亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

圖結構數據是許多應用領域的組成部分,包括化學信息學、計算生物學、神經成像和社會網絡分析。在過去的二十年中,人們提出了許多圖的核函數,即圖之間的核函數,來解決圖之間的相似性評估問題,從而使分類和回歸設置中進行預測成為可能。這篇手稿提供了對現有圖內核、它們的應用、軟件和數據資源的回顧,并對最先進的圖內核進行了實證比較。

//arxiv.org/abs/2011.03854

摘要:

在機器學習中常用的數據結構中,圖可以說是最通用的一種。圖允許將復雜對象建模為實體(節點)和這些實體(邊)之間關系的集合,每個實體都可以通過元數據(如分類或矢量節點和邊特征)進行注釋。許多普遍存在的數據類型可以被理解為圖形的特殊情況,包括非結構化矢量數據以及結構化數據類型,例如時間序列、圖像、體積數據、點云或實體包等。最重要的是,許多應用程序受益于基于圖形表示提供的額外靈活性。

本文共分為兩部分: 第一部分是對常見圖核的理論描述。在第2章簡要介紹了圖理論和內核之后,我們在第3章對相關的圖內核進行了詳細的描述、類型和分析。我們將詳細介紹不同內核之間的關系,并簡要介紹它們對某些類型數據的適用性。第4章的第二部分著重于對圖核的大規模經驗評估,以及對基準數據集的理想屬性和需求的描述。在第5章中,我們概述了圖核的未來趨勢和面臨的挑戰,以此來結束我們的綜述。

付費5元查看完整內容

相關內容

近年來,三維人臉識別研究取得了較大進展.相比 二維人臉識別,三維人臉識別更具有優勢,主要特點是在識 別中利用了三維形狀數據.該文首先根據三維形狀數據的 來源,將三維人臉識別分為基于彩色圖像的三維人臉識別、 基于高質 量 三 維 掃 描 數 據 的 三 維 人 臉 識 別、基 于 低 質 量 RGBGD圖像的三維人臉識別,分別闡述了各自具有代表性 的方法及其優缺點;其次分析了深度學習在三維人臉識別 中的應用方式;然后分析了三維人臉數據與二維圖像在雙 模態人臉識別中的融合方法,并介紹了常用的三維人臉數 據庫;最后 討 論 了 三 維 人 臉 識 別 面 臨 的 主 要 困 難 及 發 展 趨勢.

//jst.tsinghuajournals.com/CN/Y2021/V61/I1/77

付費5元查看完整內容

從一開始就創建良好的數據,而不是在收集數據之后修復它。通過遵循這本書中的指導方針,你將能夠進行更有效的分析,并產生研究數據的及時演示。

數據分析師通常與數據集提出了勘探和研究設計不良,導致解釋的困難和延誤產生有意義的結果。數據分析培訓的重點是如何在開始認真分析之前清理和轉換數據集。通過使用良好的數據集設計和理解數據類型如何決定可以執行的分析類型,可以避免不恰當或令人困惑的表示、度量單位選擇、編碼錯誤、缺失值、離群值等。

這本書討論了數據集創建的原則和最佳實踐,并涵蓋了基本數據類型及其相關的適當統計和可視化。這本書的一個重點是為什么選擇某些數據類型來表示概念和度量,而不是典型的討論如何分析選定的特定數據類型。

你會: 注意創建和收集數據的原則 了解基本數據類型和表示 選擇數據類型,預測分析目標 理解數據集的結構和用于分析和共享的實踐 由例子引導和用例(好的和壞的) 使用清潔工具和方法創建良好的數據

付費5元查看完整內容

圖在許多應用中被廣泛用于表示復雜數據,如電子商務、社交網絡和生物信息學。高效、有效地分析圖數據對于基于圖的應用程序非常重要。然而,大多數圖分析任務是組合優化(CO)問題,這是NP困難。最近的研究集中在使用機器學習(ML)解決基于圖CO問題的潛力上。使用基于ML的CO方法,一個圖必須用數值向量表示,這被稱為圖嵌入。在這個調查中,我們提供了一個全面的概述,最近的圖嵌入方法已經被用來解決CO問題。大多數圖嵌入方法有兩個階段:圖預處理和ML模型學習。本文從圖預處理任務和ML模型的角度對圖嵌入工作進行分類。此外,本文還總結了利用圖嵌入的基于圖的CO方法。特別是,圖嵌入可以被用作分類技術的一部分,也可以與搜索方法相結合來尋找CO問題的解決方案。最后對未來的研究方向做了一些評論。

付費5元查看完整內容

當前自然語言處理的一個問題是處理低資源的語言,這些語言缺乏有用的訓練屬性,如受監督的數據、母語使用者或專家的數量等。這篇綜述論文簡明地總結了過去在解決這一問題上取得的突破性成就,并分析了未來研究方向的整體背景下的潛在改進。

付費5元查看完整內容

隨著web技術的發展,多模態或多視圖數據已經成為大數據的主要流,每個模態/視圖編碼數據對象的單個屬性。不同的模態往往是相輔相成的。這就引起了人們對融合多模態特征空間來綜合表征數據對象的研究。大多數現有的先進技術集中于如何融合來自多模態空間的能量或信息,以提供比單一模態的同行更優越的性能。最近,深度神經網絡展示了一種強大的架構,可以很好地捕捉高維多媒體數據的非線性分布,對多模態數據自然也是如此。大量的實證研究證明了深多模態方法的優勢,從本質上深化了多模態深特征空間的融合。在這篇文章中,我們提供了從淺到深空間的多模態數據分析領域的現有狀態的實質性概述。在整個調查過程中,我們進一步指出,該領域的關鍵要素是多模式空間的協作、對抗性競爭和融合。最后,我們就這一領域未來的一些方向分享我們的觀點。

付費5元查看完整內容

近年來,人們對學習圖結構數據表示的興趣大增。基于標記數據的可用性,圖表示學習方法一般分為三大類。第一種是網絡嵌入(如淺層圖嵌入或圖自動編碼器),它側重于學習關系結構的無監督表示。第二種是圖正則化神經網絡,它利用圖來增加半監督學習的正則化目標的神經網絡損失。第三種是圖神經網絡,目的是學習具有任意結構的離散拓撲上的可微函數。然而,盡管這些領域很受歡迎,但在統一這三種范式方面的工作卻少得驚人。在這里,我們的目標是彌合圖神經網絡、網絡嵌入和圖正則化模型之間的差距。我們提出了圖結構數據表示學習方法的一個綜合分類,旨在統一幾個不同的工作主體。具體來說,我們提出了一個圖編碼解碼器模型(GRAPHEDM),它將目前流行的圖半監督學習算法(如GraphSage、Graph Convolutional Networks、Graph Attention Networks)和圖表示的非監督學習(如DeepWalk、node2vec等)歸納為一個統一的方法。為了說明這種方法的一般性,我們將30多個現有方法放入這個框架中。我們相信,這種統一的觀點既為理解這些方法背后的直覺提供了堅實的基礎,也使該領域的未來研究成為可能。

概述

學習復雜結構化數據的表示是一項具有挑戰性的任務。在過去的十年中,針對特定類型的結構化數據開發了許多成功的模型,包括定義在離散歐幾里德域上的數據。例如,序列數據,如文本或視頻,可以通過遞歸神經網絡建模,它可以捕捉序列信息,產生高效的表示,如機器翻譯和語音識別任務。還有卷積神經網絡(convolutional neural networks, CNNs),它根據移位不變性等結構先驗參數化神經網絡,在圖像分類或語音識別等模式識別任務中取得了前所未有的表現。這些主要的成功僅限于具有簡單關系結構的特定類型的數據(例如,順序數據或遵循規則模式的數據)。

在許多設置中,數據幾乎不是規則的: 通常會出現復雜的關系結構,從該結構中提取信息是理解對象之間如何交互的關鍵。圖是一種通用的數據結構,它可以表示復雜的關系數據(由節點和邊組成),并出現在多個領域,如社交網絡、計算化學[41]、生物學[105]、推薦系統[64]、半監督學習[39]等。對于圖結構的數據來說,將CNNs泛化為圖并非易事,定義具有強結構先驗的網絡是一項挑戰,因為結構可以是任意的,并且可以在不同的圖甚至同一圖中的不同節點之間發生顯著變化。特別是,像卷積這樣的操作不能直接應用于不規則的圖域。例如,在圖像中,每個像素具有相同的鄰域結構,允許在圖像中的多個位置應用相同的過濾器權重。然而,在圖中,我們不能定義節點的順序,因為每個節點可能具有不同的鄰域結構(圖1)。此外,歐幾里德卷積強烈依賴于幾何先驗(如移位不變性),這些先驗不能推廣到非歐幾里德域(如平移可能甚至不能在非歐幾里德域上定義)。

這些挑戰導致了幾何深度學習(GDL)研究的發展,旨在將深度學習技術應用于非歐幾里德數據。特別是,考慮到圖在現實世界應用中的廣泛流行,人們對將機器學習方法應用于圖結構數據的興趣激增。其中,圖表示學習(GRL)方法旨在學習圖結構數據的低維連續向量表示,也稱為嵌入。

廣義上講,GRL可以分為兩類學習問題,非監督GRL和監督(或半監督)GRL。第一個系列的目標是學習保持輸入圖結構的低維歐幾里德表示。第二系列也學習低維歐幾里德表示,但為一個特定的下游預測任務,如節點或圖分類。與非監督設置不同,在非監督設置中輸入通常是圖結構,監督設置中的輸入通常由圖上定義的不同信號組成,通常稱為節點特征。此外,底層的離散圖域可以是固定的,這是直推學習設置(例如,預測一個大型社交網絡中的用戶屬性),但也可以在歸納性學習設置中發生變化(例如,預測分子屬性,其中每個分子都是一個圖)。最后,請注意,雖然大多數有監督和無監督的方法學習歐幾里德向量空間中的表示,最近有興趣的非歐幾里德表示學習,其目的是學習非歐幾里德嵌入空間,如雙曲空間或球面空間。這項工作的主要動機是使用一個連續的嵌入空間,它類似于它試圖嵌入的輸入數據的底層離散結構(例如,雙曲空間是樹的連續版本[99])。

鑒于圖表示學習領域的發展速度令人印象深刻,我們認為在一個統一的、可理解的框架中總結和描述所有方法是很重要的。本次綜述的目的是為圖結構數據的表示學習方法提供一個統一的視圖,以便更好地理解在深度學習模型中利用圖結構的不同方法。

目前已有大量的圖表示學習綜述。首先,有一些研究覆蓋了淺層網絡嵌入和自動編碼技術,我們參考[18,24,46,51,122]這些方法的詳細概述。其次,Bronstein等人的[15]也給出了非歐幾里德數據(如圖或流形)的深度學習模型的廣泛概述。第三,最近的一些研究[8,116,124,126]涵蓋了將深度學習應用到圖數據的方法,包括圖數據神經網絡。這些調查大多集中在圖形表示學習的一個特定子領域,而沒有在每個子領域之間建立聯系。

在這項工作中,我們擴展了Hamilton等人提出的編碼-解碼器框架,并介紹了一個通用的框架,圖編碼解碼器模型(GRAPHEDM),它允許我們將現有的工作分為四大類: (i)淺嵌入方法,(ii)自動編碼方法,(iii) 圖正則化方法,和(iv) 圖神經網絡(GNNs)。此外,我們還介紹了一個圖卷積框架(GCF),專門用于描述基于卷積的GNN,該框架在廣泛的應用中實現了最先進的性能。這使我們能夠分析和比較各種GNN,從在Graph Fourier域中操作的方法到將self-attention作為鄰域聚合函數的方法[111]。我們希望這種近期工作的統一形式將幫助讀者深入了解圖的各種學習方法,從而推斷出相似性、差異性,并指出潛在的擴展和限制。盡管如此,我們對前幾次綜述的貢獻有三個方面

  • 我們介紹了一個通用的框架,即GRAPHEDM,來描述一系列廣泛的有監督和無監督的方法,這些方法對圖形結構數據進行操作,即淺層嵌入方法、圖形正則化方法、圖形自動編碼方法和圖形神經網絡。

  • 我們的綜述是第一次嘗試從同一角度統一和查看這些不同的工作線,我們提供了一個通用分類(圖3)來理解這些方法之間的差異和相似之處。特別是,這種分類封裝了30多個現有的GRL方法。在一個全面的分類中描述這些方法,可以讓我們了解這些方法究竟有何不同。

  • 我們為GRL發布了一個開源庫,其中包括最先進的GRL方法和重要的圖形應用程序,包括節點分類和鏈接預測。我們的實現可以在//github.com/google/gcnn-survey-paper上找到。

付費5元查看完整內容

深度神經網絡(DNN)是實現人類在許多學習任務上的水平的不可缺少的機器學習工具。然而,由于其黑箱特性,很難理解輸入數據的哪些方面驅動了網絡的決策。在現實世界中,人類需要根據輸出的dna做出可操作的決定。這種決策支持系統可以在關鍵領域找到,如立法、執法等。重要的是,做出高層決策的人員能夠確保DNN決策是由數據特征的組合驅動的,這些數據特征在決策支持系統的部署上下文中是適當的,并且所做的決策在法律上或倫理上是可辯護的。由于DNN技術發展的驚人速度,解釋DNN決策過程的新方法和研究已經發展成為一個活躍的研究領域。在定義什么是能夠解釋深度學習系統的行為和評估系統的“解釋能力”時所存在的普遍困惑,進一步加劇了這種復雜性。為了緩解這一問題,本文提供了一個“領域指南”,為那些在該領域沒有經驗的人提供深度學習解釋能力指南: i)討論了研究人員在可解釋性研究中增強的深度學習系統的特征,ii)將可解釋性放在其他相關的深度學習研究領域的背景下,iii)介紹了定義基礎方法空間的三個簡單維度。

付費5元查看完整內容

摘要: 目標檢測算法應用廣泛,一直是計算機視覺領域備受關注的研究熱點。近年來,隨著深度學習的發展,3D圖像的目標檢測研究取得了巨大的突破。與2D目標檢測相比,3D目標檢測結合了深度信息,能夠提供目標的位置、方向和大小等空間場景信息,在自動駕駛和機器人領域發展迅速。文中首先對基于深度學習的2D目標檢測算法進行概述;其次根據圖像、激光雷達、多傳感器等不同數據采集方式,分析目前具有代表性和開創性的3D目標檢測算法;結合自動駕駛的應用場景,對比分析不同 3D 目標檢測算法的性能、優勢和局限性;最后總結了3D目標檢測的應用意義以及待解決的問題,并對 3D 目標檢測的發展方向和新的挑戰進行了討論和展望。

付費5元查看完整內容
北京阿比特科技有限公司