本報告調查了 "低密度戰場 "以及在這種環境下使用武裝無人機的情況。低密度戰場是指規模不大的地面部隊在廣闊的地理區域內作戰,沒有連續的戰線,通信線路脆弱,可以選擇何時和在何種情況下參戰。
報告以現實世界中的 "巴伊拉克塔爾"TB2、"灰鷹 "和 "死神 "無人機類型為基礎,定義并討論了一種通用武裝無人機類型。報告在北歐-波羅的海地區構建了四個低密度戰場場景,評估了武裝無人機在其中的使用情況,并定義了武裝無人機的任務。報告概述并討論了武裝無人機的要求、概念、能力、優缺點,同時就未來發展提出了一些最終建議。
本文所定義的武裝無人機作為一種有效的能力,在低密度戰場環境下,特別是在較低沖突級別和面對模糊不清的情況下,具有巨大的潛力。其主要優點是簡單、低成本和耐用。其主要弱點是火力和生存能力。這種不成熟的概念需要融入當前的部隊結構,而且還有其他改進的余地,但逐步增加但昂貴的改進帶來了功能膨脹和成本爆炸的危險。
本電子專著(E-Monpgraph)旨在介紹用于防御和進攻性軍事任務的不同型號的戰斗無人機,采用人工智能(AI)和經濟地理學(Ruiz Estrada,2017 年)作為主要分析和理論框架,以支持所有這些原型機的構建。本 E-Monograph 共分為七章。第二章 無人機多盤網絡自主決策人工智能繪圖(MNADMAI-Mapping)建立在先進的多層次巨型數據分析算法之上,并采用了新穎的數學和圖形方法。這一綜合分析控制系統是適用于包括無人機(執行空中任務)在內的各種無人機的高效編程工具。MNADMAI-Mapping for and Drones 的開發源于對尖端人工智能框架的迫切需求,該框架能夠評估和自主決定各種場景下的行動方案,包括可能發生的沖突、國內爭端和與邊境有關的軍事挑戰,并擴展到各種潛在的軍事演習,無論是防御性的還是進攻性的。從本質上講,MNADMAI-無人機測繪的關鍵目的是為包括陸軍、海軍和空軍在內的武裝部隊提供另一種人工智能系統,進一步增強其戰略能力。
第三章介紹了一種被稱為 "MR12-UAV 轟炸機 "的突破性原型機。MR12-UAV 轟炸機擁有一系列與眾不同的功能和應用,本技術報告將對此進行詳細介紹。首先,我們主張在 MR12-UAV 轟炸機中采用 "多副翼系統 (MAS)"。這包括戰略性地將所有副翼置于飛機主體結構內。此外,MR12-UAV 龐巴迪還采用了創新的螺旋槳設計,即 "靜音螺旋槳系統(SPS)"。該系統在主體結構中安裝了一個強大的電機,并配有一系列專用螺旋槳,這些螺旋槳精確同步運行,可將起飛和著陸噪音水平降低 99.5%,令人印象深刻。此外,該系統還集成了名為 "感知風系統(SWS)"的尖端概念,利用人工智能提高性能。為了實現可持續發展,龐巴迪 MR12-UAV 配備了太陽能電池板,以確保持續充電,同時支持其四個強大的電機。值得注意的是,MR12-UAV "龐巴迪 "能夠攜帶兩個重型有效載荷,無論是炸彈還是導彈,既可用于陸空作戰,也可用于海空作戰。最后,MR12-UAV "龐巴迪 "的多功能性使其在執行各種軍事和國家緊急任務時不可或缺。
第四章介紹了一種被稱為 "自動定位感知表面抗擾動系統(ASSA-System)"的開創性原型機,它被集成到 MRNSP-V.8-UAV 的結構中。本報告全面概述了 MRNSP-V.8-UAV 的獨特功能和多樣化應用。首先,我們主張在這項研究中實施 "內部副翼系統(IAS)"。我們建議在 MRNSP-V.8-UAV 的主體結構中安裝所有副翼。同時,MRNSP-V.8-UAV 還展示了 "反噪聲螺旋槳系統(APS)"下的新型螺旋槳設計。ASSA 系統在其主要結構中安裝了一個強大的電機,以及一系列復雜同步的專用螺旋槳,在起飛、飛行和著陸過程中實現了 97% 的顯著降噪。此外,我們還引入了一個開創性的概念:"破風系統(BSWS)",充分利用了人工智能的能力。自動定位感知表面抗擾動系統(ASSA-System)的多功能性可擴展到軍事應用和自然災害時的國家救援工作。
第五章介紹了被稱為 "MR1-UAV "的創新原型機,概述了其與眾不同的特點和多種多樣的應用。本研究的一個主要重點是 "靜音螺旋槳系統(QPS)"的實施。MR1-UAV 在其核心結構中集成了一個堅固耐用的電機,再加上一系列精心同步的專用螺旋槳,可在起飛、飛行和著陸階段將噪音水平大幅降低 97%。此外,還提出了 "超靈敏風系統(UWS)"這一開創性概念,利用人工智能提高性能。MR1-UAV 的多功能性涵蓋了軍事、商業和重要的國家緊急任務。
第六章展示了 MULTICOPTER MR10-UAV 概念,在一個統一的結構中采用了一組戰略性排列的螺旋槳(Jones,2017 年)。這種配置使起飛時的能效最大化,著陸時的沖擊力最小化。通過將十個螺旋槳緊密地相互連接在一起,實現了獨特而協調的推進系統,從而實現了快速而安全的飛行。MULTICOPTER MR10-UAV 采用了被稱為 "緊密集成推進器系統 (CIPS) "的集成推進器系統(參見圖 1、2、3、4 和 11)。這種設計集成了十個堅固的電機,每個電機都配有獨立的電池,從而提高了飛行的續航能力。這些電機以高精度同步協調運行,使起飛和著陸噪音水平降低了 99%。此外,MR10-UAV 還能可靠、高效地運輸大量有效載荷。其多功能性適用于廣泛的應用領域,包括但不限于商業企業、后勤業務、軍事活動和應對國家緊急情況。
最后,第七章介紹了多級無人機國家情報安全系統(CORAZA-System)。我們對多層次巨型數據分析框架的有效性進行了評估,并將多維圖譜作為人工智能中一種有效的分析工具加以利用。這種方法為理解和應對復雜的軍事和國家安全挑戰提供了一個整體視角。開發 CORAZA 系統的主要動力是提供一種新穎的人工智能工具,能夠有效評估動態和復雜的情景,包括潛在的戰爭、沖突和邊境問題。該工具旨在全面評估各種戰略。因此,CORAZA 系統致力于為武裝部隊、情報機構和政府提供另一種人工智能方法。
在國防訓練中應用模擬器不僅具有經濟意義,而且還能顯著減少排放。然而,直到現在,人們還沒有對應用模擬器所帶來的環境效益進行深入研究。本研究旨在量化印度陸軍使用選定模擬器進行訓練所帶來的環境和經濟效益。研究的一些主要發現如下
該項目為與使用無人系統支持分布式海戰(DMO)有關的作戰概念和系統設計決策提供信息。研究通過系統地改變仿真模型中的系統設計特征和作戰活動,支持對無人系統(UVC)進行能力級分析。分析結果表明,UVC 可提高各種無人系統的作戰可用性(Ao)和使用時間(TOS),因為它可隨時進入維護、加油和重新武裝設施,而無需長時間前往岸基設施或分布式支援艦艇。在比較使用 UVC 的配置與在自適應兵力包 (AFP) 中分配無人系統支持的配置時,單個無人系統的 Ao 提高了 6% 到 31%。仿真模型分析確定了 UVC 架構,其中包括至少 8 個無人機發射回收站、至少 3 個船舷托架和至少 5 個甲板井托架,以最大限度地提高 Ao。
在支持分布式海上作戰(DMO)時,無人系統有可能發揮兵力倍增器的作用,在提高殺傷力的同時降低有人系統的風險。然而,無人系統到岸基維護、加油和重新武裝設施的轉運時間減少了可用于支持執行 DMO 的自適應兵力包(AFP)的總體駐扎時間(TOS)。本項目研究了無人水面艦艇 (USV)、無人水下航行器 (UUV) 和無人機 (UAV) 在美國海軍現有艦艇上的集成問題,該艦艇已被重新改裝為無人載具 (UVC)。在本報告中,"UxV "一詞用于描述無人系統這一類別。
如 Van Bossuyt 等人(2019 年)所述,項目團隊采用了系統定義、系統建模和系統分析的通用系統工程流程序列。在系統定義過程中,項目團隊重點開發了作戰概念(CONOPS),并定義了 UVC 的系統要求。系統建模活動的重點是構建 UVC 的離散事件仿真模型。在系統分析階段,團隊利用所開發的模型來評估 UVC 的各種設計參數對每種無人系統類型的運行可用性(Ao)的影響。
A. 系統定義
在系統定義階段,從自上而下和自下而上的角度開發和考慮了 UVC 要求。從自上而下的角度來看,團隊分析并確定了滿足總體任務有效性目標所需的能力,而與任何現有的候選平臺無關。從自下而上的角度來看,團隊評估了一艘登陸直升機船塢(LHD)艦,以確定該平臺可實現的最大 UVC 能力。通過查閱文獻和分析利益相關者的需求,項目團隊確定了 UVC 的以下關鍵能力:指揮與控制 (C2)、UxV 發射、UxV 維護和 UxV 回收。根據設想,UVC 將包括著陸甲板無人機發射和回收站、無人機維護/布防/燃料艙、用于大型 USV/UUV 操作的船舷艙或站,以及用于小型 USV/UUV 操作的井甲板艙。
B. 系統建模
項目構想將 UVC 視為針對地面和岸上敵對兵力實施 DMO 的 AFP 的一部分。UVC 的作用是支持 UxV 對敵方岸基導彈基地進行偵察和打擊。在打擊階段之前、期間和之后,UxV 提供全天候的情報、監視和偵察(ISR)、目標定位和戰損評估服務。UVC 的總體目標是通過消除到岸基支持設施的較長運輸時間來增加 UxV 的全時服務時間。為實現這一總體目標,研究小組選擇 "航程 "和 "持續停留時間 "作為性能指標(MOP),并選擇 "UxV 任務時間"、"UxV 停機時間 "和 "維護灣利用率 "作為效果指標(MOE)。
設計并開發了一個離散事件仿真模型,用于分析 UVC 設計參數對 MOP 和 MOE 的影響。該模型是通過 ExtendSim10 建模程序開發的。該模型包括 UxV 發射和回收、UxV 維護活動以及 UxV 重新武裝和加油活動。UxV 的發射時間表和總模擬運行時間是根據擬議的 UVC CONOPS 制定的。目前,該模型并未考慮 UxV 的損失或故障;這是未來可能開展工作的一個領域。模型的主要輸出是每種 UxV 的 Ao。
C. 系統分析
為了廣泛探索實驗空間,同時減少試驗總數和模型運行時間,我們專門設計了一個填充空間的拉丁超立方設計。每次試驗重復模擬 30 次并收集結果。合并所得的 Ao 值,得出每個試驗的統計平均值。
分析結果表明,UVC 可隨時提供維護、加油和重新武裝設施,而無需在岸基設施或分布式支援艦艇之間進行長時間的轉運,從而改善了每種 UxV 的 Ao 值和 TOS 值。對于任何特定的 UxV,通過增加 UVC 發射、回收和維護站的數量,從而消除或減少這些服務的排隊時間,可獲得最大的 Ao。分析表明,UVC 在設計時應至少配備 8 個無人機發射/回收站、至少 3 個船舷托架和至少 5 個焊接甲板托架。這些參數沒有確定上限,這也是未來研究的一個潛在領域。
有趣的是,雖然 UVC 的存在改善了大型無人水面艦艇(LUSV)的航速,但 UVC 的實際設計似乎對 LUSV 的航速沒有影響。這可能是由于 LUSV 的假定任務持續時間長,假定維護間隔長,因此不可能出現任何排隊現象。單個船側停泊區似乎足以為多艘 LUSV 提供服務,但即使是單個船側停泊區,也可通過消除到岸基設施的轉運時間來改善 Ao。
由于成本、能力、政策和法規等因素,美國海軍(USN)和美國海岸警衛隊(USCG)艦艇上無人機系統(UAS)的使用目前受到限制。本分析報告的主要目的是研究 1-3 類 UAS 在執行情報、監視和偵察 (ISR)、搜索和救援 (SAR) 以及后勤任務時對水面艦艇性能的影響,并考慮小型 UAS 系統的哪些性能參數可能對執行這些任務最有意義。本研究使用的數據包括公開的無人機系統規格、艦船規格和指標,以及以前進行的成本/預算分析。這些信息被用來為潛在任務的各種模型提供信息,這一工具有助于根據用戶需求和成本分析選擇無人機系統。這些分析結果表明,無人機系統有利于其可能執行的任務--即相對于其他機載資產而言,能夠支持其較短的作戰時間和航程的任務。對于 ISR/SAR 場景,分析表明,與沒有航空資產的艦船相比,無人機系統可增加識別目標的數量,并縮短完全搜索作戰區域的總體時間。在后勤運送場景中,無人機系統被用于從港口取回貨物,與完全轉向港口的船只相比,無人機系統減少了運送貨物所需的成本和時間。
盡管目前美國海岸警衛隊(USCG)和美國海軍(USN)艦隊在較小的水面艦艇上使用的有機(即從艦艇上發射和回收)無人機系統(UAS)有限,但海軍作戰部長(CNO)的 2021 NAVPLAN [1] 包括了到 2045 年實現混合艦隊的目標。許多無人機系統資產能夠執行情報、監視和偵察 (ISR)、搜索和救援 (SAR) 以及輕型補給任務。在合適的行動中利用這些系統替代有人駕駛系統,可以節省實現任務目標所需的關鍵時間和精力。本研究旨在確定可提高美國海軍和美國海岸警衛隊艦艇執行關鍵任務性能的無人機系統參數,建立無人機系統行為和影響模型,與目前采用的替代方案進行對比,并提出一種方法,用于對考慮集成到水面艦隊的無人機系統替代方案進行早期評估。
本研究總結了無人機系統在一般情況下和海上環境中使用的相關文獻。研究還總結了所收集的有關無人機系統和船只類型的信息,以及它們的相關參數、規格和能力。然后,將收集到的信息綜合成 "無人機選擇工具",分析無人機系統要求與船舶制約因素之間的相互作用。這個基于 Excel 的工具考慮了
然后,該工具會計算出每種艦船類型可運行的無人機系統,以及每種無人機系統的相對價值。該工具可根據無人機系統、艦船類型和利益相關者偏好的實際數據輕松更新。利益相關者可利用該工具指導對特定無人機系統解決方案的進一步研究。
無人機選擇工具開發完成后,將考慮無人機系統對作戰方案的影響。這是通過場景開發和建模來實現的。首先,為 ISR、SAR 和后勤任務制定了名義上的作戰方案。然后,描述每種情景的相關指標(例如,搜索一個區域的平均時間)。最后,介紹包絡計算以及通過 ExtendSim [2] 進行的高保真模擬建模。ExtendSim 由 Imagine That Incorporated 公司開發,是一套功能強大的仿真軟件,可以進行連續、離散事件和其他形式的仿真建模[2]。然后使用這些模型來考慮各種艦船和無人機系統參數(例如無人機系統速度)的變化如何影響通過相關指標評估的任務性能。
對于所考慮的 ISR 場景,分析表明,加入無人機系統能力可顯著縮短搜索區域的平均時間。由于無人機系統的航拍時間是有限的,而搜索時間會隨著搜索范圍的擴大而增加,因此對較小區域的影響更大。隨著場景中目標數量的增加,無人機系統對縮短時間的影響也會增加。關于執行 ISR 任務的無人機系統參數,無人機系統的速度是關鍵--如果無人機系統的速度接近艦船的速度,無人機系統的影響就會減小。
在搜索和救援分析中,當使用無人機系統增加傳感器寬度時,無人機系統的能力可顯著縮短搜索箱的時間。在此,分析表明,無人機系統的總飛行時間是一個關鍵因素,無論是通過增加無人機系統還是延長續航時間來實現。無人機系統的傳感器寬度也是一個關鍵因素,傳感器范圍越寬,搜索箱所需的時間就越少。不過,雖然無人機系統可用來縮短搜索時間,但無人機系統的假定探測概率也很重要。如果探測概率較低,這種使用模式可能會導致總體探測次數減少。
還考慮了一種情況,即使用無人機系統提高總體探測概率,而不是增加傳感器寬度。在這種情況下,無人機系統實際上對場景時間沒有影響。與之前的合成孔徑雷達方案一樣,探測概率非常重要,在考慮的無人機系統探測概率較低的情況下,無人機系統對方案未探測到的影響可以忽略不計或為負值。在所考慮的無人機系統探測概率的高端(與假定的艦船探測概率相似),無人機系統對情景下未探測到的平均次數產生積極影響(即減少未探測到的次數)。最后,在需要發現的目標總數較少的情況下,無人機系統對未探測到目標的影響可以忽略不計,但隨著目標的增加,其影響也會增加。
此外,在水面艦隊中增加無人機系統執行 ISR 和 SAR 任務的影響方面,出現了以下趨勢:
當 ISR 和 SAR 環境中有更多目標需要尋找或確認時,無人機系統就更有可能產生影響。此外,還考慮了在水面艦隊中增加無人機系統的成本影響。分析表明,即使將無人機系統的采購成本計算在內,較小的現成商用無人機系統(COTS)解決方案的每小時成本也可能大大低于傳統的載人資產。隨著商用現貨無人機系統解決方案成本的增加,其每小時成本將接近載人資產成本的低端。這一分析取決于無人機系統的飛行小時數,因為其中包括固定采購成本。無人機系統資產的飛行時數越多,其比較單位成本就越低。本研究還考慮了無人機系統成本收支平衡的飛行小時數,或者說單個無人機系統的采購投資已經通過降低支持地面機隊的邊際成本而收回。這項分析假定無人機系統的飛行時數取代了載人資產的飛行時數。在此,如果假定所有無人機系統的飛行時數都能替代有人值守資產的飛行時數,那么成本較低和較高的 COTS 無人機系統都能迅速達到運行時數的盈虧平衡點。然而,對于成本較高的系統而言,運行小時盈虧平衡點在很大程度上取決于假定的替代率。對于假設的高端 COTS 無人機系統,如果單個無人機系統的 50%飛行小時可替代載人資產飛行小時,則達到運營小時盈虧平衡點的飛行小時數將比 100%替代率情況下增加約 680%。
歸根結底,在其他條件相同的情況下,將無人機系統納入水面艦艇編隊很可能會提高孤艦在 ISR 和 SAR 任務中的性能。將無人機系統集成到較小的水面艦艇中還將為指揮官提供更大的靈活性,以適應作戰挑戰。然而,并非所有的無人機系統都具備適當的速度、任務續航時間和航空電子設備組合,以提供有意義的能力。那些能夠提供有意義能力的無人機系統可能更大、更昂貴。這表明,必須謹慎選擇要集成的無人機系統。
氣候變化導致自然災害和極端天氣事件的頻率和嚴重程度增加,這是美國空軍(USAF)作戰能源辦公室日益關注的問題。本研究重點是回答美國空軍的兩個問題:
1.進行了一項風險評估,以確定美國空軍航空燃料供應鏈在美國海灣和東海岸氣候相關事件中的風險。
2.基于這些發現,分析了美國空軍在美國海灣和東海岸戰略性開發分散式可持續航空燃料的價值。
通過一系列二手研究、供應鏈建模和分析,本研究分析了當前颶風、洪水和極端溫度事件的風險及其對基礎設施的相關影響,這些基礎設施對從海灣沿岸煉油廠向海灣和大西洋沿岸的九個美國空軍基地運送航空燃料至關重要。
主要發現包括
航空燃料供應鏈的總體風險有限。
颶風和洪水比極端溫度事件帶來的風險更大。
我們發現墨西哥灣沿岸供應鏈中的地理瓶頸對風險的影響非常大。
分散的區域性可持續航空燃料生產可進一步降低美國空軍的供應鏈風險。
利用這些發現,本報告模擬了通過將可持續航空燃料戰略性地整合到現有供應鏈中來降低風險的方法。本研究中采用的數據收集和建模技術將使美國空軍能夠在未來開始探索將可持續航空燃料整合到其供應鏈運營中的成本風險分析。此外,美國空軍應將這些結果與其他地區和與氣候無關的威脅進行比較。
本文試圖說明無人機戰爭在確保印度國家利益方面的效用。它首先確定了無人機擴散如何在印度的安全目標背景下成為一種威脅和機遇,并討論了無人機戰爭能力建設在應對印度面臨的安全威脅方面的重要性。然后,它強調了印度軍隊可以利用無人機戰爭來實現其目標的好處和行動領域,從ISR和 "枯燥、骯臟和危險 "的任務到反恐和后勤。它還談到了反無人機技術和與此相關的挑戰。然后,本文研究了印度的無人機和反無人機作戰能力的現狀。最后,它討論了在未來的無人機戰爭能力建設道路上必須解決的五個問題。本文認為,考慮到印度的地緣政治現實,印度必須采取行動,通過本土生產和國際采購來建設其無人機作戰能力。
從開展精心設計的跨境反叛亂行動到有針對性的打擊,以及在印度洋地區的情報、監視和偵察(ISR)任務,印度軍隊正在戴上各種帽子,以應對該國在21世紀地緣政治環境中面臨的各種威脅(Bhardwaj,2021)。規劃、準備和化解這些威脅需要采取積極主動的方法來采用新的軍事技術,掌握使用這些技術的戰術知識,以及管理這些行動的安全影響的政治能力(Chopra,2022)。
無人機或無人駕駛飛行器(UAVs)就是這樣一種尖端的戰爭工具,它已經成為監視和懲罰行動的重要組成部分(Chopra, 2022)。無人機為十幾個國家所擁有,不再限于美國在巴基斯坦和阿富汗的反恐行動。無人機不僅在亞美尼亞和阿塞拜疆的武裝沖突中發揮了決定性作用,而且在最近的烏克蘭-俄羅斯沖突中雙方都在廣泛使用。
對印度來說,這種情況既帶來了細微的安全威脅,也帶來了機會。2021年6月對查謨IAF基地的恐怖襲擊證實了人們的懷疑,即非國家組織正在獲得能夠利用無人機進行恐怖活動的能力(MC,2021)。此外,中國通過水下無人機對印度海軍艦艇的監視表明,該技術也增強了傳統安全問題的破壞能力(Bajpai, 2022)。然而,另一方面,印度在2022年共和國日閱兵中展示了一支無人機艦隊--無人機可以有效地用于領導層斬首、信息收集、削弱敵人士氣和減少軍事傷亡。
因此,考慮到在無人機戰爭中落后的成本和使用這種技術能力的好處 效益,發展無人機作戰能力、 特別是本土化,對印度軍隊來說越來越重要。(Bajpai, 2022)。
強調無人機作戰能力建設在應對印度面臨的安全威脅方面的重要性。
解釋印度軍方可以利用無人機戰爭實現其目標的好處和行動領域。
研究印度無人機戰爭的現狀,并就該國如何進一步發展提出建議。
本研究論文分為六個部分。第一節簡要介紹了無人機戰爭及其歷史。第二節討論了印度在21世紀的安全問題以及無人機在幫助印度解決這些問題方面所發揮的作用。這一節強調了印度資助發展無人機戰爭能力的必要性,并討論了無人機是一種機遇、一種威脅,也是印度實現自力更生的重要工具。第三節進一步深入探討了無人機在戰爭和反恐方面的優勢和用途。這一節的目的是解釋無人機目前在什么情況下被使用,并概述無人機戰爭對該國的潛力。第四節討論了反無人機技術的關鍵方面,以及印度反無人機系統的狀況,特別是針對非國家行為者。第五節將解釋無人機戰爭的局限性和批判性,以提供一個平衡的視角。最后,第六節在結論中解釋了印度無人機戰爭的現狀,并討論了為印度發展無人機和反無人機能力鋪平道路而必須解決的五個注意事項。
本文的范圍僅限于為印度的無人機戰爭能力建設提出理由,而不是探討無人機戰爭本身的各個方面。
在這份科學報告中,研究了一個導彈防御的問題,其中有異質的來襲再入飛行器(RVs)。也就是說,這些再入飛行器由不同類型的導彈組成。防御系統利用也是導彈的攔截器來試圖攔截再入飛行器。我們建議,在有異質RV的簡單交戰場景中,防衛方可以使用最佳最后交戰機會(SLS-OLEO)的射擊戰術來優化其在最后交戰機會中的突襲否定概率(PRA)。為了優化這種方法,我們利用天體動力學、帶約束的微積分、微擾理論、動態規劃和生成函數以及PRA的凹特性來比較各種射擊戰術。這種方法使我們能夠確定針對RV的攔截器的最佳分配,使PRA最大化。此外,我們還考慮了PRA如何有助于綜合系統有效性的概率(PISE),這反過來又決定了彈道導彈防御系統(BMDS)的全球有效性。原則上,該方法一般適用于導彈。然而,我們確定交戰機會數量的方式是基于彈道導彈的。
在導彈防御方面,至關重要的是,防務部門要消除來襲的RV,以保護其資產和人口。眾所周知,有一種基于RVs數量、攔截器數量及其特性(如單發殺傷概率(SSBK)和交戰機會數量)的發射策略,可以最大限度地提高突襲否定的概率,即PRA。然而,當來襲的RV由不同類型的導彈組成時,這樣的策略需要修改,因為現在的情況更復雜了。我們表明,用本報告所制定的策略仍有可能使PRA最大化。這一點很重要,因為最大化PRA意味著最大限度地挽救人口中的生命數量。
對防空的作戰分析可以追溯到1930年代(Kirby和Capey[1])。從那時起,防空研究有了很大進展,特別是在導彈防御領域。目前關于彈道導彈防御系統(BMDS)的文獻的特點是,分析集中在整個系統的孤立方面。具體來說,有關于理論發射理論(Soland [2])、射-看-射戰術(Wilkening [3])、命中評估(Weiner等人,[4])、軌道力學(Cranford [5])和綜合概率模型,如綜合系統有效性概率(PISE)(Boeing Co [6])的研究。相比之下,本科學報告側重于突襲湮滅概率(PRA),它是PISE的一個核心組成部分,也是BMDS有效性的一個關鍵決定因素。
為了證明PRA的重要性,我們在涉及異質再入飛行器(RVs)的交戰場景中比較了三種發射戰術。在對結果進行嚴格的比較后,我們說明,雖然 "射擊-觀察-射擊與最佳最后交戰機會"(SLS-OLEO)沒有產生最大的PRA,但它在一個簡單的交戰場景中提出了最實際有效的PRA。也就是說,我們并不假定來襲的RV的數量是完全已知的。我們還探討了是什么使PISE成為BMDS框架的一個重要組成部分,并提出了兩個可以提高PISE的戰術。我們相信,作戰研究界的成員將能夠利用這些發現來評估BMDS的全球有效性。
為了幫助關注這個問題,我們定義了一個由五個異質再入飛行器(RVs)和二十個攔截器組成的例子情景,(Wilkening [3])。這個場景當然不是一個飽和的場景,即RV的數量超過了攔截器的庫存,正如(Dou等人,[7])所調查的。由于彈道導彈防御(BMD)的復雜性,有些特點和方法我們無法在本報告中涉及或深入分析。與其他研究相比,我們的視角是單面的(僅是防御),而不是雙面的(防御和進攻,Brown等人,[8];兩階段博弈,Hausken和Zhuang[9])。我們的研究也主要限于地基攔截器(GBI),而不是其他發射平臺,如閑逛的飛機(Burk等人,[10])。我們不考慮誘餌(Washburn[11])。我們注意到,BMD也可以使用基于代理的模擬(Garrett等人,[12]和Holland等人,[13]),或使用馬爾科夫鏈(Menq等人,[14])進行建模。Park和Rothrock[15]研究了在導彈防御中框定人類主體的效果。實時威脅評估和武器分配(TEWA)的細節可以用3維穩定的婚姻算法來建模(Naseem等人,[16])。針對一系列RV的防御性武器的最佳組合可以用線性編程來建模(Beare [17])。盡管有這些假設和簡化,我們相信我們的方法為理解BMD提供了一個簡單的方法,同時也為評估BMDS的有效性提供了一個直接和統一的方法。
本文的組織結構如下: 第2節描述了交戰機會的數量;第3節介紹了三種已知的可用于對付相同(同質)RV的發射戰術;第4節擴展了一些用于異質RV的發射戰術,并提出了一種新的戰術;第5節描述了PRA的凹性;第6節利用凹性來確定全球最佳PRA;第7節說明了有效性的措施;第8節討論了PISE和改進它的方法;我們在第9節中得出結論。
本文是2014年發表的另一篇論文(Nguyen [18])的完整和擴展技術版本,增加了一些新的內容,包括考慮新的射擊戰術(在第4節)、PRA的凹性(在第5節)和全局最優PRA(在第6節)。雖然第7節中的有效性措施在現有文獻中可以獲得,但我們根據第4、5和6節的新穎性來確定這些有效性措施。據我們所知,在文獻中還沒有任何論文將所有這些方面的內容匯集在一篇關于BMD的文章中。這篇文章的初步結果發表在一個會議記錄中(Nguyen和Miah[19]),它利用遺傳算法來優化有效性的措施。
在一個大國競爭重新開始的時代,美國及其盟國面臨的最重大挑戰之一是需要遏制俄羅斯等國家對西太平洋或東歐的盟友或伙伴發動機會主義侵略行為的能力。本報告提出了一個 "通過偵測進行威懾"的作戰概念,以阻止俄羅斯等國家的侵略,該概念利用現有的非隱形長航時無人機系統(UAS)網絡,在西太平洋和東歐的關鍵地理區域保持實時、持久的態勢感知。
俄羅斯等國家正在發展能力,在日益強大的偵察-打擊網絡的掩護下,迅速對其周邊國家發動入侵。西太平洋和東歐最有可能演變成危機和沖突的地理摩擦點離俄羅斯和中國比離美國大陸近得多。只需發出有限的警告,莫斯科等就可以利用他們的時間距離優勢,在美國及其盟國作出反應之前奪取盟國領土,從而造成事后難以扭轉的既成事實。
美國武裝部隊的配置很差,無法應對這些挑戰,而這些挑戰需要長期的監測而不是偶發的覆蓋。盡管美國防部擁有必要的現有和近期能力,即非隱身的長距離無人機系統,但它需要發展新的行動概念和組織來有效運用這些能力。利用無人機系統威懾機會主義侵略的新概念,我們稱之為 "通過偵測進行威懾",也將從允許盟友和合作伙伴全面參與的方法中大大受益。
實施 "通過偵測進行威懾"的概念將需要一個由具有成本效益、持久性和可與廣泛的盟友和合作伙伴進行互操作的系統組成的情報、監視和偵察(ISR)網絡。實時態勢感知對于及時有效地應對次常規灰區侵略和常規既成事實博弈的雙重挑戰至關重要。執行ISR任務的無人機系統可以為即將到來的俄羅斯等的攻擊提供更多的警告,從而幫助確保前沿陣地的部隊準備好果斷的回應。通過增加預警時間,無人機系統將有助于減輕美國的時間-距離劣勢,從而使美國及其盟友能夠集結足夠的戰斗力來防止既成事實。"
這項研究確定了亞太和歐洲的三個優先地理區域,進行長距離無人機偵察:臺灣海峽、中國南海和中國東海,歐洲的波羅的海、黑海和地中海東部。除了臺灣海峽、南中國海和東中國海之外,持續觀察中國海岸線上的軍事活動的能力將提高對態勢的認識,提醒美國及其亞洲盟友和伙伴注意中國即將發動的攻擊。監視中國的活動也可以達到監視的目的,從而有可能威懾該地區的其他機會主義行為者,如朝鮮和俄羅斯。
用于"通過偵測進行威懾"作戰概念的無人機系統來自美國、盟國和伙伴國的庫存,并將在國家集團中運作,也可能作為聯盟網絡的一部分。除了這里描述的那些任務外,還需要更多的無人機系統來執行ISR任務。
在亞太和歐洲戰場實施 "通過偵測進行威懾"戰略所需的無人機系統機身總數完全可以達到。事實上,這個概念的一個優點是,它采用了美國已經擁有的能力,但在大國競爭中卻沒有得到充分利用,因為它們在這種情況下的價值沒有得到重視。CSBA的分析表明,實施"通過偵測進行威懾"將需要在西太平洋地區部署46架飛機,在歐洲再部署46架,總共92架。除此以外,還需要更多的無人機系統來執行這里描述的ISR任務。 美國及其盟國和伙伴可以通過將現有飛機從其他地區和任務轉移到西太平洋和歐洲,以及將美國已經采購的一些飛機分配給新的任務來滿足庫存要求。這些決定將取決于每架飛機的生產狀況和現有機隊的規模。
根據國會預算辦公室的數字,估計92架無人機系統的年度運營成本將總計約14億美元。由于這些飛機將來自于現有的庫存,而不是新的采購,因此運營成本代表了國防部無論如何都會花錢來維持這些飛機的飛行(假設它讓它們繼續飛行)。由于這個原因,實施"通過偵測進行威懾"不應要求增加任何開支。相反,實施這個概念只需要美國防部改變它對已經支付的飛機的處理方式。由美國及其在西太平洋和歐洲的許多盟國和伙伴分攤,相對于預期的安全收益,每個國家的估計成本應該是可以承受的。
總之,美國及其盟國在與中國和俄羅斯的競爭中面臨著行動上的挑戰,包括阻止非常規力量的機會主義侵略行為的能力,這將導致既成事實的發生。"通過偵測進行威懾",基于這樣的理念:如果對手知道他們一直在被監視,而且他們的行動可以被廣泛宣傳,那么他們就不太可能實施機會主義的侵略行為,這可以產生并保持實時態勢感知,從而有助于應對既成事實的挑戰。能夠執行大范圍持續監視任務的非隱身無人駕駛ISR飛機最適合于美國、其盟友和合作伙伴實施"通過偵測進行威懾"。但這一概念并非萬能,它只是邁出可能有效和可負擔的一步。
圖 MQ-9“死神”無人機
圖 1:使用無人機系統的 ISR 架構
圖 2: 建議的西太平洋無人機覆蓋區
圖 3:建議的東歐無人機覆蓋區
表 2:按地理區域按檢測概念進行威懾所需的 UAS 清單
美國陸軍最近制定了一項關于未來陸軍如何作戰的戰略以及實現這些軍事能力的相關現代化和研究重點。以高超音速飛行為基礎的遠程精確射擊對于確保美國能夠對任何競爭對手實施其意志至關重要。要實現一個有效的未來美國軍隊,必須克服許多障礙。其中一些差距是對高超音速飛行器空氣熱力學的理解,從而促使對基礎研究的需求。本報告的目標是定義一個經典的、與陸軍相關的配置,適合于基礎研究,以允許與適當的主題專家的關鍵數量的集中合作。從這種開放的幾何構型研究中獲得的數據和知識可能會受到更多的限制性分配。
美國陸軍最近制定了一項關于未來陸軍如何作戰的戰略以及實現這些軍事能力的相關現代化和研究重點。以高超音速飛行為基礎的遠程精確射擊對于確保美國能夠對任何競爭對手實施其意志至關重要。
要實現一個有效的未來美國軍隊,必須克服許多障礙。其中一些差距是對高超音速飛行器空氣熱力學的理解,從而促使對基礎性研究的需求。缺乏對高超音速飛行器周圍發生的復雜物理和化學的預測性知識,抑制了及時的、優化的多部件設計。對邊界層過渡和沖擊-邊界層相互作用等具體現象了解不多。不能正確地對現象進行建模,會產生一些不確定的特征,如表面壓力分布和熱通量,這對飛行器技術,包括穩定性、控制和熱負荷管理,都有負面影響。
幸運的是,有一個先例,即通過定義政府基準飛行器來促進全社會的科學討論,這些飛行器包含功能相關的工件,但對具體的發展計劃不敏感(見陸軍-海軍基本芬納導彈、空軍改良基本芬納導彈、陸軍-海軍旋轉火箭、國家航空航天飛機和NASA研究)。本報告的目標是定義一個典型的、與軍隊相關的配置,適合于基礎研究,以便與足夠數量的適當的主題專家進行重點合作。從這個開放的幾何構型的研究中獲得的數據和知識可能會受到更多的限制性分配。
前沿作戰基地(FOB)防御是一項人力密集型任務,需要占用作戰任務的寶貴資源。雖然能力越來越強的無人駕駛飛行器(UAV)具備執行許多任務的能力,但目前的理論并沒有充分考慮將其納入。特別是,如果操作人員與飛行器的比例為一比一時,并沒有考慮提高無人機的自主性。本論文描述了使用先進機器人系統工程實驗室(ARSENL)蜂群系統開發和測試自主FOB防御能力。開發工作利用了基于任務的蜂群可組合性結構(MASC),以任務為中心、自上而下的方式開發復雜的蜂群行為。這種方法使我們能夠開發出一種基于理論的基地防御戰術,在這種戰術中,固定翼和四旋翼無人機的任意組合能夠自主分配并執行所有必要的FOB防御角色:周邊監視、關鍵區域搜索、接觸調查和威脅響應。該戰術在軟件模擬環境中進行了廣泛的測試,并在現場飛行演習中進行了演示。實驗結果將使用本研究過程中制定的有效性措施和性能措施進行討論。
2019年,美國海軍陸戰隊司令大衛-H-伯杰將軍發布了他的規劃指南,作為塑造未來四年的部隊的一種方式。他在其中指出:"我們今天做得很好,我們明天將需要做得更好,以保持我們的作戰優勢"[1]。這句話摘自海軍陸戰隊司令大衛-H-伯杰將軍的《2019年司令員規劃指南》(CPG),呼吁采取集中行動,以應對海軍陸戰隊在未來戰爭中預計將面臨的不斷變化的挑戰。在為海軍陸戰隊確定未來四年的優先事項和方向的CPG中的其他指導,呼吁建立一個 "適合偵察、監視和提供致命和非致命效果的強大的無人駕駛系統系列"[1]。伯杰將軍進一步呼吁利用新技術來支持遠征前沿基地作戰(EABO)。EABO將需要靈活的系統,既能進行有效的進攻行動,又能進行獨立和可持續的防御行動。簡而言之,實現EABO將需要最大限度地利用每個系統和海軍陸戰隊。
從本質上講,伯杰將軍正在呼吁改變無人駕駛飛行器的使用方式。通過使用大型的合作自主無人飛行器系統,或稱蜂群,將有助于實現這一目標。無人飛行器蜂群提供了在人力需求和后勤負擔增加最少的情況下成倍提高戰場能力的機會。正如伯杰將軍所提到的 "下一個戰場",海軍陸戰隊將必須利用各種技術,最大限度地利用自主性和每個作戰人員在戰場上的影響。
目前的無人系統使用理論是以很少或沒有自主性的系統為中心。另外,目前的系統依賴于單個飛行器的遠程駕駛;也就是說,每輛飛行器有一個操作員。部隊中缺乏自主系統,這在監視和直接行動的作戰能力方面造成了差距。此外,側重于一對一操作員-飛行器管理的無人系統理論要求操作員的數量與車輛的數量成線性比例。這對于 "下一個戰場 "來說是不夠的。相反,海軍陸戰隊將需要能夠讓操作員擺脫束縛或提高他們同時控制多個飛行器的能力系統[2]。
考慮到這些目標,美國海軍研究生院(NPS)的先進機器人系統工程實驗室(ARSENL)已經開發并演示了一個用于控制大型、自主、多飛行器的系統,該系統利用了分布式計算的優勢,并將駕駛的認知要求降到最低。ARSENL在現場實驗中證明了其系統的功效,在該實驗中,50個自主無人駕駛飛行器(UAV)被成功發射,同時由一個操作員控制,并安全回收[3]。
這項研究的主要目標是證明使用無人機蜂群來支持前沿作戰基地(FOB)的防御。特別是,這需要自主生成、分配和執行有效的、符合理論的基地防御所需的子任務。這部分研究的重點是開發基于狀態的監視、調查和威脅響應任務的描述;實施支持多飛行器任務分配的決策機制;以及任務執行期間的多飛行器控制。
輔助研究目標包括展示基于任務的蜂群可組合性結構(MASC)過程,以自上而下、以任務為中心的方式開發復雜的蜂群行為,探索自主蜂群控制和決策的分布式方法,以及實施一般的蜂群算法,并證明了對廣泛的潛在蜂群戰術有用。總的來說,這些目標是主要目標的一部分,是實現主要目標的手段。
基地防御戰術的制定始于對現有基地防御理論的審查。這一審查是確定該行為所要完成的基本任務和子任務的基礎。然后,我們審查了目前海軍陸戰隊使用無人機的理論,以確定這些系統在基地防御任務中的使用情況。
在確定了任務要求的特征后,我們為基地防御的整體任務制定了一個高層次的狀態圖。子任務級別的狀態圖等同于MASC層次結構中的角色。
ARSENL代碼庫中現有的算法和游戲以及在研究過程中開發的新算法和游戲被用來在ARSENL系統中實現子任務級的狀態圖。最后,根據高層次的狀態圖將這些游戲組合起來,完成基地防御戰術的實施。
在游戲和戰術開發之后,設計了基于理論的有效性措施(MOE)和性能措施(MOPs)。通過在循環軟件(SITL)模擬環境中的廣泛實驗,這些措施被用來評估基地防御戰術。在加利福尼亞州羅伯茨營進行的實戰飛行實驗中,也展示了該戰術和游戲。
最終,本研究成功地實現了其主要目標,并展示了一種包含周邊監視、關鍵區域搜索、接觸調查和威脅響應的基地防御戰術。此外,開發工作在很大程度上依賴于MASC層次結構,以此來制定任務要求,并將這些要求分解成可在ARSENL蜂群系統上實施的可管理任務。這一戰術在實戰飛行和模擬環境中進行了測試,并使用以任務為中心的MOP和MOE進行了評估。最后的結果是令人滿意的,在本研究過程中開發的戰術被評估為有效的概念證明。
本論文共分六章。第1章提供了這項研究的動機,描述了這個概念驗證所要彌補的能力差距,并提供了ARSENL的簡短背景和所追求的研究目標。
第2章討論了海軍陸戰隊和聯合出版物中描述的當前海軍陸戰隊后方作戰的理論。還概述了目前海軍陸戰隊內無人機的使用情況,并描述了目前各種系統所能達到的自主性水平。
第3章概述了以前自主系統基于行為的架構工作,ARSENL多車輛無人駕駛航空系統(UAS)和MASC層次結構。
第4章對基地防御戰術的整體設計以及高層戰術所依賴的游戲進行了基于狀態的描述。本章還詳細介紹了用于創建、測試和評估這一概念驗證的方法。在此過程中,重點是對每一戰術和戰術所針對的MOP和MOE進行評估。
第5章詳細介紹了所進行的實戰飛行和模擬實驗,并討論了與相關MOPs和MOEs有關的測試結果。
最后,第6章介紹了這個概念驗證的結論。本章還提供了與基地防御戰術本身以及更廣泛的自主蜂群能力和控制有關的未來工作建議。