深度強化學習的最新進展已經證明了其在解決現實問題方面的巨大潛力。然而,有兩個問題阻礙了強化學習的應用:效率和效果。**本文研究如何通過設計基于深度模型的算法來提高強化學習的效率和效果。****對動力學模型的訪問使算法能夠進行規劃,這是順序決策的關鍵。本文主要圍繞在線強化學習、神經網絡在深度強化學習中的表達能力、離線強化學習和安全強化學習四個主題展開研究。**對于在線強化學習,本文提出了一個具有理論保證的算法框架,利用在學習環境中學習到的策略在真實環境中可以獲得的性能下界。通過實驗驗證了所提方法的有效性。對于深度強化學習中神經網絡的表達能力,證明了在某些情況下,基于模型的方法比無模型的方法需要更少的表示能力來近似接近最優的策略,并根據經驗表明,這在模擬機器人環境中可能是一個問題,基于模型的規劃器可以幫助。對于離線強化學習,設計了一種算法,使策略能夠保持在提供的專家演示集附近,以減少分布偏移,還進行了實驗,證明了所提出方法在提高模擬環境中機械臂操縱任務成功率的有效性。對于安全強化學習,提出了一種用學到的動力學模型來證明安全狀態的方法,實驗表明,該方法可以在一組簡單但具有挑戰性的任務中學習一個不錯的策略,沒有一次安全違規,而基線算法有數百次安全違規。 //dataspace.princeton.edu/handle/88435/dsp013197xq26c
//dataspace.princeton.edu/handle/88435/dsp01v979v6238 強化學習在過去幾年里獲得了極大的興趣,主要是由于實際成功和在各個領域的新應用。然而,我們對這些強化學習技術的理論理解與其經驗上的成功之間仍然存在差距。本文從主要的理論角度研究強化學習,并為1)帶約束的強化學習和2)帶函數逼近的強化學習這兩個具有挑戰性的情況設計了可證明有效的算法,從而加深了我們的理解。 1)在標準強化學習中,學習智能體尋求優化整體獎勵。然而,期望行為的許多關鍵方面更自然地表示為約束。提出了一種算法方案,可以處理具有一般凸約束的強化學習任務,改進了之前局限于線性約束或缺乏理論保證的工作。其次,專注于樣本高效的探索,開發了第一個可證明有效的表格式偶發約束強化學習算法,具有處理凸約束和背包設置的能力。最后,在無獎勵強化學習最新進展的激勵下,本文提出了一種簡單的元算法,在給定任何無獎勵強化學習oracle的情況下,約束強化學習問題可以直接解決,而樣本復雜度的開銷可以忽略不計。 2)尋找能夠支持樣本高效學習的最小結構假設是強化學習最重要的研究方向之一。本文通過引入一種新的復雜性度量——bellman Eluder (BE)維度,推進了對這一基本問題的理解。低BE維的強化學習問題家族非常豐富,包含了絕大多數現有的可處理的強化學習問題。本文進一步設計了一個新的基于優化的算法——GOLF,并針對幾個著名的低BE維問題子類提供了匹配或改進現有最佳結果的遺憾和樣本復雜度結果。為了實現更具挑戰性的部分可觀察強化學習,研究了部分可觀察馬爾可夫決策過程(POMDPs)的一個新的子類,其潛狀態可以用短長度m的最近歷史來解碼。結果表明,短期記憶對這些環境中的強化學習足夠了。
**與經典的監督學習不同,強化學習(Reinforcement Learning, RL)從根本上講是交互式的:一個自主智能體必須學會如何在未知、不確定甚至可能是對抗的環境中表現,通過與環境的主動交互來收集有用的反饋以提高其序列決策能力。**RL智能體還將干預環境:智能體做出的決策反過來影響環境的進一步演化。由于它的通用性——大多數機器學習問題都可以視為特例——RL是困難的。由于沒有直接監督,強化學習的一個核心挑戰是如何探索未知環境并有效收集有用的反饋。在最近的強化學習成功故事中(例如,在電子游戲上的超人表現[Mnih等人,2015]),我們注意到它們大多數依賴于隨機探索策略,如e-greedy。類似地,策略梯度方法,如REINFORCE [Williams, 1992],通過將隨機性注入行動空間來進行探索,并希望這種隨機性可以產生一個獲得高總回報的良好行動序列。理論強化學習文獻已經開發了更復雜的算法來進行有效探索(例如,[Azar等人,2017]),然而,這些接近最優算法的樣本復雜度必須相對于底層系統的關鍵參數(如狀態和動作空間的維度)呈指數級增長。這種指數依賴性阻礙了這些理論上優雅的RL算法直接應用于大規模應用。總之,如果沒有任何進一步的假設,RL在實踐和理論上都是困難的。
**本文試圖通過引入額外的假設和信息源來獲得對強化學習問題的支持。本文的第一個貢獻來自于通過模仿學習提高強化學習的樣本復雜度。**通過利用專家的演示,模仿學習大大簡化了探索的任務。本文考慮兩個設置:交互式模仿學習設置,其中專家在訓練期間可以進行查詢;以及僅從觀察中進行模仿學習的設置,其中只有一組演示,由對專家狀態的觀察組成(沒有記錄專家的行動)。本文從理論和實踐兩方面研究了與純強化學習方法相比,如何模仿專家來降低樣本復雜度。第二個貢獻來自無模型強化學習。具體而言,我們通過構建一個從策略評估到無悔在線學習的總體約簡來研究策略評估,無悔在線學習是一個活躍的、具有良好理論基礎的研究領域。這種約簡創建了一個新的算法族,用于在對生成過程的非常弱的假設下可證明正確的策略評估。然后對兩種無模型探索策略:行動空間探索和參數空間探索進行了深入的理論研究和實證研究。本文工作的第三個貢獻來自基于模型的強化學習。本文在基于模型的強化學習和一般無模型強化學習方法之間首次實現了樣本復雜度的指數級分離。本文提供了基于PAC模型的強化學習算法,可以同時對許多感興趣的mdp實現樣本效率,如表格mdp、可分解mdp、Lipschitz連續mdp、低秩mdp和線性二次控制。本文還提供了一個更實用的基于模型的強化學習框架,稱為雙策略迭代(DPI),通過將最優控制、模型學習和模仿學習集成在一起。此外,本文給出了廣義收斂性分析,將現有的近似策略迭代理論擴展到DPI。DPI推廣并為最近成功的實際強化學習算法(如ExIt和AlphaGo Zero)提供了第一個理論基礎[Anthony等人,2017,Silver等人,2017],并提供了一種理論可靠和實際有效的方法來統一基于模型和無模型的強化學習方法。
**近年來,深度學習在許多領域得到了快速發展。這些成功啟發了在安全領域使用深度學習。**然而,當深度學習遇到安全性時,至少有兩個主要挑戰。首先,攻擊數據的可用性是個問題。在有限的攻擊數據下構建一個良好的模型是具有挑戰性的。其次,深度學習系統本身容易受到各種攻擊,這在使用深度學習提高計算機系統安全性時帶來了新的問題。為了解決第一個挑戰,本文展示了如何使用深度學習技術來提高有限或沒有攻擊數據的計算機系統的安全性。為了解決第二個挑戰,我們展示了如何保護深度學習系統的安全性和隱私性。 **具體而言,在本文的第一部分中,我們考慮了一個沒有攻擊數據的實際場景,即異常檢測。**本文提出了一種新的方法——重構誤差分布(RED),用于實時異常檢測。本文的關鍵見解是,計算機系統的正常行為可以通過時間深度學習模型捕獲。偏離正常行為表示異常。實驗表明,所提方法可以在電網控制器系統和通用云計算服務器中實時、高精度地檢測攻擊。論文的第二部分主要研究深度學習的安全與隱私保護問題。在機器學習即服務(MLaaS)系統中,可以通過一種精心設計的輸入,即敏感樣本,動態檢查云中的深度學習模型的完整性。在另一個場景中,例如邊緣-云系統中的分布式學習,我們證明了云中的攻擊者可以在攻擊者能力不斷減弱的情況下高保真地重構邊緣設備的輸入數據。本文還提出了一種新的防御方法來應對這些攻擊。 綜上所述,我們希望本文的工作能為利用深度學習提高安全性提供啟發,并有助于提高深度學習系統的安全性。
**機器學習在過去十年取得了重大進展。其最成功的范式是深度神經網絡,由連續表示層組成,其參數通過梯度下降在大規模數據集上進行優化。**深度神經網絡在許多任務上取得了卓越的性能,如物體識別、語言理解和自動駕駛。然而,他們仍然在推理任務中掙扎,這些任務通常需要操作符號并將多個步驟組合起來,例如,求解數學方程或編寫計算機程序。在這篇論文中,我們的目標是彌合這一差距,并教機器以精確、系統、可解釋和魯棒的方式進行推理,以應對現實環境中的模糊性。**本文采用神經符號方法,結合機器學習和符號推理的互補優勢。符號推理具有精確性和系統性。**但它已被限制在可嚴格形式化的領域。相比之下,主要的機器學習方法很靈活,但眾所周知難以解釋,需要大量數據,并且無法在訓練分布之外進行泛化。集成兩種方法的優勢對于構建具有精確和系統泛化能力的靈活推理機至關重要。具體而言,本文從兩個角度研究了神經符號推理。首先,將機器學習應用于與符號推理相關的任務,如自動定理證明(第2章)。其次,將符號推理啟發的歸納偏差引入機器學習模型,以提高其可解釋性、泛化性和數據效率(第3章和第4章)。結果強調了(1)神經符號模型架構,(2)在適當的抽象水平上進行推理,以及(3)明確的、推理的組合表示,如符號證明。 //dataspace.princeton.edu/handle/88435/dsp015q47rr958
深度神經網絡與強化學習(RL)的結合在解決其他棘手的學習任務方面顯示出巨大的前景。**然而,深度強化學習的實際演示仍然很少。將深度強化學習用于給定任務的挑戰可以分為兩類,大致上是“從經驗中學習什么?”和“從什么經驗中學習?”在本文中,我描述了解決第二類問題的工作。**具體來說,采樣包含與學習任務相關信息的動作、狀態和軌跡的問題。我從算法設計和任務復雜性的三個層次來研究這個挑戰,從算法組件到打破常見RL慣例的混合組合算法。在第一章中,我描述了穩定高效的動作采樣工作,以優化連續值動作的Q函數。通過將基于樣本的優化器與神經網絡近似相結合,可以獲得訓練、計算效率和精確推理的穩定性。在第二章中,我描述了在獎勵感知探索方面的工作,即發現常見采樣方法不足的理想行為。教師"探索"智能體發現狀態和軌跡,使學生"利用"智能體從這些經驗中學習到的數量最大化,并能使學生智能體解決其他不可能的困難任務。在第三章中,我描述了將強化學習與啟發式搜索相結合的工作,用于遷移模型已知的任務領域,但狀態空間的組合數學對于傳統搜索來說是難以解決的。通過將深度Q學習與最佳優先樹搜索算法相結合,可以用比普通搜索算法或僅使用強化學習更少的樣本來找到程序合成問題的解決方案。最后,總結了這項工作的主要收獲,并討論了強化學習中高效采樣的擴展和未來方向。
//dataspace.princeton.edu/handle/88435/dsp01x346d733f
深度強化學習(RL)在各個領域取得了顯著的成功,包括在圍棋和國際象棋等游戲中的使用。最近,深度多智能體強化學習(MARL)引起了廣泛關注,因為大量現實世界的問題可以自然地在MARL環境中表示。例如,自主車輛與無人機或機器人編隊的協調控制需要多個智能體根據局部觀察采取行動并協調其行為。然而,單智能體深度強化學習和多智能體深度強化學習都面臨著一個共同的挑戰:數據效率低和訓練時間長。本文向解決該問題邁出了一步:如何使(多智能體)深度強化學習更有效,即如何使用更少的數據和減少訓練時間?本文從五個方面解決深度強化學習的訓練時間長和數據效率低的問題:(1)并行高通量訓練;(2)更好的表示學習;(3)遷移學習;(4)高效探索;(5)訓練智能體以利用外部知識。對于1),為了實現更高的強化學習訓練吞吐量,我們提出了一個快速強化學習訓練框架,該框架并行收集數據,而不犧牲強化學習算法的數據效率。對于2),研究了圖卷積網絡的使用,以捕獲MARL中常用的集中式批評器的排列不變性質。我們發現這可以導致更有效的學習。研究了一種以物體為中心的表示,將多智能體RL算法擴展到復雜的視覺環境。3)為了讓強化學習智能體利用經過訓練的智能體的"知識",本文提出了一個遷移學習框架,該框架允許學生模型利用多個教師模型的"知識"。我們發現這種遷移可以導致更快的學習。對于4),研究了協調的多智能體探索,這允許智能體協調它們的探索努力,并更快地學習。最后,對于5),本文提出了"知識詢問" (AFK),一個學習生成語言命令以查詢有意義的知識的智能體,以更有效地解決給定的任務。綜上所述,本文研究了提高深度強化學習數據效率和訓練時間的方法。我們相信,通過更短的訓練時間和更好的數據效率,(多智能體)深度強化學習可以應用于各種現實世界的問題,本文提出的方法使我們更接近這一目標。
魯棒的、通用的機器人可以在半結構化環境中自主地操縱物體,可以為社會帶來物質利益。通過識別和利用半結構化環境中的模式,數據驅動的學習方法對于實現這種系統至關重要,使機器人能夠在最少的人類監督下適應新的場景。然而,盡管在機器人操作的學習方面有大量的工作,但在機器人能夠廣泛應用于現實世界之前,仍有很大的差距。為了實現這一目標,本文解決了三個特殊的挑戰:半結構化環境中的感知、適應新場景的操作以及對不同技能和任務的靈活規劃。在討論的方法中,一個共同的主題是通過將“結構”,或特定于機器人操作的先驗,合并到學習算法的設計和實現中,實現高效和一般化的學習。本文的工作遵循上述三個挑戰。
我們首先在基于視覺的感知難以實現的場景中利用基于接觸的感知。在一項工作中,我們利用接觸反饋來跟蹤靈巧操作過程中手持物體的姿態。另一方面,我們學習定位機器人手臂表面的接觸,以實現全臂感知。接下來,我們將探討針對基于模型和無模型技能的新對象和環境調整操作。我們展示了學習面向任務的交互式感知如何通過識別相關動態參數來提高下游基于模型的技能的性能。本文還展示了如何使用以對象為中心的行動空間,使無模型技能的深度強化學習更有效和可泛化。
探索了靈活的規劃方法,以利用低水平技能完成更復雜的操縱任務。我們開發了一個基于搜索的任務計劃,通過學習技能水平動態模型,放松了之前工作中關于技能和任務表示的假設。該計劃器隨后應用于后續工作中,使用混合力-速度控制器的已知前提條件來執行多步接觸豐富的操作任務。我們還探索了用自然語言描述的更靈活的任務的規劃,使用代碼作為結構化的動作空間。這是通過提示大型語言模型直接將自然語言任務指令映射到機器人策略代碼來實現的,策略代碼協調現有的機器人感知和技能庫來完成任務。
強化學習(Reinforcement Learning, RL)是一種訓練人工智能體自主與世界互動的方法。然而,在實踐中,強化學習仍然有局限性,禁止在許多現實世界環境中部署強化學習智能體。這是因為RL需要很長時間,通常需要人工監督,并產生在不熟悉的情況下可能表現出出乎意料的特殊智能體。本文的目標是使RL智能體在現實世界中部署時更加靈活、穩健和安全。我們開發具有快速適應能力的智能體,即能夠有效學習新任務的智能體。為此,我們使用元強化學習(Meta- RL),在這里我們不僅教智能體自主行動,而且教智能體自主學習。基于快速適應可以分為“任務推理”(理解任務)和“任務求解”(解決任務)的直覺,我們提出了四種新的元RL方法。我們假設這種分離可以簡化優化,從而提高性能,并且更適合下游任務。為了實現這一點,我們提出了一種基于上下文的方法,在這種方法中,智能體以表示其對任務的當前知識的上下文為條件。然后,智能體可以使用這一點來決定是進一步了解任務,還是嘗試解決它。在第5章中,我們使用確定性上下文,并確定這確實可以提高性能并充分捕獲任務。在接下來的章節中,我們將在上下文中引入貝葉斯推理,以實現在任務不確定性下的決策。通過結合元強化學習、基于上下文的學習和近似變分推理,開發了為單智能體設置(第6章)和多智能體設置(第7章)計算近似貝葉斯最優智能體的方法。最后,第8章解決了稀疏獎勵的元學習的挑戰,這是許多現實世界應用的重要設置。觀察到,如果獎勵稀疏,現有的元強化學習方法可能會完全失敗,并提出一種方法來克服這一問題,即鼓勵智能體在元訓練期間進行探索。我們以對當前發展背景下的工作的反思和對開放問題的討論來結束論文。綜上所述,本文的研究成果極大地推動了基于Meta-RL的快速適應領域的發展。本文開發的智能體可以比以前的任何方法更快地適應各種任務,并且可以為比以前可能的更復雜的任務分布計算近似貝葉斯最優策略。我們希望這有助于推動Meta-RL研究的發展,并從長遠來看,利用RL解決重要的現實世界挑戰。
強化學習(Reinforcement learning, RL)是一種學習復雜決策策略的通用而強大的解決方案,為游戲和機器人等多個領域的近期成功提供了關鍵的基礎。然而,許多最先進的算法需要大量的數據,計算成本很高,需要大量的數據才能成功。雖然這在某些情況下是可能的,例如在可用數據稀少的社會科學和醫療健康應用程序中,這自然會昂貴或不可行的。隨著人們對將RL應用到更廣泛的領域的興趣的激增,對其算法設計中涉及的數據的使用形成一種明智的觀點是勢在必行的。
因此,本文主要從結構的角度研究RL的數據效率。沿著這個方向發展自然需要我們理解算法何時以及為什么會成功;并在此基礎上進一步提高數據挖掘的數據效率。為此,本文首先從實證成功案例中汲取啟示。我們考慮了基于模擬的蒙特卡洛樹搜索(MCTS)在RL中的流行,以AlphaGo Zero的卓越成就為例,并探討了納入這一關鍵成分的數據效率。具體來說,我們研究了使用這種樹結構來估計值和描述相應數據復雜性的正確形式。這些結果進一步使我們能夠分析將MCTS與監督學習相結合的RL算法的數據復雜性,就像在AlphaGo Zero中所做的那樣。
有了更好的理解之后,下一步,我們改進了基于模擬的數據高效RL算法的算法設計,這些算法可以訪問生成模型。我們為有界空間和無界空間都提供了這樣的改進。我們的第一個貢獻是通過一個新穎的低秩表示Q函數的結構框架。提出的數據高效的RL算法利用低秩結構,通過一種新的矩陣估計技術,只查詢/模擬狀態-動作對的一個子集來執行偽探索。值得注意的是,這導致了數據復雜度的顯著(指數級)提高。說到我們對無界空間的努力,我們必須首先解決無界域引起的獨特的概念挑戰。受經典排隊系統的啟發,我們提出了一個適當的穩定性概念來量化策略的“好”。隨后,通過利用底層系統的穩定性結構,我們設計了高效、自適應的算法,采用改進的、高效的蒙特卡洛oracle,以良好的數據復雜度(對感興趣的參數是多項式)保證了所需的穩定性。總之,通過新的分析工具和結構框架,本文有助于數據高效的RL算法的設計和分析。
//dspace.mit.edu/handle/1721.1/138930
論文題目:Acquiring Diverse Robot Skills via Maximum Entropy Deep Reinforcement Learning
作者:Tuomas Haarnoja
導師:Pieter Abbeel and Sergey Levine
網址:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-176.html
論文摘要:
在本文中,我們研究了最大熵框架如何提供有效的深度強化學習(deep reinforcement learning, deep RL)算法,以連貫性地解決任務并有效地進行樣本抽取。這個框架有幾個有趣的特性。首先,最優策略是隨機的,改進了搜索,防止了收斂到局部最優,特別是當目標是多模態的時候。其次,熵項提供了正則化,與確定性方法相比,具有更強的一致性和魯棒性。第三,最大熵策略是可組合的,即可以組合兩個或兩個以上的策略,并且所得到的策略對于組成任務獎勵的總和是近似最優的。第四,最大熵RL作為概率推理的觀點為構建能夠解決復雜和稀疏獎勵任務的分層策略提供了基礎。在第一部分中,我們將在此基礎上設計新的算法框架,從soft Q學習的學習表現力好的能量策略、對于 sodt actor-critic提供簡單和方便的方法,到溫度自動調整策略, 幾乎不需要hyperparameter調優,這是最重要的一個實際應用的調優hyperparameters可以非常昂貴。在第二部分中,我們將討論由最大熵策略固有的隨機特性所支持的擴展,包括組合性和層次學習。我們將演示所提出的算法在模擬和現實機器人操作和移動任務中的有效性。