstrate the convergence rate numerically on several systems in one and two spatial dimensions. Our examples include a canonical problem from homogenization theory (as a first step towards learning coarse-grained models), the dynamics of an attractive-repulsive swarm, and the IPS description of the parabolic-elliptic Keller-Segel model for chemotaxis.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
In this monograph, I introduce the basic concepts of Online Learning through a modern view of Online Convex Optimization. Here, online learning refers to the framework of regret minimization under worst-case assumptions. I present first-order and second-order algorithms for online learning with convex losses, in Euclidean and non-Euclidean settings. All the algorithms are clearly presented as instantiation of Online Mirror Descent or Follow-The-Regularized-Leader and their variants. Particular attention is given to the issue of tuning the parameters of the algorithms and learning in unbounded domains, through adaptive and parameter-free online learning algorithms. Non-convex losses are dealt through convex surrogate losses and through randomization. The bandit setting is also briefly discussed, touching on the problem of adversarial and stochastic multi-armed bandits. These notes do not require prior knowledge of convex analysis and all the required mathematical tools are rigorously explained. Moreover, all the proofs have been carefully chosen to be as simple and as short as possible.
This manuscript surveys reinforcement learning from the perspective of optimization and control with a focus on continuous control applications. It surveys the general formulation, terminology, and typical experimental implementations of reinforcement learning and reviews competing solution paradigms. In order to compare the relative merits of various techniques, this survey presents a case study of the Linear Quadratic Regulator (LQR) with unknown dynamics, perhaps the simplest and best studied problem in optimal control. The manuscript describes how merging techniques from learning theory and control can provide non-asymptotic characterizations of LQR performance and shows that these characterizations tend to match experimental behavior. In turn, when revisiting more complex applications, many of the observed phenomena in LQR persist. In particular, theory and experiment demonstrate the role and importance of models and the cost of generality in reinforcement learning algorithms. This survey concludes with a discussion of some of the challenges in designing learning systems that safely and reliably interact with complex and uncertain environments and how tools from reinforcement learning and controls might be combined to approach these challenges.
Although reinforcement learning methods can achieve impressive results in simulation, the real world presents two major challenges: generating samples is exceedingly expensive, and unexpected perturbations can cause proficient but narrowly-learned policies to fail at test time. In this work, we propose to learn how to quickly and effectively adapt online to new situations as well as to perturbations. To enable sample-efficient meta-learning, we consider learning online adaptation in the context of model-based reinforcement learning. Our approach trains a global model such that, when combined with recent data, the model can be be rapidly adapted to the local context. Our experiments demonstrate that our approach can enable simulated agents to adapt their behavior online to novel terrains, to a crippled leg, and in highly-dynamic environments.