需要處理大量數據的人必備的案頭書
對于許多研究人員來說,Python是首選的工具,因為它擁有豐富的儲存、操作、以及洞察數據的程式庫。這些資源散布在數據科學的領域中,但藉由本書,你可以一口氣取得這些資源,包括Ipython、NumPy、Pandas、Matplotlib、Scikit-Learn等等。
對于需要處理大量數據的人而言,這是一本非常有價值的案頭書,可以有效率地處理每天面對的問題,像是操作、轉換,以及清理數據、視覺化不同形式的數據,建立統計學或機器學習的模型等等。
藉由這本手冊,你將可以學習到如何使用: IPython和Jupyter:提供數據科學家使用的Python計算環境。 NumPy:在Python中進行高效儲存以及操作密集數據陣列的ndarrys。 Pandas:在Python中進行對于標簽式/欄位式的數據高效率儲存與操作。 Matplotlib:在Python中進行彈性范圍的數據視覺化的能力。 Scikit-Learn:提供機器學習演算法以及簡潔的Python實作。
《數據科學設計手冊》提供了實用的見解,突出了分析數據中真正重要的東西,并提供了如何使用這些核心概念的直觀理解。這本書沒有強調任何特定的編程語言或數據分析工具套件,而是專注于重要設計原則的高級討論。這個易于閱讀的文本理想地服務于本科生和早期研究生的需要,開始“數據科學入門”課程。它揭示了這門學科是如何以其獨特的分量和特點,處于統計學、計算機科學和機器學習的交叉領域。在這些和相關領域的從業者會發現這本書完美的自學以及。
《數據科學設計手冊》是數據科學的介紹,重點介紹建立收集、分析和解釋數據的系統所需的技能和原則。作為一門學科,數據科學位于統計學、計算機科學和機器學習的交匯處,但它正在構建自己獨特的分量和特征。
這本書涵蓋了足夠的材料在本科或早期研究生水平的“數據科學入門”課程。在這里可以找到教學這門課程的全套講課幻燈片,以及項目和作業的數據資源,以及在線視頻講座。
這本書是為任何想學習如何開發機器學習系統的人準備的。我們將從理論和實踐兩方面涵蓋關于機器學習算法的最重要概念,并將使用Python編程語言中的Scikit-learn庫實現許多機器學習算法。在第一章中,您將學習機器學習最重要的概念,在下一章中,您將主要學習分類。在最后一章中,你將學習如何訓練你的模型。我假定你已經了解了編程的基礎知識。
學習使用Python分析數據和預測結果的更簡單和更有效的方法
Python機器學習教程展示了通過關注兩個核心機器學習算法家族來成功分析數據,本書能夠提供工作機制的完整描述,以及使用特定的、可破解的代碼來說明機制的示例。算法用簡單的術語解釋,沒有復雜的數學,并使用Python應用,指導算法選擇,數據準備,并在實踐中使用訓練過的模型。您將學習一套核心的Python編程技術,各種構建預測模型的方法,以及如何測量每個模型的性能,以確保使用正確的模型。關于線性回歸和集成方法的章節深入研究了每種算法,你可以使用書中的示例代碼來開發你自己的數據分析解決方案。
機器學習算法是數據分析和可視化的核心。在過去,這些方法需要深厚的數學和統計學背景,通常需要結合專門的R編程語言。這本書演示了機器學習可以如何實現使用更廣泛的使用和可訪問的Python編程語言。
使用線性和集成算法族預測結果
建立可以解決一系列簡單和復雜問題的預測模型
使用Python應用核心機器學習算法
直接使用示例代碼構建自定義解決方案
機器學習不需要復雜和高度專業化。Python使用了更簡單、有效和經過良好測試的方法,使這項技術更容易為更廣泛的受眾所接受。Python中的機器學習將向您展示如何做到這一點,而不需要廣泛的數學或統計背景。
數據科學的學習指引“對任何想要使用Python開始機器學習的人,這本書是很棒且超實用的資源。真希望當我開始使用scikit-learn時有這本書!” -Hanna Wallach, 微軟研究院資深研究員
機器學習已成為許多商業應用程式與研究專案的精華部分,但這個領域并不是大公司中規模龐大的研究團隊所獨有。
就算是使用Python的初學者,這本書也能教會你實際的方法,來建立自己的機器學習解決方案。
以現今可以取得的資料量來說,只要你能想到的,機器學習應用程式都能做到。
你將學習必要的步驟,使用Python和scikit-learn函式庫,來建立成功的機器學習應用程式。
作者Andreas Müller和Sarah Guido聚焦于使用機器學習演算法的實務面向,而不是它們背后的數學。
熟悉NumPy和matplotlib函式庫,將幫助你能從這本書獲益更多。
透過這本書,你將學到:
目錄大綱 前言
索引
如果您是用Python編程的新手,并且正在尋找可靠的介紹,那么這本書就是為您準備的。由計算機科學教師開發,在“為絕對初學者”系列叢書通過簡單的游戲創造教授編程的原則。您將獲得實際的Python編程應用程序所需的技能,并將了解如何在真實場景中使用這些技能。在整個章節中,你會發現一些代碼示例來說明所提出的概念。在每一章的結尾,你會發現一個完整的游戲,展示了這一章的關鍵思想,一章的總結,以及一系列的挑戰來測試你的新知識。當你讀完這本書的時候,你將非常精通Python,并且能夠將你所學到的基本編程原理應用到你要處理的下一種編程語言。
使用Python的高級數據科學和分析使數據科學家能夠繼續發展他們的技能,并將其應用于商業和學術設置中。這本書中討論的主題是補充和后續主題討論的數據科學和分析與Python。其目的是使用Python開發的工具,如SciKit-learn、Pandas、Numpy、Beautiful Soup、NLTK、NetworkX等,覆蓋數據科學中重要的高級領域。使用Keras、TensorFlow、Core ML等框架,以及用于iOS和MacOS應用開發的Swift來支持模型開發。
從設計和原型設計到測試、部署和維護,Python在許多方面都很有用,它一直是當今最流行的編程語言之一。這本實用的書的第三版提供了對語言的快速參考——包括Python 3.5、2.7和3.6的突出部分——它龐大的標準庫中常用的區域,以及一些最有用的第三方模塊和包。
本書非常適合具有一些Python經驗的程序員,以及來自其他編程語言的程序員,它涵蓋了廣泛的應用領域,包括web和網絡編程、XML處理、數據庫交互和高速數字計算。了解Python如何提供優雅、簡單、實用和強大功能的獨特組合。
這個版本包括:
數據科學庫、框架、模塊和工具包非常適合進行數據科學研究,但它們也是深入研究這一學科的好方法,不需要真正理解數據科學。在本書中,您將了解到許多最基本的數據科學工具和算法都是通過從頭實現來實現的。
如果你有數學天賦和一些編程技能,作者Joel Grus將幫助你熟悉作為數據科學核心的數學和統計,以及作為數據科學家的入門技能。如今,這些雜亂的、充斥著海量數據的數據,為一些甚至沒人想過要問的問題提供了答案。這本書為你提供了挖掘這些答案的訣竅。
參加Python速成班
【導讀】一份簡明扼要的Python教程手冊,不得不看!
本書是為那些對數據科學感興趣的Python程序員編寫的。唯一的先決條件是Python的基本知識。不需要有使用復雜算法的經驗。數學背景不是必須的。讀完這本書的業余愛好者將獲得獲得第一份高薪數據科學工作所必需的技能。這些技能包括:
開放式解決問題的能力對于數據科學職業來說是必不可少的。不幸的是,這些能力不能通過閱讀來獲得。要成為一個問題解決者,你必須堅持解決困難的問題。帶著這種想法,我的書圍繞著案例研究展開:以真實世界為模型的開放式問題。案例研究范圍從在線廣告分析到使用新聞數據跟蹤疾病暴發。