**與經典的監督學習不同,強化學習(Reinforcement Learning, RL)從根本上講是交互式的:一個自主智能體必須學會如何在未知、不確定甚至可能是對抗的環境中表現,通過與環境的主動交互來收集有用的反饋以提高其序列決策能力。**RL智能體還將干預環境:智能體做出的決策反過來影響環境的進一步演化。由于它的通用性——大多數機器學習問題都可以視為特例——RL是困難的。由于沒有直接監督,強化學習的一個核心挑戰是如何探索未知環境并有效收集有用的反饋。在最近的強化學習成功故事中(例如,在電子游戲上的超人表現[Mnih等人,2015]),我們注意到它們大多數依賴于隨機探索策略,如e-greedy。類似地,策略梯度方法,如REINFORCE [Williams, 1992],通過將隨機性注入行動空間來進行探索,并希望這種隨機性可以產生一個獲得高總回報的良好行動序列。理論強化學習文獻已經開發了更復雜的算法來進行有效探索(例如,[Azar等人,2017]),然而,這些接近最優算法的樣本復雜度必須相對于底層系統的關鍵參數(如狀態和動作空間的維度)呈指數級增長。這種指數依賴性阻礙了這些理論上優雅的RL算法直接應用于大規模應用。總之,如果沒有任何進一步的假設,RL在實踐和理論上都是困難的。
**本文試圖通過引入額外的假設和信息源來獲得對強化學習問題的支持。本文的第一個貢獻來自于通過模仿學習提高強化學習的樣本復雜度。**通過利用專家的演示,模仿學習大大簡化了探索的任務。本文考慮兩個設置:交互式模仿學習設置,其中專家在訓練期間可以進行查詢;以及僅從觀察中進行模仿學習的設置,其中只有一組演示,由對專家狀態的觀察組成(沒有記錄專家的行動)。本文從理論和實踐兩方面研究了與純強化學習方法相比,如何模仿專家來降低樣本復雜度。第二個貢獻來自無模型強化學習。具體而言,我們通過構建一個從策略評估到無悔在線學習的總體約簡來研究策略評估,無悔在線學習是一個活躍的、具有良好理論基礎的研究領域。這種約簡創建了一個新的算法族,用于在對生成過程的非常弱的假設下可證明正確的策略評估。然后對兩種無模型探索策略:行動空間探索和參數空間探索進行了深入的理論研究和實證研究。本文工作的第三個貢獻來自基于模型的強化學習。本文在基于模型的強化學習和一般無模型強化學習方法之間首次實現了樣本復雜度的指數級分離。本文提供了基于PAC模型的強化學習算法,可以同時對許多感興趣的mdp實現樣本效率,如表格mdp、可分解mdp、Lipschitz連續mdp、低秩mdp和線性二次控制。本文還提供了一個更實用的基于模型的強化學習框架,稱為雙策略迭代(DPI),通過將最優控制、模型學習和模仿學習集成在一起。此外,本文給出了廣義收斂性分析,將現有的近似策略迭代理論擴展到DPI。DPI推廣并為最近成功的實際強化學習算法(如ExIt和AlphaGo Zero)提供了第一個理論基礎[Anthony等人,2017,Silver等人,2017],并提供了一種理論可靠和實際有效的方法來統一基于模型和無模型的強化學習方法。
許多目前自動化的順序決策問題,例如制造業或推薦系統中的問題,都是在幾乎沒有不確定性或零災難風險的環境中運行的。隨著公司和研究人員試圖在較少約束的環境中部署自主系統,賦予序列決策算法對不確定性和風險進行推理的能力變得越來越重要。在本文中,我們將討論序列決策的規劃和強化學習(RL)方法。在規劃設置中,假設提供了一個環境模型,并在該模型中優化策略。強化學習依賴于廣泛的隨機探索,因此通常需要一個模擬器來進行訓練。在現實世界的許多領域,不可能構建一個完全準確的模型或模擬器。因此,由于對環境的不完全了解,任何策略的執行都不可避免地具有不確定性。此外,在隨機領域中,由于環境固有的隨機性,任何給定運行的結果也是不確定的。這兩種不確定性的來源通常分別被歸類為認知的不確定性和偶然的不確定性。本文的首要目標是幫助開發算法,以減輕序列決策問題中的兩種不確定性來源。
本文為這一目標做出了一些貢獻,重點是基于模型的算法。本文從考慮馬爾可夫決策過程(MDP)完全已知的最簡單情況開始,提出了一種優化風險規避目標的方法,同時將優化期望值作為次要目標。對于本文的其余部分,我們不再假設MDP是完全指定的。考慮MDP上不確定性的幾種不同表示,包括a)候選MDP的不確定性集合,b) MDP的先驗分布,以及c)與MDP交互的固定數據集。在設置a)中,提出了一種新的方法來近似最小化最大遺憾目標,并在所有候選MDP中找到一個低次優的單一策略。在b)中,我們建議在貝葉斯自適應MDP中優化風險規避,以在單一框架下避免認知和偶然不確定性帶來的風險。在c)中,離線強化學習設置,本文提出兩種算法來克服由于只能訪問固定數據集而產生的不確定性。第一種方法提出了一種可擴展的算法來解決離線強化學習的魯棒MDP公式,第二種方法基于風險敏感優化。在最后一章中,我們考慮一種從演示中學習的交互式表述。在這個問題上,有必要對當前政策執行的不確定性進行推理,有選擇地選擇何時要求進行示威。實驗證明,所提出的算法可以在許多不同的領域中產生風險敏感或魯棒的行為。
**最近機器學習方法的大部分成功都是通過利用過去幾年產生的大量標記數據而實現的。**然而,對于一些重要的實際應用來說,如此大規模的數據收集仍然是不可行的。這包括機器人、醫療健康、地球科學和化學等領域,在這些領域獲取數據可能既昂貴又耗時。在本文中,我們考慮三個不同的學習問題,其中可以收集的數據量是有限的。這包括在在線學習期間限制對標簽、整個數據集和生成經驗的訪問的設置。本文通過采用序列決策策略來解決這些數據限制,這些策略在收集新數據和根據新獲得的證據做出明智的決策之間迭代。**首先,解決標簽獲取成本較高時如何高效地收集批量標簽的問題。**概率主動學習方法可用于貪婪地選擇信息量最大的待標記數據點。然而,對于許多大規模問題,標準的貪心算法在計算上變得不可行。為緩解這個問題,本文提出一種可擴展的貝葉斯批量主動學習方法,其動機是近似模型參數的完整數據后驗。
**其次,我們解決了自動化分子設計的挑戰,以加速對新藥物和材料的搜索。**由于迄今為止只探索了化學空間的一個小區域,可用于某些化學系統的數據量是有限的。本文通過將3D分子設計問題制定為強化學習任務,克服了生成模型對數據集的依賴,并提出了一種對稱感知策略,可以生成用以前方法無法實現的分子結構。
**最后,我們考慮了如何在不同任務中有效地學習機器人行為的問題。**實現這一目標的一個有希望的方向是在不同的任務上下文中泛化局部學習的策略。上下文策略搜索通過顯式地將策略約束在參數化上下文空間上,從而提供數據高效的學習和泛化。進一步構建上下文策略表示,在各種機器人領域實現更快的學習和更好的泛化。
**本文研究了因果表示學習問題,即從高維的低維觀測中發現低維的高層次因果變量及其因果關系,以實現機器學習中的泛化和自適應。**考慮在監督學習中為泛化學習因果表示。由于虛假的相關性,預測模型往往無法泛化到與訓練時使用的分布不同的環境。本文提出一個框架,在基本因果圖的相當一般的假設下有理論保證,首先從觀察中確定給定目標的直接原因,然后用這些原因來構建不變的預測器,這些預測器能夠泛化到未見過的測試環境。
**其次,我們考慮在模仿和強化學習中學習因果表示的泛化。**其中一個基本的挑戰是學習策略、表示或動態,這些策略、表示或動態不會建立在虛假的相關性之上,并且不會泛化到它們所訓練的特定環境之外。我們從一個統一的觀點來研究這些泛化問題。為此,我們提出了一個框架來解決它們,在溫和的環境變化假設下,理論保證了可識別性和可泛化性。關鍵思想是,通過利用環境變量之間的結構關系(即,觀察、狀態、行動和獎勵),我們首先構建一個忽略虛假特征的數據表示,然后在策略、表示和動態方面構建不變預測因子。我們從理論上證明,所得到的策略、表示和動態可以很好地泛化到未見的環境。
**最后,我們考慮了強化學習中適應的學習因果表示。**除了泛化之外,強化學習的另一個基本挑戰是如何在只提供少量樣本的情況下快速使策略適應新環境。通過利用環境變量的結構關系,我們構建了一個簡約的圖表示,它分別編碼了用于策略適應的最小和充分的環境特定因素集和環境共享因素集的內容和位置。我們表明,這樣的表示允許我們以一種只需要少量樣本的有效方式使策略適應目標環境,而不需要進一步的策略優化。
深度強化學習的最新進展已經證明了其在解決現實問題方面的巨大潛力。然而,有兩個問題阻礙了強化學習的應用:效率和效果。**本文研究如何通過設計基于深度模型的算法來提高強化學習的效率和效果。****對動力學模型的訪問使算法能夠進行規劃,這是順序決策的關鍵。本文主要圍繞在線強化學習、神經網絡在深度強化學習中的表達能力、離線強化學習和安全強化學習四個主題展開研究。**對于在線強化學習,本文提出了一個具有理論保證的算法框架,利用在學習環境中學習到的策略在真實環境中可以獲得的性能下界。通過實驗驗證了所提方法的有效性。對于深度強化學習中神經網絡的表達能力,證明了在某些情況下,基于模型的方法比無模型的方法需要更少的表示能力來近似接近最優的策略,并根據經驗表明,這在模擬機器人環境中可能是一個問題,基于模型的規劃器可以幫助。對于離線強化學習,設計了一種算法,使策略能夠保持在提供的專家演示集附近,以減少分布偏移,還進行了實驗,證明了所提出方法在提高模擬環境中機械臂操縱任務成功率的有效性。對于安全強化學習,提出了一種用學到的動力學模型來證明安全狀態的方法,實驗表明,該方法可以在一組簡單但具有挑戰性的任務中學習一個不錯的策略,沒有一次安全違規,而基線算法有數百次安全違規。 //dataspace.princeton.edu/handle/88435/dsp013197xq26c
在現實生活中部署人工智能體的一個基本問題是它們快速適應環境的能力。傳統的強化學習(RL)以兩種方式與這一需求作斗爭。首先,對不受約束的環境動態的迭代探索會產生大量信息不足的更新,從而導致適應速度緩慢。其次,最終的策略沒有能力適應未來的觀察結果,必須隨著觀察結果的發生緩慢地無限學習或完全重新訓練。本文探討了兩種旨在解決這些問題的表述。元強化學習對整個任務分布的考慮使策略能夠快速適應特定實例。通過強迫智能體特定地請求反饋,主動強化學習強制進行選擇性的觀察和更新。這兩個公式都簡化為貝葉斯-自適應設置,在其中保持對可能環境的概率信念。許多現有的解只提供了在實際環境中使用有限的漸近保證。我們開發了一種近似信念管理的變分方法,并通過廣泛的消融實證支持其有效性。然后,我們考慮最近成功的規劃方法,但發現和討論它們在應用到所討論的設置中的障礙。影響RL系統的數據需求和穩定性的一個重要因素是選擇合適的超參數。我們開發了一種貝葉斯優化方法,利用訓練過程的迭代結構,其經驗性能超過現有基線。本文的最后一個貢獻是提高高斯過程(GPs)的可擴展性和表達性。雖然我們沒有直接使用現有的框架,但GPs已經被用于在密切相關的設置中建模概率信念。
//ora.ox.ac.uk/objects/uuid:54963b90-2d7c-41a9-9bf3-065a3097c077
在本文中,我們的目標是改進深度強化學習中的泛化。對任何類型的學習來說,泛化都是一項基本挑戰,它決定了如何將已獲得的知識轉移到新的、以前從未見過的情況中。本文專注于強化學習,這是一個描述人工智能體如何學習與環境交互以實現目標的框架。近年來,利用神經網絡表示智能體取得了顯著的成功,并極大地擴展了其可能的應用范圍。本文的目標是通過允許這些智能體更快地學習,學習更好的解決方案,并對以前未見過的情況做出魯棒的反應,從而提高它們的性能。在這個探索中,我們探索了一系列不同的方法和途徑。我們專注于將額外的結構,也稱為歸納偏差,納入主體。專注于特定的,但廣泛適用的問題領域,我們可以開發專門的架構,從而大大提高性能。在第3章中,我們關注的是部分可觀察環境,在這種環境中,智能體每時每刻都不能完全訪問所有與任務相關的信息。在第4章中,我們將注意力轉向多任務和遷移學習,并設計了一種新的訓練方法,允許訓練分層結構的智能體。我們的方法優化了單個解決方案的可重用性,大大提高了傳輸設置中的性能。
//ora.ox.ac.uk/objects/uuid:9fdfadb0-e527-4421-9a22-8466c9fed9c8 在本文的第二部分中,我們將注意力轉向正則化,這是另一種形式的歸納偏差,作為提高深度智能體泛化的方法。在第五章中,我們首先探討了強化學習(RL)中的隨機正則化。雖然這些技術已被證明在監督學習中非常有效,但我們強調并克服了將它們直接應用到在線RL算法中的困難,這是RL中最強大和應用最廣泛的學習類型之一。在第6章中,我們通過探索訓練數據中的瞬態非平穩性如何干擾神經網絡的隨機梯度訓練,并使其偏向較差的解,在更基本的水平上研究了深度rl中的泛化。許多先進的RL算法將這些類型的非平穩性引入到訓練中,甚至在平穩環境中,通過使用持續改進的數據收集策略。我們提出了一個新的框架,以減少經過訓練的策略所經歷的非平穩性,從而允許改進的泛化。
強化學習(Reinforcement learning, RL)是一種學習復雜決策策略的通用而強大的解決方案,為游戲和機器人等多個領域的近期成功提供了關鍵的基礎。然而,許多最先進的算法需要大量的數據,計算成本很高,需要大量的數據才能成功。雖然這在某些情況下是可能的,例如在可用數據稀少的社會科學和醫療健康應用程序中,這自然會昂貴或不可行的。隨著人們對將RL應用到更廣泛的領域的興趣的激增,對其算法設計中涉及的數據的使用形成一種明智的觀點是勢在必行的。
因此,本文主要從結構的角度研究RL的數據效率。沿著這個方向發展自然需要我們理解算法何時以及為什么會成功;并在此基礎上進一步提高數據挖掘的數據效率。為此,本文首先從實證成功案例中汲取啟示。我們考慮了基于模擬的蒙特卡洛樹搜索(MCTS)在RL中的流行,以AlphaGo Zero的卓越成就為例,并探討了納入這一關鍵成分的數據效率。具體來說,我們研究了使用這種樹結構來估計值和描述相應數據復雜性的正確形式。這些結果進一步使我們能夠分析將MCTS與監督學習相結合的RL算法的數據復雜性,就像在AlphaGo Zero中所做的那樣。
有了更好的理解之后,下一步,我們改進了基于模擬的數據高效RL算法的算法設計,這些算法可以訪問生成模型。我們為有界空間和無界空間都提供了這樣的改進。我們的第一個貢獻是通過一個新穎的低秩表示Q函數的結構框架。提出的數據高效的RL算法利用低秩結構,通過一種新的矩陣估計技術,只查詢/模擬狀態-動作對的一個子集來執行偽探索。值得注意的是,這導致了數據復雜度的顯著(指數級)提高。說到我們對無界空間的努力,我們必須首先解決無界域引起的獨特的概念挑戰。受經典排隊系統的啟發,我們提出了一個適當的穩定性概念來量化策略的“好”。隨后,通過利用底層系統的穩定性結構,我們設計了高效、自適應的算法,采用改進的、高效的蒙特卡洛oracle,以良好的數據復雜度(對感興趣的參數是多項式)保證了所需的穩定性。總之,通過新的分析工具和結構框架,本文有助于數據高效的RL算法的設計和分析。
//dspace.mit.edu/handle/1721.1/138930
現代深度強化學習(RL)算法,盡管處于人工智能能力的最前沿,但通常需要大量的訓練樣本才能達到與人類相當的性能水平。這種嚴重的數據效率低下是深度RL實際應用的主要障礙:在沒有模擬器的情況下,深度RL幾乎不可能應用于任何領域。為了解決這種關鍵數據效率低下的問題,在本論文中,我們致力于設計能夠快速適應新環境的元學習智能體。與標準的強化學習相比,元學習在特定的環境分布上進行學習,從這些環境中采樣特定的任務,并直接優化元學習器,以提高策略改進的速度。通過利用與感興趣任務具有共同子結構的任務分布,元學習器可以調整自己的歸納偏見,使其能夠在測試時快速適應。
本論文的重點是設計元學習算法,利用記憶作為驅動快速適應新環境的主要機制。具有情景間記憶的元學習是一類元學習方法,利用基于特定環境的整個交互歷史的記憶架構來產生策略。因此,在特定任務中驅動策略改進的學習動態被包含在序列模型的計算過程中,本質上把學習算法的設計交給了體系結構。雖然概念簡單,但使用情景間記憶的元學習非常有效,仍然是最先進的方法。我們提出并討論了幾種通過記憶進行元學習的技術。
論文的第一部分集中在“具身”類環境,其中一個主體在一個類似自然世界的環境中有物理表現。我們利用這種高度結構化的環境集來設計具有快速記憶、規劃和狀態推斷能力的整體嵌入式代理體系結構。在論文的第二部分,我們將重點放在沒有強公共子結構的一般環境中應用的方法。首先,我們重新檢查元學習代理與環境的交互模式:提出用一個并行執行框架來取代典型的順序處理交互歷史,其中多個智能體并行地在環境中行動。接下來,我們討論了一個通用的和強大的序列模型的使用片段間存儲器,門控transformer,展示了性能和數據效率的巨大改進。最后,我們開發了一種方法,可以顯著降低(元)強化學習設置中transformer模型的訓練成本和作用延遲,目的是(1)使它們在研究社區中更廣泛地使用,(2)解鎖它們在實時和延遲受限的應用中使用,如機器人。
//www.ml.cmu.edu/research/phd-dissertation-pdfs/eparisot_phd_mld_2021.pdf
與經典的監督學習不同,強化學習(RL)從根本上是交互式的: 一個自主的智能體必須學習如何在一個未知的、不確定的、可能是對抗的環境中表現,通過與環境的積極互動來收集有用的反饋,以提高其序列決策能力。RL代理還將干預環境: 代理做出決策,進而影響環境的進一步演化。
由于它的普遍性——大多數機器學習問題可以看作是特殊情況——RL很難。由于沒有直接的監督,RL的一個主要挑戰是如何探索未知的環境并有效地收集有用的反饋。在最近的RL成功案例中(如視頻游戲中的超人表現[Mnih et al., 2015]),我們注意到它們大多依賴于隨機探索策略,如“貪婪”。同樣的,策略梯度法如REINFORCE [Williams, 1992],通過向動作空間注入隨機性進行探索,希望隨機性能導致良好的動作序列,從而獲得高總回報。理論RL文獻已經開發出了更復雜的算法來進行有效的探索(例如,[Azar等人,2017]),然而,這些接近最優算法的樣本復雜度必須根據底層系統的關鍵參數(如狀態和動作空間的維數)呈指數級增長。這種指數依賴性阻礙了這些理論上優雅的RL算法在大規模應用中的直接應用。總之,如果沒有進一步的假設,無論在實踐上還是在理論上,RL都是困難的。
在本文中,我們試圖通過引入額外的假設和信息源來獲得對RL問題的支持。本文的第一個貢獻是通過模仿學習來提高RL樣本的復雜度。通過利用專家的示范,模仿學習極大地簡化了探索的任務。在本論文中,我們考慮了兩種設置:一種是交互式模仿學習設置,即在訓練期間專家可以進行查詢;另一種是僅通過觀察進行模仿學習的設置,在這種設置中,我們只有一組由對專家狀態的觀察組成的演示(沒有記錄專家行為)。我們在理論和實踐中研究如何模仿專家,以減少樣本的復雜性相比,純RL方法。第二個貢獻來自于無模型的強化學習。具體來說,我們通過構建一個從策略評估到無后悔在線學習的總體約簡來研究策略評估,無后悔在線學習是一個活躍的研究領域,具有良好的理論基礎。這樣的約減創造了一個新的算法族,可以在生成過程的非常弱的假設下證明正確的策略評估。在此基礎上,對行動空間和參數空間兩種無模型勘探策略進行了理論和實證研究。這項工作的第三個貢獻來自基于模型的強化學習。我們提供了基于模型的RL方法和一般無模型的RL方法之間的第一個指數樣本復度分離。然后,我們提供了基于PAC模型的RL算法,可以同時實現對許多有趣的MDPs的采樣效率,如表列MDPs、因子MDPs、Lipschitz連續MDPs、低秩MDPs和線性二次控制。通過將最優控制、模型學習和模仿學習結合在一起,我們還提供了一個更實用的基于模型的RL框架,稱為雙重策略迭代(DPI)。此外,我們給出了一個通用的收斂分析,將現有的近似策略迭代理論推廣到DPI。DPI對最近成功的實用RL算法如ExIt和AlphaGo Zero進行了概括和提供了第一個理論基礎[Anthony et al., 2017, Silver et al., 2017],并為統一基于模型的RL方法和無模型的RL方法提供了一種理論健全和實踐高效的方法。
//www.ri.cmu.edu/publications/towards-generalization-and-efficiency-in-reinforcement-learning/
機器人研究的一個長期目標是創建能夠從零開始自動學習復雜控制策略的算法。將這種算法應用到機器人上的挑戰之一是表示的選擇。強化學習(RL)算法已經成功地應用于許多不同的機器人任務中,如帶有機器人手臂的cup中的Ball-in-a-Cup任務和各種機器人世界杯機器人足球啟發的領域。然而,RL算法仍然存在訓練時間長、所需訓練數據量大的問題。為狀態空間、行動空間和策略選擇合適的表示可以大大減少所需的訓練時間和所需的訓練數據。
本文主要研究機器人的深度強化學習。具體來說,狀態空間、動作空間和策略表示的選擇如何減少機器人學習任務的訓練時間和樣本復雜度。特別集中注意兩個主要領域: 1)通過張量狀態-動作空間表示 2)多狀態表示的輔助任務學習
第一個領域探索了在環境變化中改進機器人策略遷移的方法。學習策略的成本可能很高,但是如果策略可以在類似的環境中傳輸和重用,那么訓練成本可以平攤。遷移學習是一個被廣泛研究的領域,涉及多種技術。在這篇論文中,我們著重設計一個易于傳輸的表示。我們的方法將狀態空間和動作空間映射為多維張量,設計成當環境中機器人和其他對象的數量變化時保持固定維數。我們還提出了全卷積Q-Network (FCQN)策略表示,這是一種特殊的網絡架構,與張量表示相結合,允許跨環境大小進行零距離傳輸。我們在模擬的單代理和多代理任務上演示了這種方法,靈感來自于RoboCup Small - Size League (SSL)和Atari Breakout的修改版本。我們還表明,在真實世界的傳感器數據和機器人中使用這樣的表示和模擬訓練策略是可能的。
第二個領域考察了一個機器人深度RL狀態表示的優勢如何彌補另一個機器人深度RL狀態表示的劣勢。例如,我們經常想要利用機器人可用的傳感器來學習任務,其中包括像攝像機這樣的高維傳感器。最近的Deep RL算法可以通過圖像進行學習,但是數據的數量對于真實的機器人來說是難以接受的。或者,可以使用任務完成所需的最小集創建狀態。這樣做的好處是:1)減少策略參數的數量,2)刪除不相關的信息。然而,提取這些特征通常會在工程、額外硬件、校準和實驗室之外的脆弱性方面有很大的成本。我們在仿真和現實世界的多個機器人平臺和任務上演示了這一點。我們證明它在模擬的RoboCup小型聯賽(SSL)機器人上工作。我們還演示了這樣的技術允許在真實的硬件上從零開始學習,通過機器人手臂執行一個球在一個杯子的任務。