組合優化作為一個問題從根本上不同于識別貓和狗:在無限計算的極限下,這個任務是微不足道的。因此,基于學習的方法的目標是通過學習過去的經驗來減少總計算量,這可能是以犧牲解決方案的質量為代價的。
一個訓練良好的模型可以減少(相關的)搜索空間的有效大小,但是用于推斷模型的計算不能再用于搜索,所以這不是一個有保證的改進。因此,我們應該仔細選擇如何以及在何處應用所學的模型:計算你的失敗,并讓你的失敗有意義!
在這次演講中,我將更深入地討論一些關于這種權衡的實例。我將提出一些挑戰,并提供一些指導方針,可能有助于定義未來的研究方向,以便有效地將深度學習應用于組合優化。
神經文本退化:一致性和學習
用最大似然估計訓練的神經序列模型已經成為建模和生成文本的標準方法。然而,最近的研究發現了這些模型的問題。在這次談話中,我們研究了在實踐中出現的最大似然學習的退化性質,激發了新的學習方法。我們使用在生成文本中觀察到的三個特性來描述簡并性:非終止性、邏輯不連貫性和重復性。為了研究非終止性,我們發展了一個理論,允許我們正式證明傳統的文本生成方法可以生成具有高概率的無限長序列。為了減少這三種類型的退化,我們開發了兩種學習算法:非似然訓練(懲罰特定任務的文本屬性)和最大似然引導參數搜索(直接優化序列級損失)。
盡管它在機器學習中有重要的應用,非凸非凹目標的最小-最大優化仍然是難以實現的。不僅沒有已知的一階方法收斂甚至近似局部最小最大點,而且識別它們的計算復雜度也不為人所知。本文給出了非凸非凹目標和線性約束的約束最小-最優優化問題的計算復雜度,以及一階方法的局限性。
當前的深度學習研究以基準評價為主。如果一種方法在專門的測試集上有良好的經驗表現,那么它就被認為是有利的。這種心態無縫地反映在持續學習的重現領域,在這里研究的是持續到達的基準數據集。核心挑戰是如何保護之前獲得的表示,以免由于迭代參數更新而出現災難性地遺忘的情況。然而,各個方法的比較是與現實應用程序隔離的,通常通過監視累積的測試集性能來判斷。封閉世界的假設仍然占主導地位。假設在部署過程中,一個模型保證會遇到來自與用于訓練的相同分布的數據。這帶來了一個巨大的挑戰,因為眾所周知,神經網絡會對未知的實例提供過于自信的錯誤預測,并在數據損壞的情況下崩潰。在這個工作我們認為值得注意的教訓來自開放數據集識別,識別的統計偏差以外的數據觀測數據集,和相鄰的主動學習領域,數據增量查詢等預期的性能收益最大化,這些常常在深度學習的時代被忽略。基于這些遺忘的教訓,我們提出了一個統一的觀點,以搭建持續學習,主動學習和開放集識別在深度神經網絡的橋梁。我們的結果表明,這不僅有利于每個個體范式,而且突出了在一個共同框架中的自然協同作用。我們從經驗上證明了在減輕災難性遺忘、主動學習中查詢數據、選擇任務順序等方面的改進,同時在以前提出的方法失敗的地方展示了強大的開放世界應用。
//www.zhuanzhi.ai/paper/e5bee7a1e93a93ef97e1c
概述:
隨著實用機器學習系統的不斷成熟,社區發現了對持續學習[1]、[2]的興趣。與廣泛練習的孤立學習不同,在孤立學習中,系統的算法訓練階段被限制在一個基于先前收集的i.i.d數據集的單一階段,持續學習需要利用隨著時間的推移而到來的數據的學習過程。盡管這種范式已經在許多機器學習系統中找到了各種應用,回顧一下最近關于終身機器學習[3]的書,深度學習的出現似乎已經將當前研究的焦點轉向了一種稱為“災難性推理”或“災難性遺忘”的現象[4],[5],正如最近的評論[6],[7],[8],[9]和對深度持續學習[8],[10],[11]的實證調查所表明的那樣。后者是機器學習模型的一個特殊效應,機器學習模型貪婪地根據給定的數據群更新參數,比如神經網絡迭代地更新其權值,使用隨機梯度估計。當包括導致數據分布發生任何變化的不斷到達的數據時,學習到的表示集被單向引導,以接近系統當前公開的數據實例上的任何任務的解決方案。自然的結果是取代以前學到的表征,導致突然忘記以前獲得的信息。
盡管目前的研究主要集中在通過專門機制的設計來緩解持續深度學習中的這種遺忘,但我們認為,一種非常不同形式的災難性遺忘的風險正在增長,即忘記從過去的文獻中吸取教訓的危險。盡管在連續的訓練中保留神經網絡表示的努力值得稱贊,但除了只捕獲災難性遺忘[12]的度量之外,我們還高度關注了實際的需求和權衡,例如包括內存占用、計算成本、數據存儲成本、任務序列長度和訓練迭代次數等。如果在部署[14]、[15]、[16]期間遇到看不見的未知數據或小故障,那么大多數當前系統會立即崩潰,這幾乎可以被視為誤導。封閉世界的假設似乎無所不在,即認為模型始終只會遇到與訓練過程中遇到的數據分布相同的數據,這在真實的開放世界中是非常不現實的,因為在開放世界中,數據可以根據不同的程度變化,而這些變化是不現實的,無法捕獲到訓練集中,或者用戶能夠幾乎任意地向系統輸入預測信息。盡管當神經網絡遇到不可見的、未知的數據實例時,不可避免地會產生完全沒有意義的預測,這是眾所周知的事實,已經被暴露了幾十年了,但是當前的努力是為了通過不斷學習來規避這一挑戰。選擇例外嘗試解決識別不可見的和未知的示例、拒絕荒謬的預測或將它們放在一邊供以后使用的任務,通常總結在開放集識別的傘下。然而,大多數現有的深度連續學習系統仍然是黑盒,不幸的是,對于未知數據的錯誤預測、數據集的異常值或常見的圖像損壞[16],這些系統并沒有表現出理想的魯棒性。
除了目前的基準測試實踐仍然局限于封閉的世界之外,另一個不幸的趨勢是對創建的持續學習數據集的本質缺乏理解。持續生成模型(如[17]的作者的工作,[18],[19],[20],[21],[22]),以及類增量持續學習的大部分工作(如[12]中給出的工作,[23],[24],[25],[26],[27],[28])一般調查sequentialized版本的經過時間考驗的視覺分類基準如MNIST [29], CIFAR[30]或ImageNet[31],單獨的類只是分成分離集和序列所示。為了在基準中保持可比性,關于任務排序的影響或任務之間重疊的影響的問題通常會被忽略。值得注意的是,從鄰近領域的主動機器學習(半監督學習的一種特殊形式)中吸取的經驗教訓,似乎并沒有整合到現代的連續學習實踐中。在主動學習中,目標是學會在讓系統自己查詢接下來要包含哪些數據的挑戰下,逐步地找到與任務解決方案最接近的方法。因此,它可以被視為緩解災難性遺忘的對抗劑。當前的持續學習忙于維護在每個步驟中獲得的信息,而不是無休止地積累所有的數據,而主動學習則關注于識別合適的數據以納入增量訓練系統的補充問題。盡管在主動學習方面的早期開創性工作已經迅速識別出了通過使用啟發式[32]、[33]、[34]所面臨的強大應用的挑戰和陷阱,但后者在深度學習[35]、[36]、[37]、[38]的時代再次占據主導地位,這些挑戰將再次面臨。
在這項工作中,我們第一次努力建立一個原則性和鞏固的深度持續學習、主動學習和在開放的世界中學習的觀點。我們首先單獨回顧每一個主題,然后繼續找出在現代深度學習中似乎較少受到關注的以前學到的教訓。我們將繼續爭論,這些看似獨立的主題不僅從另一個角度受益,而且應該結合起來看待。在這個意義上,我們建議將當前的持續學習實踐擴展到一個更廣泛的視角,將持續學習作為一個總括性術語,自然地包含并建立在先前的主動學習和開放集識別工作之上。本文的主要目的并不是引入新的技術或提倡一種特定的方法作為通用的解決方案,而是對最近提出的神經網絡[39]和[40]中基于變分貝葉斯推理的方法進行了改進和擴展,以說明一種走向全面框架的可能選擇。重要的是,它作為論證的基礎,努力闡明生成建模作為深度學習系統關鍵組成部分的必要性。我們強調了在這篇論文中發展的觀點的重要性,通過實證證明,概述了未來研究的含義和有前景的方向。
圖在許多應用中被廣泛用于表示復雜數據,如電子商務、社交網絡和生物信息學。高效、有效地分析圖數據對于基于圖的應用程序非常重要。然而,大多數圖分析任務是組合優化(CO)問題,這是NP困難。最近的研究集中在使用機器學習(ML)解決基于圖CO問題的潛力上。使用基于ML的CO方法,一個圖必須用數值向量表示,這被稱為圖嵌入。在這個調查中,我們提供了一個全面的概述,最近的圖嵌入方法已經被用來解決CO問題。大多數圖嵌入方法有兩個階段:圖預處理和ML模型學習。本文從圖預處理任務和ML模型的角度對圖嵌入工作進行分類。此外,本文還總結了利用圖嵌入的基于圖的CO方法。特別是,圖嵌入可以被用作分類技術的一部分,也可以與搜索方法相結合來尋找CO問題的解決方案。最后對未來的研究方向做了一些評論。
經典的隨機優化結果通常假設數據的各種屬性的已知值(例如Lipschitz常數、到最優點的距離、平滑性或強凸性常數)。不幸的是,在實踐中,這些值是未知的,因此必須經過長時間的反復試驗才能找到最佳參數。
為了解決這一問題,近年來許多無參數算法已經被開發用于在線優化和在線學習。無參數算法對數據的性質不作任何假設,但收斂速度與最優優化算法一樣快。
這是一項令人興奮的工作,現在已經足夠成熟,可以教授給普通觀眾了。實際上,這些算法還沒有得到機器學習社區的適當介紹,只有少數人完全理解它們。本教程旨在彌補這一差距,介紹使用和設計無參數算法的實踐和理論。我們將介紹該領域的最新進展,包括優化、深度學習和使用內核學習的應用。