亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

現在是進入數據科學領域的最佳時機。但是你從哪里開始呢?數據科學是一個廣泛的領域,包括統計學、機器學習和數據工程等方面。人們很容易變得不知所措,或最終只學習數據科學的一小部分或單一的方法。

//www.manning.com/books/exploring-data-science

探索數據科學》由五個章節組成,向你介紹了數據科學的各個領域,并解釋了哪種方法最適合每個領域。《實用數據科學與R》的作者John Mount和Nina Zumel選擇了這些章節來給你展示許多數據領域的大圖景。您將學習時間序列、神經網絡、文本分析等。當您探索不同的建模實踐時,您將看到如何在數據科學中使用R、Python和其他語言的實際示例。

數據科學是一個涉及統計學、機器學習和數據工程等方面的廣泛領域。工具、方法和工作的樣子很大程度上取決于您的問題領域和觀點。我們的書《實用數據科學與R》向讀者介紹了R語言中的基本預測建模。但是,我們的意圖絕不是暗示數據科學家可以將自己限制在一個問題領域或一種實現語言。現在是進入數據科學的大好時機。免費工具和材料的數量激增。存儲和管理大型數據集現在明顯更容易了。然而,這種多樣性似乎勢不可擋,并造成分裂。傳統的統計學家可能不認為文本分析是數據科學,類似地,使用神經網絡分析圖像的人可能不會欣賞經典的統計推理。我們相信你的問題有助于你選擇你的技術。為了說明這個概念,我們把我們的書和曼寧的其他書名中的章節樣本放在一起。它們涵蓋了與數據科學相關的各種主題,突出了各種領域和編程語言。我們希望這些選擇能讓您更好地了解許多可用的工具,以解決特定的數據科學問題。

付費5元查看完整內容

相關內容

數據科學(英語:data science)是一門利用數據學習知識的學科,其目標是通過從數據中提取出有價值的部分來生產數據產品。 它結合了諸多領域中的理論和技術,包括應用數學、統計、模式識別、機器學習、數據可視化、數據倉庫以及高性能計算。 數據科學通過運用各種相關的數據來幫助非專業人士理解問題。

Python是訪問、操作和從各種數據中獲得見解的理想選擇。Python for Data Science通過根植于實際示例和實踐活動的邊做邊學的方法向您介紹Python的數據分析世界。您將學習如何編寫Python代碼來獲取、轉換和分析數據,為業務管理、市場營銷和決策支持中的用例實踐最先進的數據處理技術。

您將發現Python豐富的用于基本操作的內置數據結構集,以及用于數據科學的健壯的開源庫生態系統,包括NumPy、pandas、scikit-learn、matplotlib等。這些示例展示了如何以各種格式加載數據,如何簡化、分組和聚合數據集,以及如何創建圖表、地圖和其他可視化功能。后面的章節將深入展示真實世界的數據應用,包括使用位置數據為出租車服務提供動力,市場籃子分析來識別共同購買的商品,以及機器學習來預測股票價格。

這本書從數據處理和分析的概念介紹開始,解釋一個典型的數據處理管道。然后,我們將介紹Python的內置數據結構和一些廣泛用于數據科學應用程序的第三方Python庫。接下來,我們將探討用于獲取、組合、聚合、分組、分析和可視化不同大小和數據類型的數據集的日益復雜的技術。隨著本書的深入,我們將把Python數據科學技術應用到商業管理、市場營銷和金融領域的實際用例中。每一章都包含“練習”部分,這樣你就可以練習和鞏固你剛剛學到的知識。

第一章: 數據的基礎知識為理解使用數據的基本要素提供了必要的背景知識。您將了解到數據有不同的類別,包括結構化、非結構化和半結構化數據。然后,您將了解典型數據分析過程中涉及的步驟。

第二章:Python數據結構介紹Python內置的四種數據結構:列表、字典、元組和集合。您將看到如何使用每個結構,以及如何將它們組合成更復雜的結構,可以表示現實世界的對象。

第三章:Python數據科學庫討論了Python健壯的第三方數據分析和操作庫生態系統。您將看到pandas庫及其主要數據結構Series和DataFrame,它們已經成為面向數據的Python應用程序的實際標準。您還將了解NumPy和scikit-learn,這兩個庫通常用于數據科學。

第四章:從文件和api訪問數據深入了解獲取數據并將其加載到腳本中的細節。您將學習如何將不同來源的數據(如文件和api)加載到Python腳本中的數據結構中,以便進行進一步處理。

第五章:使用數據庫繼續討論將數據導入Python,涵蓋了如何使用數據庫數據。您將看到訪問和操作存儲在不同類型數據庫中的數據的示例,包括關系數據庫(如MySQL)和NoSQL數據庫(如MongoDB)。 第六章:聚合數據通過對數據進行分組并進行聚合計算來解決匯總數據的問題。您將學習使用pandas對數據進行分組,并生成小計、總計和其他聚合。 第七章:結合數據集介紹了如何將來自不同數據源的數據組合為一個單獨的數據集。您將學習SQL開發人員用于連接數據庫表的技術,并將它們應用于內置的Python數據結構、NumPy數組和pandas DataFrames。 第八章:創建可視化討論可視化是最自然的方式揭露隱藏的數據中的模式。您將了解不同類型的可視化,如線形圖、條形圖和直方圖,并將了解如何使用用于繪圖的主要Python庫Matplotlib創建它們。您還將使用Cartopy庫來生成映射。 第九章:分析位置數據解釋如何使用geopy和Shapely庫處理位置數據。您將學習獲取和使用靜止和移動物體的GPS坐標的方法,并將探索拼車服務如何為給定的皮卡識別最佳汽車的現實世界示例。 第十章:分析時間序列數據提出了一些分析技術可以應用于時間序列數據中提取有意義的數據。特別地,本章中的例子說明了時間序列數據分析如何應用于股票市場數據。 第十一章:從數據中獲得洞察力探討了從數據中獲得洞察力的策略,以便做出明智的決定。例如,您將學習如何發現超市中銷售的產品之間的關聯,從而確定在一次交易中經常一起購買的商品組(對推薦和促銷有用)。 第十二章:機器學習數據分析涵蓋了使用scikitlearn先進的數據分析任務。您將訓練機器學習模型,根據產品的星級評級對產品評論進行分類,并預測股票價格的趨勢。

付費5元查看完整內容

OpenIntro Statistics涵蓋了統計的第一門課程,提供了應用統計的嚴格介紹,清晰,簡潔,可訪問。這本書是為本科水平而寫的,但它在高中和研究生課程中也很受歡迎。我們希望讀者能從本書中獲得三個觀點,除此之外,還能形成統計思維和方法的基礎。

  • 統計學是一個具有廣泛實際應用的應用領域。
  • 你不必成為數學大師,也能從真實有趣的數據中學習。
  • 數據是混亂的,統計工具是不完美的。但是,當你了解這些工具的優點和缺點時,你就可以用它們來了解這個世界。

本書各章節內容如下:

1. 介紹數據。數據結構、變量和基本的數據收集技術

2. 總結數據。數據摘要、圖形和隨機化

3.概率。概率的基本原理。

4. 隨機變量的分布。正態分布和其他關鍵分布

5. 推理的基礎。在估計總體比例的情況下,統計推斷的一般思想。

6. 分類數據的推理。使用正態分布和卡方分布推斷比例和表。

7. 對數值數據的推斷。使用t分布推斷一個或兩個樣本平均值,比較兩組的統計力量,也使用方差分析的許多平均值的比較。

8. 線性回歸概論。回歸一個預測變量的數值結果。本章的大部分內容可以在第1章之后進行介紹。

9. 多元和邏輯回歸。使用多種預測器對數值和分類數據進行回歸。

付費5元查看完整內容

《數據科學家的統計基礎:使用R和Python》是一本一學期或兩學期的數學統計入門教材,供培養成為數據科學家的學生使用。它深入介紹了任何數據科學家都應該熟悉的統計科學主題,包括概率分布、描述性和推理統計方法以及線性建模。這本書假設有基本的微積分知識,所以演示可以集中在“為什么它可以工作”以及“如何做它”上。然而,與傳統的“數理統計”教科書相比,這本書較少強調概率論,而更強調使用軟件來實現統計方法和進行模擬來說明關鍵概念。書中所有的統計分析都使用R軟件,還有一個附錄展示了用Python進行的相同分析。

這本書還介紹了現代主題,通常不出現在數理統計文本,但與數據科學家高度相關,如貝葉斯推理,非正態響應的廣義線性模型(例如,邏輯回歸和泊松loglinear模型),和正則模型擬合。將近500個練習被分為“數據分析與應用”和“方法與概念”。附錄介紹了R和Python,并包含了奇數號練習的解決方案。本書的網站擴展了R, Python和Matlab的附錄,以及來自示例和練習的所有數據集。

//www.routledge.com/Foundations-of-Statistics-for-Data-Scientists-With-R-and-Python/Agresti-Kateri/p/book/9780367748456

付費5元查看完整內容

//inferentialthinking.com/chapters/intro.html

數據科學是通過探索、預測和推理,從龐大而多樣的數據集中得出有用的結論。探索包括識別信息中的模式。預測是指利用我們已知的信息,對我們希望知道的值做出有根據的猜測。推論包括量化我們的確定性程度:我們發現的那些模式是否也會出現在新的觀察中?我們的預測有多準確?我們用于探索的主要工具是可視化和描述性統計,用于預測的是機器學習和優化,用于推斷的是統計測試和模型。統計學是數據科學的核心組成部分,因為統計學研究如何在不完整的信息下得出可靠的結論。計算是一個核心組件,因為編程允許我們將分析技術應用于現實世界中出現的大量和多樣化的數據集:不僅是數字,還有文本、圖像、視頻和傳感器讀數。數據科學包含了所有這些東西,但由于應用,它不僅僅是各部分的總和。通過理解一個特定的領域,數據科學家學會對他們的數據提出適當的問題,并正確解釋我們的推理和計算工具提供的答案。

通過本書一步一步地,您將學習如何利用算法思維和代碼的力量,獲得關于當前機器學習方法的力量和局限性的直覺,并有效地將它們應用到實際的業務問題。

付費5元查看完整內容

機器學習是關于基于數據的學習、推理和行動。這是通過構建計算機程序來完成的,這些程序可以處理數據,提取有用的信息,對未知屬性做出預測,并建議采取的行動或做出的決定。將數據分析變成機器學習的原因是,這個過程是自動化的,計算機程序是從數據中學習的。這意味著使用通用計算機程序,這些程序根據觀察到的所謂訓練數據自動調整程序的設置,以適應特定的應用程序環境。因此可以說,機器學習是一種通過實例編程的方式。機器學習的美妙之處在于,數據所代表的內容是非常隨意的,我們可以設計出適用于不同領域的廣泛實際應用的通用方法。我們通過下面的一系列例子來說明這一點。上述“通用計算機程序”是指數據的數學模型。也就是說,當我們開發和描述不同的機器學習方法時,我們使用的是數學語言。數學模型描述了與觀測數據對應的相關數量或變量與感興趣的屬性(如預測、動作等)之間的關系。因此,模型是數據的緊湊表示,以精確的數學形式捕捉我們正在研究的現象的關鍵屬性。使用哪個模型通常由機器學習工程師在查看可用數據時產生的見解和從業者對問題的總體理解來指導。在實踐中實現該方法時,將該數學模型轉換為可在計算機上執行的代碼。然而,要理解計算機程序的實際作用,了解其基礎數學也很重要。

這本書的目的是介紹監督機器學習,而不需要在該領域的任何經驗。我們既關注基礎的數學,也關注實踐方面。本書是教科書,不是參考書,也不是編程手冊。因此,它只包含一個仔細(但全面)的監督機器學習方法的選擇,而沒有編程代碼。現在有許多精彩和證據確鑿的代碼包可用,我們深信,在很好地理解數學和內部運行的方法。在這本書中,我們從統計學的角度來討論方法的統計特性。因此,它需要一些統計和概率論的知識,以及微積分和線性代數。我們希望,從頭到尾閱讀這本書將給讀者一個良好的起點,作為一個機器學習工程師工作和/或繼續在該學科的進一步研究。下圖說明了章節之間的主要依賴關系。特別是在第二、三、四章中討論了最基本的主題,我們建議讀者先閱讀這些章節,然后再閱讀后面包含更高級的主題的章節(第5-9章)。第10章超越了機器學習的監督設置,第11章關注于設計一個成功的機器學習解決方案的一些更實際的方面,比前幾章的技術性更少。最后,第十二章(由David Sumpter撰寫)討論了現代機器學習的某些倫理方面。

付費5元查看完整內容

機器學習中復雜的統計數據讓許多開發人員感到擔憂。了解統計學可以幫助你建立強大的機器學習模型,針對給定的問題陳述進行優化。這本書將教你所有需要執行復雜的統計計算所需的機器學習。您將獲得有關監督學習、非監督學習、強化學習等統計信息。了解真實世界的例子,討論機器學習的統計方面,并熟悉它。您還將設計用于執行諸如模型、參數擬合、回歸、分類、密度收集等任務的程序。

到本書結束時,你將掌握機器學習所需的統計數據,并能夠將你的新技能應用于任何類型的行業問題。

付費5元查看完整內容

《數據科學設計手冊》提供了實用的見解,突出了分析數據中真正重要的東西,并提供了如何使用這些核心概念的直觀理解。這本書沒有強調任何特定的編程語言或數據分析工具套件,而是專注于重要設計原則的高級討論。這個易于閱讀的文本理想地服務于本科生和早期研究生的需要,開始“數據科學入門”課程。它揭示了這門學科是如何以其獨特的分量和特點,處于統計學、計算機科學和機器學習的交叉領域。在這些和相關領域的從業者會發現這本書完美的自學以及。

《數據科學設計手冊》是數據科學的介紹,重點介紹建立收集、分析和解釋數據的系統所需的技能和原則。作為一門學科,數據科學位于統計學、計算機科學和機器學習的交匯處,但它正在構建自己獨特的分量和特征。

這本書涵蓋了足夠的材料在本科或早期研究生水平的“數據科學入門”課程。在這里可以找到教學這門課程的全套講課幻燈片,以及項目和作業的數據資源,以及在線視頻講座。

付費5元查看完整內容

在過去的二十年里,機器學習已經成為信息技術的支柱之一,并因此成為我們生活中相當核心(盡管通常是隱藏的)的一部分。隨著可用數據量的不斷增加,我們有充分的理由相信,智能數據分析將變得更加普遍,成為技術進步的必要因素。本章的目的是為讀者提供一個廣泛的應用的概述,這些應用的核心是一個機器學習問題,并給這一大堆問題帶來一定程度的秩序。在那之后,我們將討論一些來自統計和概率論的基本工具,因為它們構成了許多機器學習問題必須被表述成易于解決的語言。最后,我們將概述一套相當基本但有效的算法來解決一個重要的問題,即分類。更復雜的工具,更普遍的問題的討論和詳細的分析將在本書后面的部分。

付費5元查看完整內容

學習使用Python分析數據和預測結果的更簡單和更有效的方法

Python機器學習教程展示了通過關注兩個核心機器學習算法家族來成功分析數據,本書能夠提供工作機制的完整描述,以及使用特定的、可破解的代碼來說明機制的示例。算法用簡單的術語解釋,沒有復雜的數學,并使用Python應用,指導算法選擇,數據準備,并在實踐中使用訓練過的模型。您將學習一套核心的Python編程技術,各種構建預測模型的方法,以及如何測量每個模型的性能,以確保使用正確的模型。關于線性回歸和集成方法的章節深入研究了每種算法,你可以使用書中的示例代碼來開發你自己的數據分析解決方案。

機器學習算法是數據分析和可視化的核心。在過去,這些方法需要深厚的數學和統計學背景,通常需要結合專門的R編程語言。這本書演示了機器學習可以如何實現使用更廣泛的使用和可訪問的Python編程語言。

使用線性和集成算法族預測結果

建立可以解決一系列簡單和復雜問題的預測模型

使用Python應用核心機器學習算法

直接使用示例代碼構建自定義解決方案

機器學習不需要復雜和高度專業化。Python使用了更簡單、有效和經過良好測試的方法,使這項技術更容易為更廣泛的受眾所接受。Python中的機器學習將向您展示如何做到這一點,而不需要廣泛的數學或統計背景。

付費5元查看完整內容

本書解釋了數據科學中至關重要的統計學概念,介紹如何將各種統計方法應用于數據科學。作者以易于理解、瀏覽和參考的方式,引出統計學中與數據科學相關的關鍵概念;解釋各統計學概念在數據科學中的重要性及有用程度,并給出原因。

統計方法是數據科學的關鍵部分,但很少有數據科學家有任何正式的統計培訓。關于基本統計的課程和書籍很少從數據科學的角度涵蓋這個主題。這本實用指南解釋了如何將各種統計方法應用到數據科學中,告訴你如何避免它們被誤用,并就什么是重要的、什么是不重要的給出建議。

許多數據科學資源包含了統計方法,但缺乏更深層次的統計視角。如果您熟悉R編程語言,并且對統計學有一定的了解,那么本文的快速引用將以一種可訪問、可讀的格式填補空白。

通過這本書,你會學到:

  • 為什么探索性數據分析是數據科學的一個關鍵的初步步驟
  • 隨機抽樣如何在大數據的情況下減少偏差并產生更高質量的數據集
  • 實驗設計的原則如何為問題提供明確的答案
  • 如何使用回歸估計結果和檢測異常
  • 用于預測記錄所屬類別的關鍵分類技術
  • 從數據中“學習”的統計機器學習方法
  • 從無標記數據中提取意義的無監督學習方法

//www.oreilly.com/library/view/practical-statistics-for/9781491952955/

付費5元查看完整內容
北京阿比特科技有限公司