隨著大語言模型的廣泛應用,針對大語言模型的評估工作變得至關重要。除了大語言模型在下游任務上的表現情況需要評估外,其存在的一些潛在風險更需要評估,例如大語言模型可能違背人類的價值觀并且被惡意輸入誘導引發安全問題等。本文通過分析傳統軟件、深度學習模型與大模型的共性與差異,借鑒傳統軟件測評和深度學習模型評估的指標體系,從大語言模型功能評估、性能評估、對齊評估和安全性評估幾個維度對現有工作進行總結,并對大模型的評測基準進行介紹。最后依據現有研究與潛在的機遇和挑戰,對大語言模型評估技術方向和發展前景進行了展望。
無人集群系統是當前人工智能和機器人領域備受關注的研究熱點,已在多個領域展現出廣闊的應用前景。本文對無人集群系統進行了深入綜述和分析,著重探討了協同決策和博弈控制兩個關鍵方面,旨在通過智能體之間的信息共享和協作,提高系統效率,解決在智能體之間可能出現的利益沖突和決策問題。首先,對一些基本概念進行了明確闡述,包括智能體、集群智能和無人集群系統,這有助于讀者建立對這一領域的基本理解。隨后,介紹了協同與博弈控制數學模型、集群協同與博弈決策、集群協同控制方法、集群博弈控制方法等算法,著重強調了協同決策和博弈控制的理論基礎,以及它們如何應用于無人集群系統中,從而提高系統的整體性能。接下來,列舉了集群協同與博弈在多個領域的一些典型應用案例,包括智能交通、無人機編隊、物流配送和軍事領域。這些實際案例展示了該技術的廣泛應用領域,以及它對提高效率和解決復雜問題的潛力。最后,討論了未來研究方向和挑戰,包括對新技術和方法的需求,以應對不斷發展的需求和問題,以及如何進一步推動無人集群系統的發展。本文為無人集群系統的進一步發展提供指導和參考,以推動該領域的發展和創新,為未來的科學和技術進步做出了一定貢獻。
在目標檢測技術的驅動下,被賦予智能感知能力的無人機得以實現高效靈活的數據收集能力。隨著無人機 的普及與智能技術的成熟,無人機視角下的目標檢測在諸多領域中作為關鍵核心技術,具有重要的研究意義。為了 進一步促進無人機視角下目標檢測研究的發展,本文對無人機視角下的目標檢測算法進行了全面的總結,并對已有 算法進行了歸類、分析和比較。首先,介紹無人機視角下的目標檢測概念,并總結了無人機視角下目標檢測所面臨 的目標尺度、空間分布、樣本數量、類別語義以及優化目標等五大不均衡挑戰。**在介紹現有研究方法的基礎上,本 文特別整理并介紹了無人機視角下目標檢測算法在交通監控、電力巡檢、作物分析和災害救援等實際場景中的應用。**然后,重點闡述從數據增強策略、多尺度特征融合、區域聚焦策略、多任務學習、以及模型輕量化等方面來提升無 人機視角下目標檢測性能的方法,總結這些方法的優缺點并分析了其與現存挑戰之間的關聯性。之后,全面介紹基 于無人機視角的目標檢測數據集,并呈現已有算法在兩個較為常用的公共數據集上的性能評估。最后本文對無人機 視角下目標檢測技術的未來發展方向進行了展望。
0. 引言
計算機視覺技術為無人機賦予了自主感知、分 析和決策能力,而目標檢測則是提高無人機感知能 力的關鍵技術之一。無人機結合智能目標檢測技術 可充分發揮其高機動性優勢,在廣闊的空中視野中 定位感興趣目標,進而實現靈活高效的數據收集能 力。在目標檢測技術的驅動下,無人機在交通監控 (Byun 等,2021)、電力巡檢(Abdelfattah 等, 2020)、作物分析(Osco 等,2021a)和災害救援 (Bo?i?-?tuli? 等,2019)等多個領域中展現出廣闊 的應用前景。例如在交通監控領域,無人機可以空 中飛行進行偵測,不受道路限制,具有速度快、自 由度高、視野寬廣等優點。當交通事故等突發事件 發生時,無人機可以第一時間進行響應,到達現場 進行圖像采集與分析,為應急救援與管理提供及時 有效的數據支撐。在深度學習的驅動下,目標檢測 技術獲得了長足的發展,取得了諸多令人矚目的成 就。然而,大多數研究聚焦于地面視頻監控圖像的 分析,面向無人機視角圖像的目標檢測還未得到充 分的研究。目前,即使是最好的目標檢測算法,在 無人機圖像上的平均精確率也難以達到40%(Cao 等,2021)。
**無人機視角下的目標檢測之所以難,其主要原 因在于無人機圖像存在尺度變化、疏密分布、目標 數量較多且小目標占比較高等問題,特別是無人機 高分辨率圖像高計算需求與現階段低功耗芯片有 限算力之間的矛盾難以平衡。**相對于地面視角拍攝 的自然圖像,無人機視角下的廣闊視場意味著更為 復雜的場景和更加多樣的目標,在提供更為豐富的 可視化信息的同時,也帶來了更多無用噪聲的干擾。特別是無人機視角下,圖像中的目標往往因遠端拍 攝、背景遮擋或光照影響等因素檢測難度較大,需 要使用高分辨率圖像提供更多的信息以達到較好 的檢測效果。這極大地增加了目標檢測算法的計算 開銷與內存需求,特別是直接使用未經過特殊設計 的通用目標檢測算法將帶來難以承受的計算開銷 與內存需求,進一步加劇了目標檢測的難度。在實 際應用場景中,往往面臨著類似于識別車輛種類這 種細粒度分類的問題,這些相似目標給模型正確識 別目標帶來了巨大的挑戰。此外,受限于現實世界 中的目標數量,無人機視角下某些類別的樣本數量 往往極為有限,這種數據不均衡的狀況也對模型的 學習能力提出了更高的要求。因此,緊密地結合智能目標檢測技術,針對無 人機圖像的特性設計行之有效的方法,促使模型學 習理解無人機視角下的視覺數據,對于無人機在實 際場景中充分發揮其效用是至關重要的。無人機視 角下的目標檢測在應用廣泛的同時面臨著諸多挑 戰,具有深刻的現實意義與重要的研究意義。對無 人機視角下的目標檢測展開研究將有助于推動目 標檢測領域的進一步發展,增強目標檢測在面對真 實場景時的應用能力。
目標檢測作為計算機視覺領域的基礎研究,已 有學者對此進行研究與總結,并發表許多優秀的綜 述。Zou等人(2019)梳理了400多篇關于目標檢測 技術發展的論文,系統而全面地展現了目標檢測領 域。Oksuz等人(2020)則從目標檢測中存在的類別 不平衡、尺度不平衡、空間不平衡以及優化目標不 平衡等四大不平衡問題出發,對現有的目標檢測算 法進行了深入的總結。Chen等人(2020)則從小目 標四大基礎方法的角度出發,總結并分析了小目標 檢測的相關優化思路。曹家樂等人(2022)回顧并 總結了基于單目相機的視覺目標檢測方法,并對比 介紹了單目目標檢測和雙目目標檢測的國內外研 究進展情況。然而,以上綜述對于無人機視角下目 標檢測的關注不夠,未能系統地梳理無人機視角下 的目標檢測方法和面臨的挑戰。 **聚焦到無人機視角下的目標檢測,Mittal等人 (2020)關注低空無人機數據集,評估并總結了當 前流行的目標檢測算法,但是局限于簡單的性能對 比,沒有深入的總結分析。**Sambolek等人(2020) 介紹了在搜索和救援行動中使用無人機的可能性, 并提供了在無人機圖像中檢測相關人員的方法概 述。Srivastava等人(2021)則關注無人機圖像的車 輛檢測,從提高精度和減少計算開銷兩個方面回顧 了這些工作。Bouguettaya等人(2021)則關注于無 人機視角下的車輛檢測應用,總結并介紹了多種網 絡結構對于改善車輛檢測的貢獻。江波等人(2021) 對常見的航空影像數據集進行了梳理,并對近期的 無人機目標檢測研究進行了歸納和分析。楊浩然等 人(2022a)則對目標檢測相關算法進行了簡單的優 缺點分析。然而,這些綜述對于無人機視角下面臨 的挑戰總結不夠系統,算法方面的趨勢總結較為薄 弱,而且對于目標檢測算法的實際應用闡述也較少。
與以往關注通用領域的目標檢測綜述或僅關 注于無人機相關的特定應用場景下的綜述不同,**本 文著重于對無人機視角下的目標檢測這一意義重大且極具挑戰性的研究領域進行系統且深入的分 析與總結。**本文首先簡要闡述無人機視角下目標檢 測的重要研究意義,然后將對無人機視角下目標檢 測領域中存在的挑戰進行系統的歸納和總結,隨之 將介紹并分析無人機視角下的目標檢測優化思路, 包括數據增強、多尺度特征融合、區域聚焦策略、 多任務學習、模型輕量化以及其他優化策略等。本 文將特別展示無人機視角下目標檢測算法的應用, 闡明該研究的實際意義。此外,本文將介紹無人機 視角下適用于檢測任務的相關數據集,并在常用的 數據集上分析對比現有算法的檢測性能。最后,對 本文內容進行簡要的總結,并討論無人機視角下的 目標檢測未來可能的研究方向和發展趨勢。
隨著卷積神經網絡(Convolutional Neural Network,CNN)的不斷發展,目標檢測作為計算機視覺中最基本的技術,已取得了令人矚目的進展。介紹了強監督目標檢測算法對數據集標注精度要求高的現狀。對基于弱監督學習的目標檢測算法進行研究,按照不同的特征處理方法將該算法歸為四類,并分析比較了各類算法的優缺點。通過實驗比
較了各類基于弱監督學習的目標檢測算法的檢測精度,并將其與主流的強監督目標檢測算法進行了比較。展望了基于弱監督學習的目標檢測算法未來的研究熱點。
小目標檢測長期以來是計算機視覺中的一個難點和研究熱點。在深度學習的驅動下,小目標 檢測已取得了重大突破,并成功應用于國防安全、智能交通和工業自動化等領域。為了進一步促進小 目標檢測的發展,本文對小目標檢測算法進行了全面的總結,并對已有算法進行了歸類、分析和比較。首先,對小目標進行了定義,并概述小目標檢測所面臨的挑戰。然后,重點闡述從數據增強、多尺度學 習、上下文學習、生成對抗學習以及無錨機制等方面來提升小目標檢測性能的方法,并分析了這些方法 的優缺點和關聯性。之后,全面介紹小目標數據集,并在一些常用的公共數據集上對已有算法進行了 性能評估。最后本文對小目標檢測技術的未來發展方向進行了展望。
目標檢測是計算機視覺領域中的一個重要研究方向,也是其他復雜視覺任務的基礎。作為圖像理 解和計算機視覺的基石,目標檢測是解決分割、場景理解、目標跟蹤、圖像描述和事件檢測等更高層次 視覺任務的基礎。小目標檢測長期以來是目標檢測中的一個難點,其旨在精準檢測出圖像中可視化特 征極少的小目標(32 像素×32 像素以下的目標)。在現實場景中,由于小目標是的大量存在,因此小目 標檢測具有廣泛的應用前景,在自動駕駛、智慧醫療、缺陷檢測和航拍圖像分析等諸多領域發揮著重要 作用。近年來,深度學習技術的快速發展為小目標檢測注入了新鮮血液,使其成為研究熱點。然而,相 對于常規尺寸的目標,小目標通常缺乏充足的外觀信息,因此難以將它們與背景或相似的目標區分開 來。在深度學習的驅動下,盡管目標檢測算法已取得了重大突破,但是對于小目標的檢測仍然是不盡 人意的。在目標檢測公共數據集 MS COCO[1]上,小目標和大目標在檢測性能上存在顯著差距,小目標 的檢測性能通常只有大目標的一半。由此可見,小目標檢測仍然是充滿挑戰的。此外,真實場景是錯 綜復雜的,通常會存在光照劇烈變化、目標遮擋、目標稠密相連和目標尺度變化等問題,而這些因素對 小目標特征的影響是更加劇烈的,進一步加大了小目標檢測的難度。事實上,小目標檢測具有重要的 研究意義和應用價值。對于機場跑道,路面上會存在微小物體,如螺帽、螺釘、墊圈、釘子和保險絲等, 精準地檢測出跑道的這些小異物將避免重大的航空事故和經濟損失。對于自動駕駛,從汽車的高分辨 率場景照片中準確地檢測出可能引起交通事故的小物體是非常有必要的。對于工業自動化,同樣需要 小目標檢測來定位材料表面可見的小缺陷。對于衛星遙感圖像,圖像中的目標,例如車、船,可能只有 幾十甚至幾個像素。精確地檢測出衛星遙感圖像中的微小目標將有助于政府機構遏制毒品和人口販 運,尋找非法漁船并執行禁止非法轉運貨物的規定。
綜上所述,小目標檢測具有廣泛的應用價值和重 要的研究意義。對小目標檢測展開研究將有助于推動目標檢測領域的發展,擴寬目標檢測在現實世界 的應用場景,提高中國的科技創新水平和加快中國全面步入智能化時代的步伐。目標檢測作為計算機視覺的基礎研究,已有許多優秀的綜述發表。Zou 等[2]梳理了 400 多篇關于目 標檢測技術發展的論文,包括歷史上的里程碑檢測器、檢測框架、評價指標、數據集、加速技術和檢測應 用等諸多內容,系統而全面地展現了目標檢測這個領域的現狀。Oksuz 等[3]則從目標檢測中存在的類 別不平衡、尺度不平衡、空間不平衡以及多任務損失優化之間的不平衡等四大不平衡問題出發,對現有 的目標檢測算法進行了深入的總結。Zhao 等[4]在對比總結目標檢測中提及了小目標檢測所面臨的挑 戰。Agawal 等[5]則在目標檢測任務的主要挑戰中簡要介紹了幾種常用的小目標檢測方法。Chen 等[6] 立意于小目標檢測的 4 大支柱性方法,詳細描述了多尺度表示、上下文信息、超分辨率、區域建議以及其 他方法等 5 類具代表性的網絡,并介紹了部分小目標數據集。Tong 等[7]從多尺度學習、數據增強、訓練 策略、基于上下文的檢測和基于生成對抗網絡的檢測等 5 個維度全面回顧了基于深度學習的小目標檢 測方法,并在一些流行的小目標檢測數據集上,對當前經典的小目標檢測算法進行了比較分析。Liu 等[8]在總結對比最近用于小目標檢測的深度學習方法的基礎上,還簡單闡述了常規目標檢測、人臉檢 測、航空圖像目標檢測以及圖像分割等 4 個研究領域的相關技術。此外,還有文獻[9?10]等中文綜述中 對小目標檢測這一領域做了一定的總結工作。然而,文獻[2]主要對一般目標檢測算法進行了回顧,而 對小目標檢測方法的介紹甚少。文獻[3]則主要關注于目標檢測領域中存在的不平衡問題。文獻[4?5] 對目標檢測領域進行了全面的綜述總結,雖然有所涉及小目標檢測問題,但是并沒有進行全面的總結 和深入的分析。文獻[6?8]是針對小目標這一問題的綜述,對小目標檢測方法與性能評估進行了較為全 面的總結,但是在對小目標的定義、難點分析和性能評估等方面仍有所欠缺。文獻[9?10]作為中文的小 目標檢測綜述,分別對小目標檢測這一領域進行了總結綜述,但是對于小目標檢測方法的歸類與分析仍不夠深入。
與以往將小目標與常規目標等同對待或只關注特定應用場景下的目標檢測綜述不同,本文對小目 標檢測這一不可或缺且極具挑戰性的研究領域進行了系統且深入的分析與總結。本文不僅對小目標 的定義進行了解釋,也對小目標檢測領域存在的挑戰進行了詳細地分析和總結,同時重點闡述了小目 標檢測優化思路,包括數據增強、多尺度學習、上下文學習、生成對抗學習以及無錨機制以及其他優化 策略等。此外,本文還在常用的小目標數據集上分析對比了現有算法的檢測性能。最后,對本文內容 進行了簡要的總結,并討論了小目標檢測未來可能的研究方向和發展趨勢。
近年來開放域的閑聊對話研究如雨后春筍般涌現,甚至還做起了跨界,如最近炙手可熱的會話推薦系統。而作為人工智能王冠上明珠中的一顆,自然語言處理中隨時打算挑戰圖靈測試的對話系統,當然是不可能止步于機械地一問一答的形式,因此本文基于一對多生成這個角度,探索相關領域的多樣性生成,希望能給一對多對話生成注入新的構思。下面主要介紹近來的 5 篇多樣性生成的研究成果。
01 Target Conditioning for One-to-Many Generation
這篇論文是 Facebook 收錄在 EMNLP2020 的工作,主要是為了解決機器翻譯模型中缺乏多樣性的問題。本文認為當前的 beam search 方法生成的目標語句仍缺乏多樣性,時常出現詞語重復和語義重疊的問題。并且之前的模型都是在 1-to-1 的數據集上進行訓練,缺少對鼓勵多樣性的目標函數的設計。
這篇工作借鑒了 discrete autoencoders 的思路,提出將一個 discrete target encoder 引入到翻譯模型中,方便將每一個目標語句關聯到對應的 variable 或者 domain。其中每一個 domain 對應一個 embedding,這樣在測試階段可以根據每個 domain embedding 來生成多樣性的翻譯。并且這種離散化的表示方式允許以無監督的方式來改變翻譯的 domain 信息。
02
Diversify Question Generation with Continuous Content Selectors and Question Type Modeling
這篇論文是華為諾亞方舟收錄在 EMNLP2020 的工作。主要關注的是 QA 工作的逆任務,基于回復和上下文來生成問題,同樣這也在一對多生成的范疇內。本文主要思想是通過關注 context 中的不同位置以及表達的不同含義來建模多樣性。
基于 CVAE,通過采用 multimodal 的先驗分布來構造更多樣的 content selectors,從而能夠在 context 定位更多樣的關注點。在預測 question type 時,提出 diversity-promoting 算法,主要通過引入 decay 變量來限制相同類型問題分布的出現概率,從而鼓勵預測出更豐富的 question type。
03
Focus-Constrained Attention Mechanism for CVAE-based Response Generation
這篇工作是小米 AILab 和香港理工大學的合作論文。文中指出了目前基于 CVAE 的方法僅僅是依賴 discourse-level latent variable 來進行多樣性的建模,認為這太過粗粒度。因此提出使用 fine-grained word-level information。
具體來說就是,首先通過引入更加細粒度的 focus 信號,來衡量對話上文和回復的語義集中度。然后提出一個 focus-constrained 的注意力機制,以充分利用 focus 信號并輔助回復的生成。實驗結果表明,通過利用細粒度的 focus 信號,文中的模型確實可以產生更多樣化以及更可控的回復。
04
Controllable Text Generation with Focused Variation
本文指出了當前可控文本生成的不足,在給定 attributes 的情況下,模型往往不足以生成足夠相關的文本,以及很容易生成無意義或者重復的文本。
作者從 CVAE 及其變種的角度分析,當前 CVAE 系列在處理這種可控屬性的問題上都表現得不是很好。當然這個不足也是當前對話生成中普遍存在的問題。真正實現可控文本的生成,那離可控地進行多樣化的文本生成也就不遠了。
這篇工作從可控性和多樣性兩個角度來進行文本生成的工作,設計 context 和 style 兩類屬性編碼器和解碼區解構整個語義空間,以此來實現屬性的可控性和多樣化。
05 COD3S: Diverse Generation with Discrete Semantic Signatures
本文主要針對在 decoding 階段的采樣方法進行改進。經典的 beam search 方法易造成句法、詞匯、語義上的重疊和重復。因此本篇工作提出顯式地捕捉語義差異的信號,從而實現多樣化的采樣策略。
該模型主要是用 sentence-BERT (SBERT) 獲得的上下文相關語義表示,通過使用 Locality-Sensitive Hashing (LSH) 來獲得句子的離散語義代碼。然后采用兩階段的解碼策略,獲得最相關的代碼,作為前綴,使用 prefix-conditioned beam search 方法進行解碼。
結束語:一對多對話生成以及多樣性文本生成的研究任重而道遠。給模型一個輸入,然后返回多個引入知識、涵蓋類型廣但又不存在語義重疊的回復,目前來看還沒有真正地實現。希望本文能給讀者帶來一些啟發。如有不同見解,歡迎指正批評、不吝賜教。
摘要 隨著深度學習算法在圖像分割領域的成功應用,在圖像實例分割方向上涌現出一大批優秀的算法架構.這些架構在分割效果、運行速度等方面都超越了傳統方法.本文圍繞圖像實例分割技術的最新研究進展,對現階段經典網絡架構和前沿網絡架構進行梳理總結,結合常用數據集和權威評價指標對各個架構的分割效果進行比較和分析.最后,對目前圖像實例分割技術面臨的挑戰以及可能的發展趨勢進行了展望.
數據融合是最大程度發揮大數據價值的關鍵,深度學習是挖掘數據深層特征信息的技術利器,基于深度學習的數據融合能夠充分挖掘大數據潛在價值,從新的深度和廣度拓展對世界的探索和認識。本文綜述了近幾年基于深度學習的數據融合方法的相關文獻,以此了解深度學習在數據融合中應用所具有的優勢。首先,分類闡述常見的數據融合方法,同時指出這些方法的優點和不足;接著,從基于深度學習特征提取的數據融合方法、基于深度學習融合的數據融合方法、基于深度學習全過程的數據融合方法三個方面對基于深度學習的數據融合方法進行分析,并做了對比研究與總結;最后,總結全文,討論了深度學習在數據融合中應用的難點和未來需要進一步研究的問題。
摘要: 隨著深度學習技術的快速發展,許多研究者嘗試利用深度學習來解決文本分類問題,特別在卷積神 經網絡和循環神經網絡方面,出現了許多新穎且富有成效的分類方法。本文對基于深度神經網絡的文本分類問題進行分析。分類介紹基于深度學習的文本分類方法,研究卷積神經網絡、循環神經網絡、注意力機 制等方法在文本分類中的應用和發展,分析不同深度學習文本分類方法的特點和性能,從準確率和運行時 間方面對基礎網絡結構進行比較。已有研究和本文實驗結果表明,深度神經網絡方法的分類性能超過了傳 統的機器學習方法,卷積神經網絡具有良好的分類性能。分析當前深度文本分類模型的不足,并對未來的 研究方向進行展望。
//www.ecice06.com/CN/10.19678/j.issn.1000-3428.0059099
文本分類技術經歷了從專家系統到機器學習再到深度學習的發展過程。上世紀 80 年代 以前,基于規則系統的文本分類方法需要領域專家定義一系列分類規則,通過規則匹配判斷 文本類別。基于規則的分類方法容易理解,但該方法依賴專家知識,構建成本高,系統可移 植性差。到上世紀 90 年代,機器學習技術逐漸走向成熟,出現了許多經典的文本分類算法, 如決策樹[1]、樸素貝葉斯[2]、支持向量機[3]、最大熵[4]、最近鄰方法[5]等,這些方法部分克服 了前述缺點,一定程度上實現了分類器的自動生成,被廣泛應用的各個領域,但其缺點是在 構建分類器之前,通常需要繁雜的人工特征工程。2012 年開始,深度學習算法引起了越來 越多人的關注,深度學習為機器學習建模提供了一種直接端到端的解決方案,避免了復雜的 特征工程。Golve[6]和 word2vec[7]等詞向量模型的提出,為深度學習算法應用到文本處理領域 上鋪平了道路,隨后出現了各種基于深度神經網絡的文本分類方法,這些方法主要采用了卷 積神經網絡(convolutional neural networks,CNN)、循環神經網絡(recurrent neural networks, RNN)、注意力機制(attention mechanism)等深度學習技術,并且取得了比傳統方法更為 出色的性能。近年來,圖卷積網絡(graph convolutional network,GCN)、區域嵌入(region embedding)、元學習(meta-learning)等一些新的深度學習方法也被應用到文本分類領域。本文對基于深度神經網絡的文本分類技術進行了介紹和分析,將詳細介紹卷積神經網 絡、循環神經網絡、組合模型、注意力機制等方法在文本分類中的應用和發展,分析各類方 法的特點以及之間的區別,對不同方法的性能表現和適用場景進行分析比較,討論在應用深度學習方法處理文本分類任務時應當注意的問題,最后指出未來的研究方向。
摘要: 深度學習的可解釋性研究是人工智能、機器學習、認知心理學、邏輯學等眾多學科的交叉研究課題,其在信息推送、醫療研究、金融、信息安全等領域具有重要的理論研究意義和實際應用價值.從深度學習可解釋性研究起源、研究探索期、模型構建期3方面回顧了深度學習可解釋性研究歷史,從可視化分析、魯棒性擾動分析、敏感性分析3方面展現了深度學習現有模型可解釋性分析研究現狀,從模型代理、邏輯推理、網絡節點關聯分析、傳統機器學習模型改進4方面剖析了可解釋性深度學習模型構建研究,同時對當前該領域研究存在的不足作出了分析,展示了可解釋性深度學習的典型應用,并對未來可能的研究方向作出了展望.