亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

《數據科學設計手冊》提供了實用的見解,突出了分析數據中真正重要的東西,并提供了如何使用這些核心概念的直觀理解。這本書沒有強調任何特定的編程語言或數據分析工具套件,而是專注于重要設計原則的高級討論。這個易于閱讀的文本理想地服務于本科生和早期研究生的需要,開始“數據科學入門”課程。它揭示了這門學科是如何以其獨特的分量和特點,處于統計學、計算機科學和機器學習的交叉領域。在這些和相關領域的從業者會發現這本書完美的自學以及。

《數據科學設計手冊》是數據科學的介紹,重點介紹建立收集、分析和解釋數據的系統所需的技能和原則。作為一門學科,數據科學位于統計學、計算機科學和機器學習的交匯處,但它正在構建自己獨特的分量和特征。

這本書涵蓋了足夠的材料在本科或早期研究生水平的“數據科學入門”課程。在這里可以找到教學這門課程的全套講課幻燈片,以及項目和作業的數據資源,以及在線視頻講座。

付費5元查看完整內容

相關內容

需要處理大量數據的人必備的案頭書

對于許多研究人員來說,Python是首選的工具,因為它擁有豐富的儲存、操作、以及洞察數據的程式庫。這些資源散布在數據科學的領域中,但藉由本書,你可以一口氣取得這些資源,包括Ipython、NumPy、Pandas、Matplotlib、Scikit-Learn等等。

對于需要處理大量數據的人而言,這是一本非常有價值的案頭書,可以有效率地處理每天面對的問題,像是操作、轉換,以及清理數據、視覺化不同形式的數據,建立統計學或機器學習的模型等等。

藉由這本手冊,你將可以學習到如何使用: IPython和Jupyter:提供數據科學家使用的Python計算環境。 NumPy:在Python中進行高效儲存以及操作密集數據陣列的ndarrys。 Pandas:在Python中進行對于標簽式/欄位式的數據高效率儲存與操作。 Matplotlib:在Python中進行彈性范圍的數據視覺化的能力。 Scikit-Learn:提供機器學習演算法以及簡潔的Python實作。

付費5元查看完整內容

學習使用Python分析數據和預測結果的更簡單和更有效的方法

Python機器學習教程展示了通過關注兩個核心機器學習算法家族來成功分析數據,本書能夠提供工作機制的完整描述,以及使用特定的、可破解的代碼來說明機制的示例。算法用簡單的術語解釋,沒有復雜的數學,并使用Python應用,指導算法選擇,數據準備,并在實踐中使用訓練過的模型。您將學習一套核心的Python編程技術,各種構建預測模型的方法,以及如何測量每個模型的性能,以確保使用正確的模型。關于線性回歸和集成方法的章節深入研究了每種算法,你可以使用書中的示例代碼來開發你自己的數據分析解決方案。

機器學習算法是數據分析和可視化的核心。在過去,這些方法需要深厚的數學和統計學背景,通常需要結合專門的R編程語言。這本書演示了機器學習可以如何實現使用更廣泛的使用和可訪問的Python編程語言。

使用線性和集成算法族預測結果

建立可以解決一系列簡單和復雜問題的預測模型

使用Python應用核心機器學習算法

直接使用示例代碼構建自定義解決方案

機器學習不需要復雜和高度專業化。Python使用了更簡單、有效和經過良好測試的方法,使這項技術更容易為更廣泛的受眾所接受。Python中的機器學習將向您展示如何做到這一點,而不需要廣泛的數學或統計背景。

付費5元查看完整內容

本書解釋了數據科學中至關重要的統計學概念,介紹如何將各種統計方法應用于數據科學。作者以易于理解、瀏覽和參考的方式,引出統計學中與數據科學相關的關鍵概念;解釋各統計學概念在數據科學中的重要性及有用程度,并給出原因。

統計方法是數據科學的關鍵部分,但很少有數據科學家有任何正式的統計培訓。關于基本統計的課程和書籍很少從數據科學的角度涵蓋這個主題。這本實用指南解釋了如何將各種統計方法應用到數據科學中,告訴你如何避免它們被誤用,并就什么是重要的、什么是不重要的給出建議。

許多數據科學資源包含了統計方法,但缺乏更深層次的統計視角。如果您熟悉R編程語言,并且對統計學有一定的了解,那么本文的快速引用將以一種可訪問、可讀的格式填補空白。

通過這本書,你會學到:

  • 為什么探索性數據分析是數據科學的一個關鍵的初步步驟
  • 隨機抽樣如何在大數據的情況下減少偏差并產生更高質量的數據集
  • 實驗設計的原則如何為問題提供明確的答案
  • 如何使用回歸估計結果和檢測異常
  • 用于預測記錄所屬類別的關鍵分類技術
  • 從數據中“學習”的統計機器學習方法
  • 從無標記數據中提取意義的無監督學習方法

//www.oreilly.com/library/view/practical-statistics-for/9781491952955/

付費5元查看完整內容

概率論起源于17世紀的法國,當時兩位偉大的法國數學家,布萊斯·帕斯卡和皮埃爾·德·費馬,對兩個來自機會博弈的問題進行了通信。帕斯卡和費馬解決的問題繼續影響著惠更斯、伯努利和DeMoivre等早期研究者建立數學概率論。今天,概率論是一個建立良好的數學分支,應用于從音樂到物理的學術活動的每一個領域,也應用于日常經驗,從天氣預報到預測新的醫療方法的風險。

本文是為數學、物理和社會科學、工程和計算機科學的二、三、四年級學生開設的概率論入門課程而設計的。它提出了一個徹底的處理概率的想法和技術為一個牢固的理解的主題必要。文本可以用于各種課程長度、水平和重點領域。

在標準的一學期課程中,離散概率和連續概率都包括在內,學生必須先修兩個學期的微積分,包括多重積分的介紹。第11章包含了關于馬爾可夫鏈的材料,為了涵蓋這一章,一些矩陣理論的知識是必要的。

文本也可以用于離散概率課程。材料被組織在這樣一種方式,離散和連續的概率討論是在一個獨立的,但平行的方式,呈現。這種組織驅散了對概率過于嚴格或正式的觀點,并提供了一些強大的教學價值,因為離散的討論有時可以激發更抽象的連續的概率討論。在離散概率課程中,學生應該先修一學期的微積分。

為了充分利用文中的計算材料和例子,假設或必要的計算背景很少。所有在文本中使用的程序都是用TrueBASIC、Maple和Mathematica語言編寫的。

付費5元查看完整內容

越來越多來自不同領域的計算機科學家使用離散數學結構來解釋概念和問題。在教學經驗的基礎上,作者提供了一個容易理解的文本,強調了離散數學的基礎及其高級課題。這篇文章展示了如何用清晰的數學語言表達精確的思想。學生發現離散數學在描述計算機科學結構和解決問題方面的重要性。他們還學習如何掌握離散數學將幫助他們發展重要的推理技能,這些技能將在他們的職業生涯中繼續發揮作用。

付費5元查看完整內容

如果您是用Python編程的新手,并且正在尋找可靠的介紹,那么這本書就是為您準備的。由計算機科學教師開發,在“為絕對初學者”系列叢書通過簡單的游戲創造教授編程的原則。您將獲得實際的Python編程應用程序所需的技能,并將了解如何在真實場景中使用這些技能。在整個章節中,你會發現一些代碼示例來說明所提出的概念。在每一章的結尾,你會發現一個完整的游戲,展示了這一章的關鍵思想,一章的總結,以及一系列的挑戰來測試你的新知識。當你讀完這本書的時候,你將非常精通Python,并且能夠將你所學到的基本編程原理應用到你要處理的下一種編程語言。

付費5元查看完整內容

管理統計和數據科學的原理包括:數據可視化;描述性措施;概率;概率分布;數學期望;置信區間;和假設檢驗。方差分析;簡單線性回歸;多元線性回歸也包括在內。另外,本書還提供了列聯表、卡方檢驗、非參數方法和時間序列方法。

教材:

  • 包括通常在入門統計學課程中涵蓋的學術材料,但與數據科學扭曲,較少強調理論
  • 依靠Minitab來展示如何用計算機執行任務
  • 展示并促進來自開放門戶的數據的使用
  • 重點是發展對程序如何工作的直覺
  • 讓讀者了解大數據的潛力和目前使用它的失敗之處
付費5元查看完整內容

數據科學庫、框架、模塊和工具包非常適合進行數據科學研究,但它們也是深入研究這一學科的好方法,不需要真正理解數據科學。在本書中,您將了解到許多最基本的數據科學工具和算法都是通過從頭實現來實現的。

如果你有數學天賦和一些編程技能,作者Joel Grus將幫助你熟悉作為數據科學核心的數學和統計,以及作為數據科學家的入門技能。如今,這些雜亂的、充斥著海量數據的數據,為一些甚至沒人想過要問的問題提供了答案。這本書為你提供了挖掘這些答案的訣竅。

參加Python速成班

  • 學習線性代數、統計和概率的基礎知識,并了解如何以及何時在數據科學中使用它們
  • 收集、探索、清理、分析和操作數據
  • 深入了解機器學習的基本原理
  • 實現諸如k近鄰、樸素貝葉斯、線性和邏輯回歸、決策樹、神經網絡和聚類等模型
  • 探索推薦系統、自然語言處理、網絡分析、MapReduce和數據庫
付費5元查看完整內容

通過機器學習的實際操作指南深入挖掘數據

機器學習: 為開發人員和技術專業人員提供實踐指導和全編碼的工作示例,用于開發人員和技術專業人員使用的最常見的機器學習技術。這本書包含了每一個ML變體的詳細分析,解釋了它是如何工作的,以及如何在特定的行業中使用它,允許讀者在閱讀過程中將所介紹的技術融入到他們自己的工作中。機器學習的一個核心內容是對數據準備的強烈關注,對各種類型的學習算法的全面探索說明了適當的工具如何能夠幫助任何開發人員從現有數據中提取信息和見解。這本書包括一個完整的補充教師的材料,以方便在課堂上使用,使這一資源有用的學生和作為一個專業的參考。

機器學習的核心是一種基于數學和算法的技術,它是歷史數據挖掘和現代大數據科學的基礎。對大數據的科學分析需要機器學習的工作知識,它根據從訓練數據中獲得的已知屬性形成預測。機器學習是一個容易理解的,全面的指導,為非數學家,提供明確的指導,讓讀者:

  • 學習機器學習的語言,包括Hadoop、Mahout和Weka
  • 了解決策樹、貝葉斯網絡和人工神經網絡
  • 實現關聯規則、實時和批量學習
  • 為安全、有效和高效的機器學習制定戰略計劃

通過學習構建一個可以從數據中學習的系統,讀者可以在各個行業中增加他們的效用。機器學習是深度數據分析和可視化的核心,隨著企業發現隱藏在現有數據中的金礦,這一領域的需求越來越大。對于涉及數據科學的技術專業人員,機器學習:為開發人員和技術專業人員提供深入挖掘所需的技能和技術。

付費5元查看完整內容
北京阿比特科技有限公司