由于成本、能力、政策和法規等因素,美國海軍(USN)和美國海岸警衛隊(USCG)艦艇上無人機系統(UAS)的使用目前受到限制。本分析報告的主要目的是研究 1-3 類 UAS 在執行情報、監視和偵察 (ISR)、搜索和救援 (SAR) 以及后勤任務時對水面艦艇性能的影響,并考慮小型 UAS 系統的哪些性能參數可能對執行這些任務最有意義。本研究使用的數據包括公開的無人機系統規格、艦船規格和指標,以及以前進行的成本/預算分析。這些信息被用來為潛在任務的各種模型提供信息,這一工具有助于根據用戶需求和成本分析選擇無人機系統。這些分析結果表明,無人機系統有利于其可能執行的任務--即相對于其他機載資產而言,能夠支持其較短的作戰時間和航程的任務。對于 ISR/SAR 場景,分析表明,與沒有航空資產的艦船相比,無人機系統可增加識別目標的數量,并縮短完全搜索作戰區域的總體時間。在后勤運送場景中,無人機系統被用于從港口取回貨物,與完全轉向港口的船只相比,無人機系統減少了運送貨物所需的成本和時間。
盡管目前美國海岸警衛隊(USCG)和美國海軍(USN)艦隊在較小的水面艦艇上使用的有機(即從艦艇上發射和回收)無人機系統(UAS)有限,但海軍作戰部長(CNO)的 2021 NAVPLAN [1] 包括了到 2045 年實現混合艦隊的目標。許多無人機系統資產能夠執行情報、監視和偵察 (ISR)、搜索和救援 (SAR) 以及輕型補給任務。在合適的行動中利用這些系統替代有人駕駛系統,可以節省實現任務目標所需的關鍵時間和精力。本研究旨在確定可提高美國海軍和美國海岸警衛隊艦艇執行關鍵任務性能的無人機系統參數,建立無人機系統行為和影響模型,與目前采用的替代方案進行對比,并提出一種方法,用于對考慮集成到水面艦隊的無人機系統替代方案進行早期評估。
本研究總結了無人機系統在一般情況下和海上環境中使用的相關文獻。研究還總結了所收集的有關無人機系統和船只類型的信息,以及它們的相關參數、規格和能力。然后,將收集到的信息綜合成 "無人機選擇工具",分析無人機系統要求與船舶制約因素之間的相互作用。這個基于 Excel 的工具考慮了
然后,該工具會計算出每種艦船類型可運行的無人機系統,以及每種無人機系統的相對價值。該工具可根據無人機系統、艦船類型和利益相關者偏好的實際數據輕松更新。利益相關者可利用該工具指導對特定無人機系統解決方案的進一步研究。
無人機選擇工具開發完成后,將考慮無人機系統對作戰方案的影響。這是通過場景開發和建模來實現的。首先,為 ISR、SAR 和后勤任務制定了名義上的作戰方案。然后,描述每種情景的相關指標(例如,搜索一個區域的平均時間)。最后,介紹包絡計算以及通過 ExtendSim [2] 進行的高保真模擬建模。ExtendSim 由 Imagine That Incorporated 公司開發,是一套功能強大的仿真軟件,可以進行連續、離散事件和其他形式的仿真建模[2]。然后使用這些模型來考慮各種艦船和無人機系統參數(例如無人機系統速度)的變化如何影響通過相關指標評估的任務性能。
對于所考慮的 ISR 場景,分析表明,加入無人機系統能力可顯著縮短搜索區域的平均時間。由于無人機系統的航拍時間是有限的,而搜索時間會隨著搜索范圍的擴大而增加,因此對較小區域的影響更大。隨著場景中目標數量的增加,無人機系統對縮短時間的影響也會增加。關于執行 ISR 任務的無人機系統參數,無人機系統的速度是關鍵--如果無人機系統的速度接近艦船的速度,無人機系統的影響就會減小。
在搜索和救援分析中,當使用無人機系統增加傳感器寬度時,無人機系統的能力可顯著縮短搜索箱的時間。在此,分析表明,無人機系統的總飛行時間是一個關鍵因素,無論是通過增加無人機系統還是延長續航時間來實現。無人機系統的傳感器寬度也是一個關鍵因素,傳感器范圍越寬,搜索箱所需的時間就越少。不過,雖然無人機系統可用來縮短搜索時間,但無人機系統的假定探測概率也很重要。如果探測概率較低,這種使用模式可能會導致總體探測次數減少。
還考慮了一種情況,即使用無人機系統提高總體探測概率,而不是增加傳感器寬度。在這種情況下,無人機系統實際上對場景時間沒有影響。與之前的合成孔徑雷達方案一樣,探測概率非常重要,在考慮的無人機系統探測概率較低的情況下,無人機系統對方案未探測到的影響可以忽略不計或為負值。在所考慮的無人機系統探測概率的高端(與假定的艦船探測概率相似),無人機系統對情景下未探測到的平均次數產生積極影響(即減少未探測到的次數)。最后,在需要發現的目標總數較少的情況下,無人機系統對未探測到目標的影響可以忽略不計,但隨著目標的增加,其影響也會增加。
此外,在水面艦隊中增加無人機系統執行 ISR 和 SAR 任務的影響方面,出現了以下趨勢:
當 ISR 和 SAR 環境中有更多目標需要尋找或確認時,無人機系統就更有可能產生影響。此外,還考慮了在水面艦隊中增加無人機系統的成本影響。分析表明,即使將無人機系統的采購成本計算在內,較小的現成商用無人機系統(COTS)解決方案的每小時成本也可能大大低于傳統的載人資產。隨著商用現貨無人機系統解決方案成本的增加,其每小時成本將接近載人資產成本的低端。這一分析取決于無人機系統的飛行小時數,因為其中包括固定采購成本。無人機系統資產的飛行時數越多,其比較單位成本就越低。本研究還考慮了無人機系統成本收支平衡的飛行小時數,或者說單個無人機系統的采購投資已經通過降低支持地面機隊的邊際成本而收回。這項分析假定無人機系統的飛行時數取代了載人資產的飛行時數。在此,如果假定所有無人機系統的飛行時數都能替代有人值守資產的飛行時數,那么成本較低和較高的 COTS 無人機系統都能迅速達到運行時數的盈虧平衡點。然而,對于成本較高的系統而言,運行小時盈虧平衡點在很大程度上取決于假定的替代率。對于假設的高端 COTS 無人機系統,如果單個無人機系統的 50%飛行小時可替代載人資產飛行小時,則達到運營小時盈虧平衡點的飛行小時數將比 100%替代率情況下增加約 680%。
歸根結底,在其他條件相同的情況下,將無人機系統納入水面艦艇編隊很可能會提高孤艦在 ISR 和 SAR 任務中的性能。將無人機系統集成到較小的水面艦艇中還將為指揮官提供更大的靈活性,以適應作戰挑戰。然而,并非所有的無人機系統都具備適當的速度、任務續航時間和航空電子設備組合,以提供有意義的能力。那些能夠提供有意義能力的無人機系統可能更大、更昂貴。這表明,必須謹慎選擇要集成的無人機系統。
該項目為與使用無人系統支持分布式海戰(DMO)有關的作戰概念和系統設計決策提供信息。研究通過系統地改變仿真模型中的系統設計特征和作戰活動,支持對無人系統(UVC)進行能力級分析。分析結果表明,UVC 可提高各種無人系統的作戰可用性(Ao)和使用時間(TOS),因為它可隨時進入維護、加油和重新武裝設施,而無需長時間前往岸基設施或分布式支援艦艇。在比較使用 UVC 的配置與在自適應兵力包 (AFP) 中分配無人系統支持的配置時,單個無人系統的 Ao 提高了 6% 到 31%。仿真模型分析確定了 UVC 架構,其中包括至少 8 個無人機發射回收站、至少 3 個船舷托架和至少 5 個甲板井托架,以最大限度地提高 Ao。
在支持分布式海上作戰(DMO)時,無人系統有可能發揮兵力倍增器的作用,在提高殺傷力的同時降低有人系統的風險。然而,無人系統到岸基維護、加油和重新武裝設施的轉運時間減少了可用于支持執行 DMO 的自適應兵力包(AFP)的總體駐扎時間(TOS)。本項目研究了無人水面艦艇 (USV)、無人水下航行器 (UUV) 和無人機 (UAV) 在美國海軍現有艦艇上的集成問題,該艦艇已被重新改裝為無人載具 (UVC)。在本報告中,"UxV "一詞用于描述無人系統這一類別。
如 Van Bossuyt 等人(2019 年)所述,項目團隊采用了系統定義、系統建模和系統分析的通用系統工程流程序列。在系統定義過程中,項目團隊重點開發了作戰概念(CONOPS),并定義了 UVC 的系統要求。系統建模活動的重點是構建 UVC 的離散事件仿真模型。在系統分析階段,團隊利用所開發的模型來評估 UVC 的各種設計參數對每種無人系統類型的運行可用性(Ao)的影響。
A. 系統定義
在系統定義階段,從自上而下和自下而上的角度開發和考慮了 UVC 要求。從自上而下的角度來看,團隊分析并確定了滿足總體任務有效性目標所需的能力,而與任何現有的候選平臺無關。從自下而上的角度來看,團隊評估了一艘登陸直升機船塢(LHD)艦,以確定該平臺可實現的最大 UVC 能力。通過查閱文獻和分析利益相關者的需求,項目團隊確定了 UVC 的以下關鍵能力:指揮與控制 (C2)、UxV 發射、UxV 維護和 UxV 回收。根據設想,UVC 將包括著陸甲板無人機發射和回收站、無人機維護/布防/燃料艙、用于大型 USV/UUV 操作的船舷艙或站,以及用于小型 USV/UUV 操作的井甲板艙。
B. 系統建模
項目構想將 UVC 視為針對地面和岸上敵對兵力實施 DMO 的 AFP 的一部分。UVC 的作用是支持 UxV 對敵方岸基導彈基地進行偵察和打擊。在打擊階段之前、期間和之后,UxV 提供全天候的情報、監視和偵察(ISR)、目標定位和戰損評估服務。UVC 的總體目標是通過消除到岸基支持設施的較長運輸時間來增加 UxV 的全時服務時間。為實現這一總體目標,研究小組選擇 "航程 "和 "持續停留時間 "作為性能指標(MOP),并選擇 "UxV 任務時間"、"UxV 停機時間 "和 "維護灣利用率 "作為效果指標(MOE)。
設計并開發了一個離散事件仿真模型,用于分析 UVC 設計參數對 MOP 和 MOE 的影響。該模型是通過 ExtendSim10 建模程序開發的。該模型包括 UxV 發射和回收、UxV 維護活動以及 UxV 重新武裝和加油活動。UxV 的發射時間表和總模擬運行時間是根據擬議的 UVC CONOPS 制定的。目前,該模型并未考慮 UxV 的損失或故障;這是未來可能開展工作的一個領域。模型的主要輸出是每種 UxV 的 Ao。
C. 系統分析
為了廣泛探索實驗空間,同時減少試驗總數和模型運行時間,我們專門設計了一個填充空間的拉丁超立方設計。每次試驗重復模擬 30 次并收集結果。合并所得的 Ao 值,得出每個試驗的統計平均值。
分析結果表明,UVC 可隨時提供維護、加油和重新武裝設施,而無需在岸基設施或分布式支援艦艇之間進行長時間的轉運,從而改善了每種 UxV 的 Ao 值和 TOS 值。對于任何特定的 UxV,通過增加 UVC 發射、回收和維護站的數量,從而消除或減少這些服務的排隊時間,可獲得最大的 Ao。分析表明,UVC 在設計時應至少配備 8 個無人機發射/回收站、至少 3 個船舷托架和至少 5 個焊接甲板托架。這些參數沒有確定上限,這也是未來研究的一個潛在領域。
有趣的是,雖然 UVC 的存在改善了大型無人水面艦艇(LUSV)的航速,但 UVC 的實際設計似乎對 LUSV 的航速沒有影響。這可能是由于 LUSV 的假定任務持續時間長,假定維護間隔長,因此不可能出現任何排隊現象。單個船側停泊區似乎足以為多艘 LUSV 提供服務,但即使是單個船側停泊區,也可通過消除到岸基設施的轉運時間來改善 Ao。
作為分布式海上作戰(DMO)的一個關鍵原則,盡管有人和無人、水面和空中、作戰人員和傳感器在物理時空上都有分布,但它們需要整合成為一支有凝聚力的網絡化兵力。本研究項目旨在了解如何為 DMO 實現有凝聚力的作戰人員-傳感器集成,并模擬和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境,尤其側重于有人和無人飛機的情報、監視和偵察 (ISR) 任務。
在半個世紀的建模和仿真研究與實踐(例如,見 Forrester, 1961; Law & Kelton, 1991),特別是四分之一世紀的組織建模和仿真工作(例如,見 Carley & Prietula, 1994)的基礎上,獲得了代表當前技術水平的計算建模和仿真技術(即 VDT [虛擬設計團隊];見 Levitt 等人, 1999)。這種技術利用了人們熟知的組織微觀理論和通過基于代理的互動而產生的行為(例如,見 Jin & Levitt, 1996)。
通過這種技術開發的基于代理的組織模型在大約三十年的時間里也經過了數十次驗證,能夠忠實地反映對應的真實世界組織的結構、行為和績效(例如,參見 Levitt, 2004)。此外,幾年來,已將同樣的計算建模和仿真技術應用到軍事領域(例如,見 Nissen, 2007),以研究聯合特遣部隊、分布式作戰、計算機網絡行動和其他任務,這些任務反映了日益普遍的聯合和聯盟努力。
本報告中描述的研究項目旨在利用計算建模來了解如何為 DMO 實現有凝聚力的戰斗傳感器集成,并建模和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境。在這第一項工作中,將對當今的海上行動進行建模、模擬和分析,重點是有人駕駛和無人駕駛飛機的情報、監視和偵察(ISR)任務。這為與執行 ISR 任務的一個或多個 DMO 組織進行比較確立了基線。這也為與其他任務(如打擊、防空、水面戰)進行比較建立了基線。第二階段接著對一個或多個備用 DMO 組織進行建模、模擬和分析。
在本技術報告的其余部分,首先概述了 POWer 計算實驗環境,并列舉了一個實例,以幫助界定 DMO 組織和現象的計算建模。依次總結了研究方法。最后,總結了沿著這些方向繼續開展研究的議程。這些成果將極大地提高理解和能力,使能夠為 DMO 實現戰斗員與傳感器的集成,并為集成實施所需的系統能力和行為建模和概述。
美國戰略陸軍條令強調在多域環境中擊敗反區域介入和空中拒止(A2AD)系統。這些防空系統對友軍構成重大威脅,嚴重限制了聯合任務部隊的空中能力。為此,陸軍試圖了解自主無人機蜂群的組成如何影響聯合特遣部隊縱深打擊任務的成功。目標是通過評估自主無人機蜂群的有效性來加強陸軍的作戰行動。利用虛擬戰斗空間模擬器3(VBS3),模擬了不同無人機蜂群組成的俄羅斯防空資產。我們的分析表明,在我們的備選方案中,動能、干擾和誘餌三種無人機類型比例相等的無人機蜂群組合表現最佳。本文旨在說明我們的方法和相關結果。
美國陸軍越來越重視與同行對手保持技術優勢(國會研究服務,2022年)。美國陸軍未來司令部(AFC)正在進行自主無人機群的研發。為了支持陸軍未來司令部和我們的主要利益相關者--系統增強型小型單位(SESU),我們評估了各種自主無人機群的組成。我們的主要評估指標是無人機群在敵后執行后續縱深打擊任務(兩架F-22)的能力。為此,我們使用Virtual Battlespace 3軟件在現代戰場環境中對敵方防空資產進行了一系列隨機模擬。
在整個項目過程中,我們采用了系統設計流程來完成問題定義、解決方案設計和決策制定(Parnell和Driscoll,2010年)。解決方案實施階段不在本工作范圍之內。
為了解問題的范圍,通過一系列面對面訪談和針對每個利益相關者的調查進行了利益相關者分析。這些利益相關者包括項目發起人(MITRE)和陸軍未來司令部,以及其專注于增強無人機蜂群技術的下屬單位(SESU)。利益相關者分析表明,工作重點應放在不同的蜂群組成上,并評估其擊敗敵方防空資產的有效性--有效性由機會之窗(WOO,即實現后續深度打擊資產)標準來衡量。根據利益相關者調查,將敵方防空資產定義為任何車載防空武器(如俄羅斯的SA-19 "格里森")。
經利益相關方同意,制定了如下問題陳述和范圍:
問題陳述: 為了提高作戰效率,分析無人機群的組成對打開針對敵方防空系統的機會之窗(WOO)的影響。
問題范圍: 將模擬無人機群執行任務,打擊俄羅斯摩托化步槍旅理論上適當的防空資產。這些任務將利用具有以下能力的無人機群:誘餌、干擾和動能。
基線替代方案是由120架無人機組成的蜂群,其組成由利益相關方選定。這些無人機分10波發射,每波12架。每個波次由41%的動能無人機、17%的干擾無人機和42%的誘餌無人機組成。除了該基線備選方案外,我們還利用茲威基形態箱開發了另外12種備選方案,其規模(120、60、36)和蜂群組成(動能、誘餌或干擾的比例;或三者的優先級相同)各不相同。
除了利益相關方制定的任務成功/失敗標準(第2.1節)外,我們還利用利益相關方分析和對利益相關方進行的模擬演習的訪問來制定評估標準。這些評估標準衡量了針對理論上旅級規模的俄羅斯防空部隊的成功任務的有效性(圖2)。為了計算這些標準的權重,我們使用了等級加權法。然后,我們使用指數值建模來制定價值曲線。
美國防部增材制造戰略(2021年)和陸軍指令2019-29(2019年)(通過先進制造業實現戰備和現代化)表明,軍方正在努力將增材制造融入軍事系統。這項定性研究的目的是探索增材制造技術的進展,以評估增材制造部件在陸軍旋翼飛機上關鍵安全應用的可行性。本研究概述了陸軍飛機關鍵安全項目的鑒定過程,回顧了美國防部和陸軍的增材制造政策,詳細解釋了粉床聚變和定向能處置增材制造工藝,并回顧了一個案例研究。增材制造技術需要嚴格的材料和工藝控制,以及重要的鑒定檢查和測試,以支持陸軍航空的關鍵安全應用。然而,增材制造技術已經成熟,現在該技術已經準備好為關鍵應用生產高質量的復雜旋轉翼零件。
本研究的概念框架定義了研究過程的目標。首先,本研究將提供一個陸軍航空CSI資格認證過程的概述。本研究將簡要討論與AM和航空有關的陸軍和國防部政策,以便為AM在陸軍航空中的相關性提供背景。然后,本研究將提供適用于陸軍旋翼飛機關鍵應用的金屬部件制造的AM工藝研究。最后,本研究將以一個案例來結束,該案例提供了一個陸軍旋轉翼飛機上使用AM部件的鑒定過程的例子。圖1顯示了生產增材制造關鍵安全項目的研究的概念框架圖。
與俄羅斯的軍事理論一致,俄羅斯軍隊在烏克蘭的情報、監視和偵察行動中廣泛使用無人駕駛飛行器(UAV)。這使得它們能夠在炮擊、反炮擊和精確打擊任務中發揮突出作用。
雖然ISR無人機在俄羅斯軍隊的大部分目標定位過程中發揮了核心作用,但似乎反應速度很慢,使其在打擊移動目標方面面臨挑戰。
探測和瞄準時間的滯后突出了俄羅斯武庫中缺乏軍事級別的無機組人員作戰飛行器(UCAVs)。這些系統將使探測到殺傷的時間更快。雖然俄羅斯軍方顯然正在對這些系統進行投資,這一點從戰前的軍事公告中可以看出,它們不可能很快出現在戰場上。
商業無人機在俄烏戰爭中嶄露頭角,以解決緊迫的ISR需求,并充當初級的閑置彈藥。俄羅斯軍方和領導層在接受無人機的作用方面進展緩慢,但現在正在鼓勵俄羅斯部隊使用這些無人機。
盡管承認這些無人機的重要性,但俄羅斯軍事工業綜合體在生產俄羅斯部隊所需的大量無人機方面一直進展緩慢。一些生產的缺乏可能來自于國內能力的缺乏,組織間的競爭和缺乏溝通,以及俄羅斯中央政府在這個問題上缺乏領導。
解決商用無人機短缺問題的一個新出現的辦法是,俄羅斯國內有一些團體正在為俄羅斯部隊提供無人機和無人機零部件,并在如何在軍事行動中整合和使用商用無人機方面充當思想領袖。
使用無人機的戰術、技術和程序(TTPs)已經通過戰場上的經驗得到發展。對俄羅斯和烏克蘭國內團體使用無人機的觀察,促使了為俄羅斯士兵提供無人機使用的標準化培訓和TTP的倡議。
在許多方面,裝有彈藥的廉價商用無人機在使用和損失率方面變得更像彈藥;許多無人機被視為對軍事地點和平臺造成損害的消耗性、一次性使用的平臺。這種使用的額外效果是使它們成為防空系統的昂貴目標,在保護軍事單位和關鍵基礎設施之間產生了潛在的烏克蘭防空就業妥協。
為了解決其軍事無人機的挑戰,俄羅斯人正在廣泛地使用伊朗生產的軍用無人機。這些無人機具有數百公里的射程和抗干擾系統,已被證明能有效瞄準烏克蘭軍事平臺和關鍵基礎設施。
圖1. 俄羅斯的偵察火力和偵察打擊概念
圖2. 俄羅斯偵察-射擊和偵察-打擊概念
作者正在研究分布式雷達在穿墻感應中的應用。這項技術的預期操作場景是在建筑物外的(安全)遠程距離內探測和識別建筑物內的人員和武器裝備。本研究使用的雷達結構和信號處理算法類似于美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)實施的埋藏和隱蔽表面目標探測的設計;目前的雷達發射和接收頻率更高。
在這項研究中,實驗是在ARL的阿德爾菲實驗中心(ALC)507號樓("沙盒 "區域)進行的,使用的是室內低金屬兩層夾板結構。用來測試分布式雷達的受控環境與用來測試ARL針對電子目標的諧波雷達的低金屬環境相同。
圖1 步進頻率雷達收發器:(a)賽靈思的RFSoC與Alion/HII的雷達固件,以及(b)定制的發射器/接收器(Tx/Rx)濾波器和放大器PCB,由28VDC供電
本研究中收集的數據表明,在低矮的金屬建筑中,相互成直角的天線對能夠探測到多個移動目標,而這些目標從建筑外是看不到的。隨時間變化的距離圖顯示了目標所遵循的路徑;在一個頻道中跟蹤的目標路徑的模糊性可以通過在另一個頻道中跟蹤同一目標來緩解。仍需努力將同時收集的數據的IQ振幅一致地結合起來,以解決多個目標。一個目標是在二維(下行和上行)圖像上繪制目標位置,也許是以視頻動畫的形式疊加在場景的俯視圖上(即被成像的建筑物的典型平面圖)。在對移動目標進行成像時,發射器和接收器天線的雙穩態配對是否具有優勢(與標準的單穩態發射器天線配對相比)還有待確定。
本研究的目的是分析將下一代中波段干擾器(NGJ-MB)項目的作戰測試和評估(OT&E)作用從第九航空測試和評估中隊(AIRTEVRON NINE;VX-9)的OT&E中隊轉移到艦隊航空電子攻擊中隊的潛在優勢、劣勢和成本、進度和性能的風險。研究了現代海軍航空企業(NAE)中隊作為作戰力量的一部分部署對抗同行對手的行動限制,以確定NGJ-MB項目成功OT&E的風險。我的方法包括檢查艦隊的行動節奏和海軍的優化艦隊反應計劃的調度、資源配置、訓練、熟練程度、戰術專長和管理。通過優勢、劣勢、機會和威脅分析,然后是成本效益分析,來分析與VX-9相比測試執行和報告的風險。在研究結論中,建議為NGJ-MB項目執行OT&E的更有利、更有效的路徑。對NGJ-MB項目的成本、進度和性能所造成的后果,使人們對艦隊航空中隊不應該被賦予執行OT&E的任務有很高的信心。VX-9應該得到適當的資源、資金和海軍的支持,以評估NGJ-MB吊艙的作戰效能和適用性。
圖 6. 綜合T&E(測試評估)框架
美國在運用先進技術挑戰同行對手方面處于落后。中國可以迅速地運用先進技術,在武器、平臺、傳感器和自動化方面達到或超過美國的能力。破壞其殺傷鏈的能力與日俱減。作為回應,美海軍作戰部長贊成采用一種 "加速艦隊"能力的方法,這種方法 "偏重于完成任務,而不是偏重于在我們完成任務之前再次研究它們"(Maucione, 2019, p.1)。
美國防部(DOD)最近更新了它的采購戰略,通過自適應采購框架(AAF)快速制作原型、測試和部署新技術。目標是 "及時向最終用戶提供解決方案"(政府問責局[GAO],2021年,第1頁),為項目經理(PM)提供靈活性,"根據項目目標和與被收購的武器系統相關的風險,在各種途徑之間進行調整、組合和過渡"(第2頁)。盡管有了這個新舉措,項目經理必須始終平衡 "改善成本和進度結果的機會"(第3頁)和 "產品知識"(第3頁),以盡量減少對產品性能的風險。尋找產品交付的效率是項目辦公室在海外戰斗開始前必須征服的斗爭。
為了跟上中國快速獲取軍事技術的能力,美國海軍正尋求通過解散海軍航空兵的作戰測試中隊來簡化其程序并降低為美國作戰人員提供先進技術的成本。作戰測試和評估(OT&E)中隊的任務是負責任地建議在現實的戰斗條件下部署適合作戰和有效的武器,這一任務有可能被艦隊航空單位承擔不足。
讓艦隊航空中隊承擔操作測試者角色的行動方案(COA)是否有助于縮短作戰人員獲得下一代中波段干擾器(NGJ-MB)吊艙的時間,以及該行動方案是否有效地管理成本和產品性能的風險,以 "加速進入艦隊"?
本研究的目的是分析將美海軍航空兵的空對地武器、空對空武器、傳感器、電子戰系統和任務軟件升級的飛機和武器系統的OT&E作用轉移到艦隊航空中隊的潛在好處、成本和風險。
在作戰指揮官和國家決策者眼中,將海軍最先進的技術盡快交到作戰人員手中的概念是很誘人的。正如《海軍航空愿景:2014-2025》中所述,"能力是維持我們作戰優勢的關鍵。海軍航空部隊將帶著在戰斗中獲勝的手段--能力到達駐地"(海軍航空企業[NAE],2014,第3頁)。然而,確保這種 "能力 "在與作戰相關的環境中進行實地測試,對于保證武器在有爭議的戰斗空間的持續作戰行動中的可維護性、可靠性和可用性至關重要。"提高向艦隊交付能力的速度"(NAE,2014年,第7頁)決不能接受對經過測試和驗證的系統的妥協,以達到或超過性能閾值。
本分析的初衷是廣泛考察海軍采購如何將其大部分先進技術整合到海軍航空中,并討論取消整個作戰測試中隊的后果。然而,分析跨越武器、軟件、硬件、通信、監視、情報和電子戰的眾多技術,并在幾個型號/模型/系列(TMS)中采取不同的采購策略,是一項艱巨的任務。
相反,本分析側重于海軍航空兵的電子攻擊中隊(VAQ)和ALQ-249下一代中波段干擾器(NGJ-MB)的計劃開發、生產、測試和實戰。縮小分析重點提供了一個主要國防采購計劃(MDAP)的具體例子,該計劃對于面對同行對手至關重要,而且考慮到已經投入到該計劃的時間和成本,"規模太大,不能失敗"。
文獻回顧研究了國防部的報告和海軍研究生院(NPS)以前的論文,涉及測試和評估的最佳實踐。此外,還審查了一個已部署的電子攻擊中隊(VAQ)在操作上測試和評估兩個采購項目的努力。
優勢、劣勢、機會和威脅(SWOT)分析研究了下一代干擾器(NGJ)項目在速度、成本和性能方面的優勢或劣勢,并考慮了艦隊作戰節奏(OPTEMPO)和優化的艦隊反應計劃(OFRP)。此外,SWOT分析評估了現代艦隊中隊作為 "卓越的作戰力量"(NAE,2014年,第4頁)部署的操作限制,處理資源、VAQ準備標準、培訓、空勤人員戰術專長和安全管理,可能承擔采購類別(ACAT)一級項目的操作測試者的角色。
然后,進行成本效益分析(CEA),以比較NGJ-MB項目的運行測試的相對成本和結果,由艦隊航空中隊與執行運行測試職責的空中測試中隊進行比較。
方法中包括的另一個信息來源是作者作為九號航空隊(VX-9)的機載電子攻擊(AEA)分部負責人的實際經驗。
前沿作戰基地(FOB)防御是一項人力密集型任務,需要占用作戰任務的寶貴資源。雖然能力越來越強的無人駕駛飛行器(UAV)具備執行許多任務的能力,但目前的理論并沒有充分考慮將其納入。特別是,如果操作人員與飛行器的比例為一比一時,并沒有考慮提高無人機的自主性。本論文描述了使用先進機器人系統工程實驗室(ARSENL)蜂群系統開發和測試自主FOB防御能力。開發工作利用了基于任務的蜂群可組合性結構(MASC),以任務為中心、自上而下的方式開發復雜的蜂群行為。這種方法使我們能夠開發出一種基于理論的基地防御戰術,在這種戰術中,固定翼和四旋翼無人機的任意組合能夠自主分配并執行所有必要的FOB防御角色:周邊監視、關鍵區域搜索、接觸調查和威脅響應。該戰術在軟件模擬環境中進行了廣泛的測試,并在現場飛行演習中進行了演示。實驗結果將使用本研究過程中制定的有效性措施和性能措施進行討論。
2019年,美國海軍陸戰隊司令大衛-H-伯杰將軍發布了他的規劃指南,作為塑造未來四年的部隊的一種方式。他在其中指出:"我們今天做得很好,我們明天將需要做得更好,以保持我們的作戰優勢"[1]。這句話摘自海軍陸戰隊司令大衛-H-伯杰將軍的《2019年司令員規劃指南》(CPG),呼吁采取集中行動,以應對海軍陸戰隊在未來戰爭中預計將面臨的不斷變化的挑戰。在為海軍陸戰隊確定未來四年的優先事項和方向的CPG中的其他指導,呼吁建立一個 "適合偵察、監視和提供致命和非致命效果的強大的無人駕駛系統系列"[1]。伯杰將軍進一步呼吁利用新技術來支持遠征前沿基地作戰(EABO)。EABO將需要靈活的系統,既能進行有效的進攻行動,又能進行獨立和可持續的防御行動。簡而言之,實現EABO將需要最大限度地利用每個系統和海軍陸戰隊。
從本質上講,伯杰將軍正在呼吁改變無人駕駛飛行器的使用方式。通過使用大型的合作自主無人飛行器系統,或稱蜂群,將有助于實現這一目標。無人飛行器蜂群提供了在人力需求和后勤負擔增加最少的情況下成倍提高戰場能力的機會。正如伯杰將軍所提到的 "下一個戰場",海軍陸戰隊將必須利用各種技術,最大限度地利用自主性和每個作戰人員在戰場上的影響。
目前的無人系統使用理論是以很少或沒有自主性的系統為中心。另外,目前的系統依賴于單個飛行器的遠程駕駛;也就是說,每輛飛行器有一個操作員。部隊中缺乏自主系統,這在監視和直接行動的作戰能力方面造成了差距。此外,側重于一對一操作員-飛行器管理的無人系統理論要求操作員的數量與車輛的數量成線性比例。這對于 "下一個戰場 "來說是不夠的。相反,海軍陸戰隊將需要能夠讓操作員擺脫束縛或提高他們同時控制多個飛行器的能力系統[2]。
考慮到這些目標,美國海軍研究生院(NPS)的先進機器人系統工程實驗室(ARSENL)已經開發并演示了一個用于控制大型、自主、多飛行器的系統,該系統利用了分布式計算的優勢,并將駕駛的認知要求降到最低。ARSENL在現場實驗中證明了其系統的功效,在該實驗中,50個自主無人駕駛飛行器(UAV)被成功發射,同時由一個操作員控制,并安全回收[3]。
這項研究的主要目標是證明使用無人機蜂群來支持前沿作戰基地(FOB)的防御。特別是,這需要自主生成、分配和執行有效的、符合理論的基地防御所需的子任務。這部分研究的重點是開發基于狀態的監視、調查和威脅響應任務的描述;實施支持多飛行器任務分配的決策機制;以及任務執行期間的多飛行器控制。
輔助研究目標包括展示基于任務的蜂群可組合性結構(MASC)過程,以自上而下、以任務為中心的方式開發復雜的蜂群行為,探索自主蜂群控制和決策的分布式方法,以及實施一般的蜂群算法,并證明了對廣泛的潛在蜂群戰術有用。總的來說,這些目標是主要目標的一部分,是實現主要目標的手段。
基地防御戰術的制定始于對現有基地防御理論的審查。這一審查是確定該行為所要完成的基本任務和子任務的基礎。然后,我們審查了目前海軍陸戰隊使用無人機的理論,以確定這些系統在基地防御任務中的使用情況。
在確定了任務要求的特征后,我們為基地防御的整體任務制定了一個高層次的狀態圖。子任務級別的狀態圖等同于MASC層次結構中的角色。
ARSENL代碼庫中現有的算法和游戲以及在研究過程中開發的新算法和游戲被用來在ARSENL系統中實現子任務級的狀態圖。最后,根據高層次的狀態圖將這些游戲組合起來,完成基地防御戰術的實施。
在游戲和戰術開發之后,設計了基于理論的有效性措施(MOE)和性能措施(MOPs)。通過在循環軟件(SITL)模擬環境中的廣泛實驗,這些措施被用來評估基地防御戰術。在加利福尼亞州羅伯茨營進行的實戰飛行實驗中,也展示了該戰術和游戲。
最終,本研究成功地實現了其主要目標,并展示了一種包含周邊監視、關鍵區域搜索、接觸調查和威脅響應的基地防御戰術。此外,開發工作在很大程度上依賴于MASC層次結構,以此來制定任務要求,并將這些要求分解成可在ARSENL蜂群系統上實施的可管理任務。這一戰術在實戰飛行和模擬環境中進行了測試,并使用以任務為中心的MOP和MOE進行了評估。最后的結果是令人滿意的,在本研究過程中開發的戰術被評估為有效的概念證明。
本論文共分六章。第1章提供了這項研究的動機,描述了這個概念驗證所要彌補的能力差距,并提供了ARSENL的簡短背景和所追求的研究目標。
第2章討論了海軍陸戰隊和聯合出版物中描述的當前海軍陸戰隊后方作戰的理論。還概述了目前海軍陸戰隊內無人機的使用情況,并描述了目前各種系統所能達到的自主性水平。
第3章概述了以前自主系統基于行為的架構工作,ARSENL多車輛無人駕駛航空系統(UAS)和MASC層次結構。
第4章對基地防御戰術的整體設計以及高層戰術所依賴的游戲進行了基于狀態的描述。本章還詳細介紹了用于創建、測試和評估這一概念驗證的方法。在此過程中,重點是對每一戰術和戰術所針對的MOP和MOE進行評估。
第5章詳細介紹了所進行的實戰飛行和模擬實驗,并討論了與相關MOPs和MOEs有關的測試結果。
最后,第6章介紹了這個概念驗證的結論。本章還提供了與基地防御戰術本身以及更廣泛的自主蜂群能力和控制有關的未來工作建議。
為了支持未來的多域作戰分析,美國DEVCOM分析中心(DAC)正在探索如何在陸軍的作戰模擬中體現天基情報、監視和偵察(ISR)資產的貢獻。DAC正在使用基于能力的戰術分析庫和模擬框架(FRACTALS)作為方法開發的試驗基礎。用于預測衛星軌道路徑簡化一般擾動的4種算法已經被納入FRACTALS。本報告的重點是來自商業衛星群的圖像產品,其分辨率為1米或更低。報告介紹了預測分辨率與傳感器特性、傾斜范圍(包括地球曲率)和觀察角度的關系的方法。還討論了在不同分辨率下可以感知的例子。
在2021年建模與仿真(M&S)論壇期間,空間情報、監視和偵察(ISR)建模被確定為當前/近期的建模差距。美國陸軍作戰能力發展司令部(DEVCOM)分析中心(DAC)提交了一份陸軍M&S企業能力差距白皮書(Harclerode, 2021),描述了幫助填補這一差距的行動方案。陸軍建模和仿真辦公室已經資助DAC開發方法,以代表商業、國家和軍事空間和低地球軌道資產的性能及其對聯合作戰的影響,并在基于能力的戰術分析庫和模擬框架(FRACTALS)內進行測試實施。
FRACTALS是DAC開發的一個仿真框架,它提供了通用的結構 "構件",用于模擬、仿真和評估ISR系統在戰術級任務和工作中的性能。FRACTALS作為DAC開發的各種ISR性能方法的測試平臺,將文件或數據被納入部隊的模擬中。FRACTALS還作為DAC的一個分析工具,在戰術環境中對ISR系統進行性能分析比較。
這項工作需要在一定程度上體現衛星飛行器(高度、軌跡和運動學)、傳感器有效載荷(光電[EO]、紅外、合成孔徑雷達和信號情報)、網絡、控制系統、地面站(時間線、通信、處理、利用和傳播)、終端用戶以及連接它們的過程和行為。本報告描述了DAC為支持這一工作所做的一些基礎工作,重點是可見光波段相機圖像。