亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

現代強化學習(RL)方法在各種應用中取得了巨大的成功。然而,由于過度的樣本復雜性負擔,具有大狀態空間和長規劃時界的強化學習問題仍然具有挑戰性,而我們目前對這類問題的理解相當有限。此外,RL中還有一些經典框架無法解決的重要問題。本文研究了上述問題,以建立對現代RL方法的更好理解。本文主要分為以下三個部分:

**第一部分:具有長期規劃時界的RL。**學習為長期時界做計劃是強化學習的一個核心挑戰,而一個基本問題是了解強化學習的難度如何隨著時界的增加而增加。在本文的第一部分中,我們證明了表格式強化學習是可能的,其樣本復雜度完全獨立于規劃周期,因此,長周期強化學習并不比短周期強化學習更難,至少在極大極小意義上是這樣。

**第二部分:具有大狀態空間的RL。**在現代RL方法中,函數逼近方案被部署來處理大型狀態空間。根據經驗,將RL算法與神經網絡相結合進行特征提取,在各種任務上取得了巨大的成功。然而,這些方法通常需要大量的樣本來學習一個好的策略,并且不清楚此類方法是否有基本的統計限制。在本文的第二部分,通過理論分析和實驗,研究了允許樣本有效強化學習的特征表示能力的充要條件。

**第三部分:其他環境下的強化學習。**經典的強化學習范式旨在最大化智能體獲得獎勵值時的累積獎勵。盡管能夠形式化一個龐大的序列決策問題族,但仍有一些重要的應用無法歸入經典框架。在本文的第三部分,我們研究了兩種新的設置,即無獎勵探索設置和具有一般目標函數的規劃,它們泛化了經典的框架。

付費5元查看完整內容

相關內容

//dataspace.princeton.edu/handle/88435/dsp01v979v6238 強化學習在過去幾年里獲得了極大的興趣,主要是由于實際成功和在各個領域的新應用。然而,我們對這些強化學習技術的理論理解與其經驗上的成功之間仍然存在差距。本文從主要的理論角度研究強化學習,并為1)帶約束的強化學習和2)帶函數逼近的強化學習這兩個具有挑戰性的情況設計了可證明有效的算法,從而加深了我們的理解。 1)在標準強化學習中,學習智能體尋求優化整體獎勵。然而,期望行為的許多關鍵方面更自然地表示為約束。提出了一種算法方案,可以處理具有一般凸約束的強化學習任務,改進了之前局限于線性約束或缺乏理論保證的工作。其次,專注于樣本高效的探索,開發了第一個可證明有效的表格式偶發約束強化學習算法,具有處理凸約束和背包設置的能力。最后,在無獎勵強化學習最新進展的激勵下,本文提出了一種簡單的元算法,在給定任何無獎勵強化學習oracle的情況下,約束強化學習問題可以直接解決,而樣本復雜度的開銷可以忽略不計。 2)尋找能夠支持樣本高效學習的最小結構假設是強化學習最重要的研究方向之一。本文通過引入一種新的復雜性度量——bellman Eluder (BE)維度,推進了對這一基本問題的理解。低BE維的強化學習問題家族非常豐富,包含了絕大多數現有的可處理的強化學習問題。本文進一步設計了一個新的基于優化的算法——GOLF,并針對幾個著名的低BE維問題子類提供了匹配或改進現有最佳結果的遺憾和樣本復雜度結果。為了實現更具挑戰性的部分可觀察強化學習,研究了部分可觀察馬爾可夫決策過程(POMDPs)的一個新的子類,其潛狀態可以用短長度m的最近歷史來解碼。結果表明,短期記憶對這些環境中的強化學習足夠了。

付費5元查看完整內容

**與經典的監督學習不同,強化學習(Reinforcement Learning, RL)從根本上講是交互式的:一個自主智能體必須學會如何在未知、不確定甚至可能是對抗的環境中表現,通過與環境的主動交互來收集有用的反饋以提高其序列決策能力。**RL智能體還將干預環境:智能體做出的決策反過來影響環境的進一步演化。由于它的通用性——大多數機器學習問題都可以視為特例——RL是困難的。由于沒有直接監督,強化學習的一個核心挑戰是如何探索未知環境并有效收集有用的反饋。在最近的強化學習成功故事中(例如,在電子游戲上的超人表現[Mnih等人,2015]),我們注意到它們大多數依賴于隨機探索策略,如e-greedy。類似地,策略梯度方法,如REINFORCE [Williams, 1992],通過將隨機性注入行動空間來進行探索,并希望這種隨機性可以產生一個獲得高總回報的良好行動序列。理論強化學習文獻已經開發了更復雜的算法來進行有效探索(例如,[Azar等人,2017]),然而,這些接近最優算法的樣本復雜度必須相對于底層系統的關鍵參數(如狀態和動作空間的維度)呈指數級增長。這種指數依賴性阻礙了這些理論上優雅的RL算法直接應用于大規模應用。總之,如果沒有任何進一步的假設,RL在實踐和理論上都是困難的。

**本文試圖通過引入額外的假設和信息源來獲得對強化學習問題的支持。本文的第一個貢獻來自于通過模仿學習提高強化學習的樣本復雜度。**通過利用專家的演示,模仿學習大大簡化了探索的任務。本文考慮兩個設置:交互式模仿學習設置,其中專家在訓練期間可以進行查詢;以及僅從觀察中進行模仿學習的設置,其中只有一組演示,由對專家狀態的觀察組成(沒有記錄專家的行動)。本文從理論和實踐兩方面研究了與純強化學習方法相比,如何模仿專家來降低樣本復雜度。第二個貢獻來自無模型強化學習。具體而言,我們通過構建一個從策略評估到無悔在線學習的總體約簡來研究策略評估,無悔在線學習是一個活躍的、具有良好理論基礎的研究領域。這種約簡創建了一個新的算法族,用于在對生成過程的非常弱的假設下可證明正確的策略評估。然后對兩種無模型探索策略:行動空間探索和參數空間探索進行了深入的理論研究和實證研究。本文工作的第三個貢獻來自基于模型的強化學習。本文在基于模型的強化學習和一般無模型強化學習方法之間首次實現了樣本復雜度的指數級分離。本文提供了基于PAC模型的強化學習算法,可以同時對許多感興趣的mdp實現樣本效率,如表格mdp、可分解mdp、Lipschitz連續mdp、低秩mdp和線性二次控制。本文還提供了一個更實用的基于模型的強化學習框架,稱為雙策略迭代(DPI),通過將最優控制、模型學習和模仿學習集成在一起。此外,本文給出了廣義收斂性分析,將現有的近似策略迭代理論擴展到DPI。DPI推廣并為最近成功的實際強化學習算法(如ExIt和AlphaGo Zero)提供了第一個理論基礎[Anthony等人,2017,Silver等人,2017],并提供了一種理論可靠和實際有效的方法來統一基于模型和無模型的強化學習方法。

付費5元查看完整內容

深度神經網絡與強化學習(RL)的結合在解決其他棘手的學習任務方面顯示出巨大的前景。**然而,深度強化學習的實際演示仍然很少。將深度強化學習用于給定任務的挑戰可以分為兩類,大致上是“從經驗中學習什么?”和“從什么經驗中學習?”在本文中,我描述了解決第二類問題的工作。**具體來說,采樣包含與學習任務相關信息的動作、狀態和軌跡的問題。我從算法設計和任務復雜性的三個層次來研究這個挑戰,從算法組件到打破常見RL慣例的混合組合算法。在第一章中,我描述了穩定高效的動作采樣工作,以優化連續值動作的Q函數。通過將基于樣本的優化器與神經網絡近似相結合,可以獲得訓練、計算效率和精確推理的穩定性。在第二章中,我描述了在獎勵感知探索方面的工作,即發現常見采樣方法不足的理想行為。教師"探索"智能體發現狀態和軌跡,使學生"利用"智能體從這些經驗中學習到的數量最大化,并能使學生智能體解決其他不可能的困難任務。在第三章中,我描述了將強化學習與啟發式搜索相結合的工作,用于遷移模型已知的任務領域,但狀態空間的組合數學對于傳統搜索來說是難以解決的。通過將深度Q學習與最佳優先樹搜索算法相結合,可以用比普通搜索算法或僅使用強化學習更少的樣本來找到程序合成問題的解決方案。最后,總結了這項工作的主要收獲,并討論了強化學習中高效采樣的擴展和未來方向。

//dataspace.princeton.edu/handle/88435/dsp01x346d733f

付費5元查看完整內容

機器學習的現實應用通常具有復雜的目標和安全關鍵約束。當代的機器學習系統擅長于在具有簡單程序指定目標的任務中實現高平均性能,但它們在許多要求更高的現實世界任務中很困難。本文致力于開發可信的機器學習系統,理解人類的價值觀并可靠地優化它們

機器學習的關鍵觀點是,學習一個算法通常比直接寫下來更容易,然而許多機器學習系統仍然有一個硬編碼的、程序指定的目標。獎勵學習領域將這種見解應用于學習目標本身。由于獎勵函數和目標之間存在多對一的映射,我們首先引入由指定相同目標的獎勵函數組成的等價類的概念。

在論文的第一部分,我們將等價類的概念應用于三種不同的情形。首先,我們研究了獎勵函數的可識別性:哪些獎勵函數集與數據兼容?我們首先對誘導相同數據的獎勵函數的等價類進行分類。通過與上述最優策略等價類進行比較,我們可以確定給定數據源是否提供了足夠的信息來恢復最優策略。

其次,我們解決了兩個獎勵函數等價類是相似還是不同的基本問題。我們在這些等價類上引入了一個距離度量,即等價策略不變比較(EPIC),并表明即使在不同的過渡動態下,低EPIC距離的獎勵也會誘導具有相似回報的策略。最后,我們介紹了獎勵函數等價類的可解釋性方法。該方法從等價類中選擇最容易理解的代表函數,然后將代表函數可視化。

在論文的第二部分,我們研究了模型的對抗魯棒性問題。本文首先介紹了一個物理上現實的威脅模型,包括在多智能體環境中行動的對抗性策略,以創建對防御者具有對抗性的自然觀察。用深度強化學習訓練對手,對抗一個凍結的最先進的防御者,該防御者通過自訓練,以對對手強大。這種攻擊可以可靠地戰勝最先進的模擬機器人RL智能體和超人圍棋程序。

最后,研究了提高智能體魯棒性的方法。對抗性訓練是無效的,而基于群體的訓練作為一種部分防御提供了希望:它不能阻止攻擊,但確實增加了攻擊者的計算負擔。使用顯式規劃也有幫助,因為我們發現具有大量搜索的防御者更難利用。

付費5元查看完整內容

強化學習(Reinforcement Learning, RL)是一種訓練人工智能體自主與世界互動的方法。然而,在實踐中,強化學習仍然有局限性,禁止在許多現實世界環境中部署強化學習智能體。這是因為RL需要很長時間,通常需要人工監督,并產生在不熟悉的情況下可能表現出出乎意料的特殊智能體。本文的目標是使RL智能體在現實世界中部署時更加靈活、穩健和安全。我們開發具有快速適應能力的智能體,即能夠有效學習新任務的智能體。為此,我們使用元強化學習(Meta- RL),在這里我們不僅教智能體自主行動,而且教智能體自主學習。基于快速適應可以分為“任務推理”(理解任務)和“任務求解”(解決任務)的直覺,我們提出了四種新的元RL方法。我們假設這種分離可以簡化優化,從而提高性能,并且更適合下游任務。為了實現這一點,我們提出了一種基于上下文的方法,在這種方法中,智能體以表示其對任務的當前知識的上下文為條件。然后,智能體可以使用這一點來決定是進一步了解任務,還是嘗試解決它。在第5章中,我們使用確定性上下文,并確定這確實可以提高性能并充分捕獲任務。在接下來的章節中,我們將在上下文中引入貝葉斯推理,以實現在任務不確定性下的決策。通過結合元強化學習、基于上下文的學習和近似變分推理,開發了為單智能體設置(第6章)和多智能體設置(第7章)計算近似貝葉斯最優智能體的方法。最后,第8章解決了稀疏獎勵的元學習的挑戰,這是許多現實世界應用的重要設置。觀察到,如果獎勵稀疏,現有的元強化學習方法可能會完全失敗,并提出一種方法來克服這一問題,即鼓勵智能體在元訓練期間進行探索。我們以對當前發展背景下的工作的反思和對開放問題的討論來結束論文。綜上所述,本文的研究成果極大地推動了基于Meta-RL的快速適應領域的發展。本文開發的智能體可以比以前的任何方法更快地適應各種任務,并且可以為比以前可能的更復雜的任務分布計算近似貝葉斯最優策略。我們希望這有助于推動Meta-RL研究的發展,并從長遠來看,利用RL解決重要的現實世界挑戰。

《元強化學習》最新,70頁ppt

付費5元查看完整內容

強化學習(RL)智能體需要探索他們的環境,以便通過試錯學習最優策略。然而,當獎勵信號稀疏,或當安全是一個關鍵問題和某些錯誤是不可接受的時候,探索是具有挑戰性的。在本論文中,我們通過修改智能體解決的潛在優化問題,激勵它們以更安全或更有效的方式探索,來解決深度強化學習設置中的這些挑戰。

在這篇論文的第一部分,我們提出了內在動機的方法,在獎勵稀少或缺乏的問題上取得進展。我們的第一種方法使用內在獎勵來激勵智能體訪問在學習動力學模型下被認為是令人驚訝的狀態,并且我們證明了這種技術比單純探索更好。我們的第二種方法使用基于變分推理的目標,賦予個體不同的多種技能,而不使用特定任務的獎勵。我們證明了這種方法,我們稱為變分選擇發現,可以用來學習運動行為的模擬機器人環境。

在論文的第二部分,我們重點研究了安全勘探中存在的問題。在廣泛的安全強化學習研究的基礎上,我們提出將約束的RL標準化為安全探索的主要形式; 然后,我們繼續開發約束RL的算法和基準。我們的材料展示按時間順序講述了一個故事:我們首先介紹約束策略優化(Constrained Policy Optimization, CPO),這是約束深度RL的第一個算法,在每次迭代時都保證接近約束的滿足。接下來,我們開發了安全健身基準,它讓我們找到CPO的極限,并激勵我們向不同的方向前進。最后,我們發展了PID拉格朗日方法,其中我們發現對拉格朗日原-對偶梯度基線方法進行小的修改,可以顯著改善求解Safety Gym中約束RL任務的穩定性和魯棒性。

//www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-34.html

付費5元查看完整內容

與經典的監督學習不同,強化學習(RL)從根本上是交互式的: 一個自主的智能體必須學習如何在一個未知的、不確定的、可能是對抗的環境中表現,通過與環境的積極互動來收集有用的反饋,以提高其序列決策能力。RL代理還將干預環境: 代理做出決策,進而影響環境的進一步演化。

由于它的普遍性——大多數機器學習問題可以看作是特殊情況——RL很難。由于沒有直接的監督,RL的一個主要挑戰是如何探索未知的環境并有效地收集有用的反饋。在最近的RL成功案例中(如視頻游戲中的超人表現[Mnih et al., 2015]),我們注意到它們大多依賴于隨機探索策略,如“貪婪”。同樣的,策略梯度法如REINFORCE [Williams, 1992],通過向動作空間注入隨機性進行探索,希望隨機性能導致良好的動作序列,從而獲得高總回報。理論RL文獻已經開發出了更復雜的算法來進行有效的探索(例如,[Azar等人,2017]),然而,這些接近最優算法的樣本復雜度必須根據底層系統的關鍵參數(如狀態和動作空間的維數)呈指數級增長。這種指數依賴性阻礙了這些理論上優雅的RL算法在大規模應用中的直接應用。總之,如果沒有進一步的假設,無論在實踐上還是在理論上,RL都是困難的。

在本文中,我們試圖通過引入額外的假設和信息源來獲得對RL問題的支持。本文的第一個貢獻是通過模仿學習來提高RL樣本的復雜度。通過利用專家的示范,模仿學習極大地簡化了探索的任務。在本論文中,我們考慮了兩種設置:一種是交互式模仿學習設置,即在訓練期間專家可以進行查詢;另一種是僅通過觀察進行模仿學習的設置,在這種設置中,我們只有一組由對專家狀態的觀察組成的演示(沒有記錄專家行為)。我們在理論和實踐中研究如何模仿專家,以減少樣本的復雜性相比,純RL方法。第二個貢獻來自于無模型的強化學習。具體來說,我們通過構建一個從策略評估到無后悔在線學習的總體約簡來研究策略評估,無后悔在線學習是一個活躍的研究領域,具有良好的理論基礎。這樣的約減創造了一個新的算法族,可以在生成過程的非常弱的假設下證明正確的策略評估。在此基礎上,對行動空間和參數空間兩種無模型勘探策略進行了理論和實證研究。這項工作的第三個貢獻來自基于模型的強化學習。我們提供了基于模型的RL方法和一般無模型的RL方法之間的第一個指數樣本復度分離。然后,我們提供了基于PAC模型的RL算法,可以同時實現對許多有趣的MDPs的采樣效率,如表列MDPs、因子MDPs、Lipschitz連續MDPs、低秩MDPs和線性二次控制。通過將最優控制、模型學習和模仿學習結合在一起,我們還提供了一個更實用的基于模型的RL框架,稱為雙重策略迭代(DPI)。此外,我們給出了一個通用的收斂分析,將現有的近似策略迭代理論推廣到DPI。DPI對最近成功的實用RL算法如ExIt和AlphaGo Zero進行了概括和提供了第一個理論基礎[Anthony et al., 2017, Silver et al., 2017],并為統一基于模型的RL方法和無模型的RL方法提供了一種理論健全和實踐高效的方法。

//www.ri.cmu.edu/publications/towards-generalization-and-efficiency-in-reinforcement-learning/

付費5元查看完整內容

機器人研究的一個長期目標是創建能夠從零開始自動學習復雜控制策略的算法。將這種算法應用到機器人上的挑戰之一是表示的選擇。強化學習(RL)算法已經成功地應用于許多不同的機器人任務中,如帶有機器人手臂的cup中的Ball-in-a-Cup任務和各種機器人世界杯機器人足球啟發的領域。然而,RL算法仍然存在訓練時間長、所需訓練數據量大的問題。為狀態空間、行動空間和策略選擇合適的表示可以大大減少所需的訓練時間和所需的訓練數據。

本文主要研究機器人的深度強化學習。具體來說,狀態空間、動作空間和策略表示的選擇如何減少機器人學習任務的訓練時間和樣本復雜度。特別集中注意兩個主要領域: 1)通過張量狀態-動作空間表示 2)多狀態表示的輔助任務學習

第一個領域探索了在環境變化中改進機器人策略遷移的方法。學習策略的成本可能很高,但是如果策略可以在類似的環境中傳輸和重用,那么訓練成本可以平攤。遷移學習是一個被廣泛研究的領域,涉及多種技術。在這篇論文中,我們著重設計一個易于傳輸的表示。我們的方法將狀態空間和動作空間映射為多維張量,設計成當環境中機器人和其他對象的數量變化時保持固定維數。我們還提出了全卷積Q-Network (FCQN)策略表示,這是一種特殊的網絡架構,與張量表示相結合,允許跨環境大小進行零距離傳輸。我們在模擬的單代理和多代理任務上演示了這種方法,靈感來自于RoboCup Small - Size League (SSL)和Atari Breakout的修改版本。我們還表明,在真實世界的傳感器數據和機器人中使用這樣的表示和模擬訓練策略是可能的。

第二個領域考察了一個機器人深度RL狀態表示的優勢如何彌補另一個機器人深度RL狀態表示的劣勢。例如,我們經常想要利用機器人可用的傳感器來學習任務,其中包括像攝像機這樣的高維傳感器。最近的Deep RL算法可以通過圖像進行學習,但是數據的數量對于真實的機器人來說是難以接受的。或者,可以使用任務完成所需的最小集創建狀態。這樣做的好處是:1)減少策略參數的數量,2)刪除不相關的信息。然而,提取這些特征通常會在工程、額外硬件、校準和實驗室之外的脆弱性方面有很大的成本。我們在仿真和現實世界的多個機器人平臺和任務上演示了這一點。我們證明它在模擬的RoboCup小型聯賽(SSL)機器人上工作。我們還演示了這樣的技術允許在真實的硬件上從零開始學習,通過機器人手臂執行一個球在一個杯子的任務。

//www.ri.cmu.edu/publications/robot-deep-reinforcement-learning-tensor-state-action-spaces-and-auxiliary-task-learning-with-multiple-state-representations/

付費5元查看完整內容

論文題目:Acquiring Diverse Robot Skills via Maximum Entropy Deep Reinforcement Learning

作者:Tuomas Haarnoja

導師:Pieter Abbeel and Sergey Levine

網址:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-176.html

論文摘要:

在本文中,我們研究了最大熵框架如何提供有效的深度強化學習(deep reinforcement learning, deep RL)算法,以連貫性地解決任務并有效地進行樣本抽取。這個框架有幾個有趣的特性。首先,最優策略是隨機的,改進了搜索,防止了收斂到局部最優,特別是當目標是多模態的時候。其次,熵項提供了正則化,與確定性方法相比,具有更強的一致性和魯棒性。第三,最大熵策略是可組合的,即可以組合兩個或兩個以上的策略,并且所得到的策略對于組成任務獎勵的總和是近似最優的。第四,最大熵RL作為概率推理的觀點為構建能夠解決復雜和稀疏獎勵任務的分層策略提供了基礎。在第一部分中,我們將在此基礎上設計新的算法框架,從soft Q學習的學習表現力好的能量策略、對于 sodt actor-critic提供簡單和方便的方法,到溫度自動調整策略, 幾乎不需要hyperparameter調優,這是最重要的一個實際應用的調優hyperparameters可以非常昂貴。在第二部分中,我們將討論由最大熵策略固有的隨機特性所支持的擴展,包括組合性和層次學習。我們將演示所提出的算法在模擬和現實機器人操作和移動任務中的有效性。

付費5元查看完整內容
北京阿比特科技有限公司