亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

 這本教材旨在從數學的角度指出數據分析的最重要的原則。具體來說,它選擇了這些問題進行探索:哪些是理解應用的含義所必需的原則,哪些是理解所使用的方法成功的條件所必需的?理論只在適當應用的必要程度上呈現,力求在過度復雜和過度簡化之間取得平衡。它的主要重點是應用成功的關鍵原則。主題及特點:

  • 側重于由數學參數支持的方法,而不是單一的計算經驗
  • 研究在數據科學中使用的數值算法運行的條件,以及可以預期的性能
  • 考慮關鍵的數據科學問題:問題的制定包括最優性度量;學習和泛化與訓練集大小和自由參數數量的關系;以及數值算法的收斂性
  • 檢查原始的數學學科(統計學,數值數學,系統論),因為它們與給定的問題特別相關
  • 解決模型大小和可用于識別的數據量之間的權衡及其對模型參數化的影響
  • 研究自然語言處理和計算機視覺所涉及的數學原理
  • 保持主題覆蓋有意緊湊,專注于每個主題的關鍵問題,以鼓勵充分理解整本書

雖然這本核心教材直接針對計算機科學和/或數據科學的學生,但它也將對該領域的研究人員具有真正的吸引力,他們希望獲得“超越”唯一計算經驗的數學基礎的正確理解。

//link.springer.com/book/10.1007/978-3-031-19074-2

付費5元查看完整內容

相關內容

數據科學(英語:data science)是一門利用數據學習知識的學科,其目標是通過從數據中提取出有價值的部分來生產數據產品。 它結合了諸多領域中的理論和技術,包括應用數學、統計、模式識別、機器學習、數據可視化、數據倉庫以及高性能計算。 數據科學通過運用各種相關的數據來幫助非專業人士理解問題。

這本書深入探討了幾個關鍵的線性代數主題,因為它們適用于數據分析和數據挖掘。本書提供了一種案例研究方法,其中每個案例都將基于現實世界的應用程序。

這篇文章是用于第二門課程的應用線性代數的數據分析,與一個補充章的決策樹及其在回歸分析中的應用。文本可以被認為是兩個不同但重疊的通用數據分析類別:聚類和插值。

與數據分析相關的數學技術知識,以及在數據分析背景下對結果的解釋,對學習本科數學的學生來說特別有價值。這篇文章的每一章都帶讀者通過幾個相關的案例研究使用真實的數據。

所有的數據集以及Python和R的語法都可以通過Github文檔的鏈接提供給讀者。每章后面都有一個簡短的練習,鼓勵學生利用技術將線性代數的知識應用到數據分析中。

假設你已經掌握了線性代數課程的基本概念;然而,關鍵概念的概述是在介紹和需要的整個文本。

//www.routledge.com/Linear-Algebra-With-Machine-Learning-and-Data/Arangala/p/book/9780367458393

付費5元查看完整內容

機器學習是關于基于數據學習、推理和行動的。這是通過構建計算機程序來完成的,這些程序處理數據,提取有用的信息,對未知屬性進行預測,并建議采取行動或做出決定。將數據分析轉化為機器學習的原因是,這個過程是自動化的,計算機程序是從數據中學習的。這意味著使用通用的計算機程序,這些程序根據觀察到的所謂的訓練數據自動調整程序的設置,以適應應用程序特定的情況。因此,可以說機器學習是一種示例編程方式。機器學習的美妙之處在于數據表示的是非常任意的,我們可以設計出適用于不同領域的廣泛實際應用的通用方法。我們通過下面的一系列例子來說明這一點。 本書旨在傳達監督式機器學習的精神,而不要求讀者具備該領域的任何經驗。我們的重點是基礎數學和實踐方面。這本書是教科書;它不是參考工作或編程手冊。因此,它只包含仔細(但全面)選擇的有監督機器學習方法,而沒有編程代碼。到目前為止,已經有許多編寫良好、文檔齊全的代碼包可用。我們堅信,只要讀者對數學及其方法的內部工作有很好的理解,就能將本書與他/她最喜歡的編程語言中的代碼包聯系起來。 本書從統計學的角度出發,從統計特性的角度來討論方法。因此,它需要一些統計學和概率論的知識,以及微積分和線性代數。我們希望從頭到尾閱讀本書,能讓讀者成為機器學習工程師和/或在該主題中進行進一步研究的良好起點。這本書是這樣寫的,可以連續讀。然而,本書還有多種可能的閱讀路徑,根據讀者的興趣有更多的選擇。圖1 - 6說明了這兩章之間的主要依賴關系。特別是,第2章、第3章和第4章討論了最基本的主題。我們建議讀者在閱讀后續章節(第5章至第9章)之前,先閱讀這些章節。第10章將超越機器學習的監督式設置,第11章將重點放在設計一個成功的機器學習解決方案的一些更實際的方面,與前幾章相比技術性較低。最后,第12章(由David Sumpter撰寫)討論了現代機器學習中的一些倫理問題。

付費5元查看完整內容

如果你想在任何計算或技術領域工作,你需要理解線性代數。作為對矩陣及其運算的研究,線性代數幾乎是所有在計算機中實現的算法和分析的數學基礎。但是它在幾十年前的教科書中呈現的方式與今天專業人士使用線性代數解決現實世界的現代應用的方式有很大的不同。 Mike X Cohen的這本實用指南教授了用Python實現的線性代數的核心概念,包括如何在數據科學、機器學習、深度學習、計算模擬和生物醫學數據處理應用中使用它們。有了這本書的知識,您將能夠理解、實現和適應無數的現代分析方法和算法。 適合使用計算機技術和算法的從業者和學生,本書向你介紹:

向量和矩陣的解釋和應用 矩陣算術(各種乘法和變換) 獨立,等級,和反義詞 應用線性代數中的重要分解(包括LU和QR) 特征分解和奇異值分解 應用包括最小二乘模型擬合和主成分分析*

付費5元查看完整內容

在當今自動化、云計算、算法、人工智能和大數據的世界中,很少有話題像數據科學和機器學習那樣相關。它們最近之所以受歡迎,不僅是因為它們適用于現實生活中的問題,還因為它們自然地融合了許多不同的學科,包括數學、統計學、計算機科學、工程學、科學和金融學。對于開始學習這些主題的人來說,大量的計算技術和數學思想似乎是壓倒性的。有些人可能只滿足于學習如何使用現成的方法來應用于實際情況。這本書的目的是提供一個可訪問的,但全面的數據科學和機器學習的概述。它是為任何有興趣獲得更好的理解數學和統計,支持豐富的各種想法和機器學習算法的數據科學。我們的觀點是,計算機語言來來去去,但潛在的關鍵思想和算法將永遠存在,并將形成未來發展的基礎。

數據科學為理解和處理數據提供了必要的語言和技術。它涉及數值數據的設計、收集、分析和解釋,目的是提取模式和其他有用的信息。機器學習與數據科學密切相關,涉及從數據中學習的算法和計算機資源的設計。本書的組織大致遵循數據科學項目的典型步驟:收集數據以獲得關于研究問題的信息;數據的清理、匯總和可視化;數據建模和分析;將關于模型的決策轉化為關于研究問題的決策和預測。由于這是一本以數學和統計為導向的書,大部分重點將放在建模和分析上。

我們從第一章開始,使用Python中的數據操作包、結構化、總結和可視化數據。雖然本章中涉及的材料不需要數學知識,但它為數據科學形成了一個明顯的起點:更好地理解可用數據的性質。在第二章中,我們介紹統計學習的主要成分。我們區分監督和非監督學習技術,并討論我們如何評估(非)監督學習方法的預測性能。統計學習的一個重要部分是數據建模。我們介紹了數據科學中各種有用的模型,包括線性、多元高斯和貝葉斯模型。機器學習和數據科學中的許多算法使用蒙特卡洛技術,這是第3章的主題。蒙特卡洛可以用于模擬、估計和優化。第四章討論了無監督學習,其中我們討論了密度估計、聚類和主成分分析等技術。然后我們將注意力轉向監督式學習然后,我們將在第5章中把注意力轉向監督學習,并解釋一大類回歸模型背后的思想。在其中,我們還描述了如何使用Python的statmodels包來定義和分析線性模型。第6章建立在前一章回歸的基礎上,發展了核方法和正則化的強大概念,這使得第5章的基本思想可以以優雅的方式得到擴展,使用重建核希爾伯特空間的理論。在第7章中,我們繼續進行分類任務,它也屬于監督學習框架,并考慮了各種分類方法,包括貝葉斯分類、線性和二次判別分析、k近鄰和支持向量機。在第8章,我們考慮回歸和分類的通用方法,利用樹結構。最后,在第9章,我們考慮了神經網絡和深度學習的工作方式,并表明這些學習算法有一個簡單的數學解釋。在每一章的末尾都提供了廣泛的練習。

//www.routledge.com/Data-Science-and-Machine-Learning-Mathematical-and-Statistical-Methods/Kroese-Botev-Taimre-Vaisman/p/book/9781138492530#:~:text=The%20purpose%20of%20Data%20Science,and%20machine%20learning%20algorithms%20in

付費5元查看完整內容

現在是進入數據科學領域的最佳時機。但是你從哪里開始呢?數據科學是一個廣泛的領域,包括統計學、機器學習和數據工程等方面。人們很容易變得不知所措,或最終只學習數據科學的一小部分或單一的方法。

//www.manning.com/books/exploring-data-science

探索數據科學》由五個章節組成,向你介紹了數據科學的各個領域,并解釋了哪種方法最適合每個領域。《實用數據科學與R》的作者John Mount和Nina Zumel選擇了這些章節來給你展示許多數據領域的大圖景。您將學習時間序列、神經網絡、文本分析等。當您探索不同的建模實踐時,您將看到如何在數據科學中使用R、Python和其他語言的實際示例。

數據科學是一個涉及統計學、機器學習和數據工程等方面的廣泛領域。工具、方法和工作的樣子很大程度上取決于您的問題領域和觀點。我們的書《實用數據科學與R》向讀者介紹了R語言中的基本預測建模。但是,我們的意圖絕不是暗示數據科學家可以將自己限制在一個問題領域或一種實現語言。現在是進入數據科學的大好時機。免費工具和材料的數量激增。存儲和管理大型數據集現在明顯更容易了。然而,這種多樣性似乎勢不可擋,并造成分裂。傳統的統計學家可能不認為文本分析是數據科學,類似地,使用神經網絡分析圖像的人可能不會欣賞經典的統計推理。我們相信你的問題有助于你選擇你的技術。為了說明這個概念,我們把我們的書和曼寧的其他書名中的章節樣本放在一起。它們涵蓋了與數據科學相關的各種主題,突出了各種領域和編程語言。我們希望這些選擇能讓您更好地了解許多可用的工具,以解決特定的數據科學問題。

付費5元查看完整內容

//link.springer.com/book/10.1007/978-3-319-55444-0

這本引人入勝的和清晰的書面教科書/參考提供了一個必要的介紹,迅速興起的跨學科領域的數據科學。它側重于成為一名優秀的數據科學家的基本原則,以及建立收集、分析和解釋數據的系統所需的關鍵技能。

《數據科學設計手冊》是一個實用的見解來源,它突出了分析數據中真正重要的東西,并提供了對如何使用這些核心概念的直觀理解。這本書沒有強調任何特定的編程語言或數據分析工具套件,而是著重于重要設計原則的高層討論。

《數據科學概論》是一門易于閱讀的課程,理想情況下,它能滿足本科生和早期研究生的需求。它揭示了這門學科如何處于統計學、計算機科學和機器學習的交叉點,具有自己獨特的分量和特點。這些和相關領域的從業者會發現這本書非常適合自學。

付費5元查看完整內容

機器學習是關于基于數據的學習、推理和行動。這是通過構建計算機程序來完成的,這些程序可以處理數據,提取有用的信息,對未知屬性做出預測,并建議采取的行動或做出的決定。將數據分析變成機器學習的原因是,這個過程是自動化的,計算機程序是從數據中學習的。這意味著使用通用計算機程序,這些程序根據觀察到的所謂訓練數據自動調整程序的設置,以適應特定的應用程序環境。因此可以說,機器學習是一種通過實例編程的方式。機器學習的美妙之處在于,數據所代表的內容是非常隨意的,我們可以設計出適用于不同領域的廣泛實際應用的通用方法。我們通過下面的一系列例子來說明這一點。上述“通用計算機程序”是指數據的數學模型。也就是說,當我們開發和描述不同的機器學習方法時,我們使用的是數學語言。數學模型描述了與觀測數據對應的相關數量或變量與感興趣的屬性(如預測、動作等)之間的關系。因此,模型是數據的緊湊表示,以精確的數學形式捕捉我們正在研究的現象的關鍵屬性。使用哪個模型通常由機器學習工程師在查看可用數據時產生的見解和從業者對問題的總體理解來指導。在實踐中實現該方法時,將該數學模型轉換為可在計算機上執行的代碼。然而,要理解計算機程序的實際作用,了解其基礎數學也很重要。

這本書的目的是介紹監督機器學習,而不需要在該領域的任何經驗。我們既關注基礎的數學,也關注實踐方面。本書是教科書,不是參考書,也不是編程手冊。因此,它只包含一個仔細(但全面)的監督機器學習方法的選擇,而沒有編程代碼。現在有許多精彩和證據確鑿的代碼包可用,我們深信,在很好地理解數學和內部運行的方法。在這本書中,我們從統計學的角度來討論方法的統計特性。因此,它需要一些統計和概率論的知識,以及微積分和線性代數。我們希望,從頭到尾閱讀這本書將給讀者一個良好的起點,作為一個機器學習工程師工作和/或繼續在該學科的進一步研究。下圖說明了章節之間的主要依賴關系。特別是在第二、三、四章中討論了最基本的主題,我們建議讀者先閱讀這些章節,然后再閱讀后面包含更高級的主題的章節(第5-9章)。第10章超越了機器學習的監督設置,第11章關注于設計一個成功的機器學習解決方案的一些更實際的方面,比前幾章的技術性更少。最后,第十二章(由David Sumpter撰寫)討論了現代機器學習的某些倫理方面。

付費5元查看完整內容

當看到這些材料時,一個明顯的問題可能會出現:“為什么還要寫一本深度學習和自然語言處理的書呢?”一些優秀的論文已經出版,涵蓋了深度學習的理論和實踐方面,以及它在語言處理中的應用。然而,從我教授自然語言處理課程的經驗來看,我認為,盡管這些書的質量非常好,但大多數都不是針對最有可能的讀者。本書的目標讀者是那些在機器學習和自然語言處理之外的領域有經驗的人,并且他們的工作至少部分地依賴于對大量數據,特別是文本數據的自動化分析。這些專家可能包括社會科學家、政治科學家、生物醫學科學家,甚至是對機器學習接觸有限的計算機科學家和計算語言學家。

現有的深度學習和自然語言處理書籍通常分為兩大陣營。第一個陣營專注于深度學習的理論基礎。這對前面提到的讀者肯定是有用的,因為在使用工具之前應該了解它的理論方面。然而,這些書傾向于假設一個典型的機器學習研究者的背景,因此,我經常看到沒有這種背景的學生很快就迷失在這樣的材料中。為了緩解這個問題,目前存在的第二種類型的書集中在機器學習從業者;也就是說,如何使用深度學習軟件,而很少關注理論方面。我認為,關注實際方面同樣是必要的,但還不夠。考慮到深度學習框架和庫已經變得相當復雜,由于理論上的誤解而濫用它們的可能性很高。這個問題在我的課程中也很常見。

因此,本書旨在為自然語言處理的深度學習搭建理論和實踐的橋梁。我涵蓋了必要的理論背景,并假設讀者有最少的機器學習背景。我的目標是讓任何上過線性代數和微積分課程的人都能跟上理論材料。為了解決實際問題,本書包含了用于討論的較簡單算法的偽代碼,以及用于較復雜體系結構的實際Python代碼。任何上過Python編程課程的人都應該能夠理解這些代碼。讀完這本書后,我希望讀者能有必要的基礎,立即開始構建真實世界的、實用的自然語言處理系統,并通過閱讀有關這些主題的研究出版物來擴展他們的知識。

//clulab.cs.arizona.edu/gentlenlp/gentlenlp-book-05172020.pdf

付費5元查看完整內容
北京阿比特科技有限公司