開發智能和自主學習代理的關鍵挑戰之一是它們與人類有效互動的能力。在本教程中,我們計劃涵蓋交互式代理的理論和實踐基礎。具體而言,在本教程的第一部分中,我們將側重于單獨的人類行為模型,如何使用這些模型進行有效的協調,以及如何優化它們以影響伙伴。在本教程的第二部分,我們將繼續介紹共同適應的環境,在這種環境中,人類的偏好是不穩定的,他們會適應,我們將討論這如何導致新的規范、慣例和平衡的出現。最后,我們將介紹一些方法來推斷人類伴侶的偏好,這些方法使用交互式領域中呈現的一系列離線和在線數據源。在本教程中,我們還將討論自動駕駛、混合自主交通網絡、個人機器人和多智能體游戲中的應用實例。
//icml.cc/Conferences/2022/Schedule?showEvent=18436
位置采集和無線通信技術的進步使得時空(ST)數據的可用性更加廣泛。深度神經網絡(DNNs)已成功地應用于各種問題,如計算機視覺、語音識別、自然語言理解。與這些領域不同,ST數據具有獨特的空間屬性(即地理層次和距離)和時間屬性(即緊密程度、時期和趨勢)。同時獲得所有這些ST特性是非常具有挑戰性的。
智能體隊通常必須以一種分布式的方式協調他們的決策,以實現個體和共享的目標。示例包括面向服務的計算、傳感器網絡問題和智能設備協調家庭問題。這類問題可以形式化并以不同的方式求解,但一般來說,多智能體協調過程是非易的,NP -難求解的。
在本多智能體分布式約束優化教程中,我們將討論在多智能體系統(MAS)文獻中提出的處理協調問題的兩種基本方法,一種基于分布式約束優化問題(DCOPs),另一種基于聯盟形成(CF)。
在第一部分中,我們將介紹關于DCOP的核心概念和模型的可訪問的和結構化的概述。我們還將闡述解決DCOP的最優和次優方法。
在第二部分,我們將討論用于MAS建模的核心概念,即特征函數博弈(CFGs),以及在無約束和有約束的CFGs中,哪些最優和近似的方法可以形成聯盟。我們將通過在第一部分和第二部分之間建立一個有趣的聯系來結束這一部分,展示如何使用約束優化問題(cop)來解決CF問題。
最后,我們將邀請與會者對來自實際應用的一些示例問題進行建模,并討論相關的解決方法。本文將概述python庫pyDCOP中的一些代碼和可執行示例。本教程將以最常見的挑戰和開放問題結束。
//www.gauthier-picard.info/dcop-tutorial/#outline-short-description
第21屆智能體及多智能體系統國際會議(International Joint Conference on Autonomous Agents and Multi-Agent Systems, AAMAS-2020)近日在線舉行。智能體及多智能體系統國際會議(AAMAS) 是多智能體系統領域最具影響力的會議之一,由非營利組織IFAAMAS主辦。來自佐治亞理工大學Matthew Gombolay和Zheyuan Wang共同講述了圖神經網絡解決多機器人協調問題的能力,非常值得關注!
機器人隊越來越多地部署在生產設施和倉庫等環境中,以節省成本和提高生產率。為了有效地協調多機器人隊,快速、高質量的調度算法必須滿足動態任務規范、部件和機器人可用性在時間和空間上的約束。傳統的解決方案包括精確的方法,這對于大規模問題是棘手的,或者特定應用的啟發式,這需要專業的領域知識。迫切需要的是一種新的自動化方法,它可以自動學習輕量級的、特定于應用的協調策略,而不需要手工設計的特征。 本教程介紹了圖神經網絡,并展示了圖神經網絡解決多機器人協調問題的能力。本文綜述了近年來各種圖神經網絡的框架,重點討論了它們在多智能體系統建模中的應用。我們將介紹多機器人協調(MRC)問題,并回顧解決MRC問題最相關的方法。我們將討論圖神經網絡在MRC問題中的幾個成功應用,并以Python示例代碼的形式提供實踐教程。通過本教程,我們旨在提供使用圖神經網絡建模多機器人系統的經驗,從算法開發到代碼實現,從而為在更廣泛的多智能體研究中設計基于圖的學習算法打開未來的機會。
//core-robotics.gatech.edu/2022/01/18/aamas2022_tutorial_gnn_robot/
第一部分將討論以下內容: (a) 圖神經網絡是如何工作的——我們將全面概述以往文獻中提出的各種圖神經網絡,包括同質圖和異質圖以及注意力機制; (b) 如何用圖神經網絡為團隊協調問題建模——我們將討論哪些應用可以用圖神經網絡建模,重點是MRC問題;(c)如何為團隊協調問題優化圖神經網絡的參數-我們將討論哪些學習方法可以用于訓練基于圖神經網絡的求解器。我們以最常見的挑戰和開放問題來結束本部分。
第二部分將提供一個實際操作教程,介紹如何使用圖神經網絡來解決協調問題,并在Python Jupyter筆記本中編寫示例。特別地,我們將研究ScheduleNet架構[6],這是一個基于異構圖神經網絡的求解器,用于在時間和空間約束下解決MRC問題。Jupyter將工作通過模型實現,訓練和評估的ScheduleNet模型在合成數據集。
**講者介紹: **
Matthew Gombolay博士是佐治亞理工學院交互計算專業的助理教授。他于2011年獲得約翰霍普金斯大學(the Johns Hopkins University)機械工程學士學位,2013年獲得麻省理工學院(MIT)航空航天學碩士學位,2017年獲得麻省理工學院(MIT)自主系統博士學位。Gombolay的研究興趣涵蓋機器人、人工智能/ML、人機交互和運行學。在答辯論文和加入喬治亞理工學院之間,Gombolay博士曾在麻省理工學院林肯實驗室(MIT Lincoln Laboratory)擔任技術人員,并將他的研究工作轉化到美國海軍,為他贏得了R&D 100獎。他的發表記錄包括美國航空航天學會的最佳論文獎,美國控制會議的最佳學生論文決賽,以及機器人學習會議的最佳論文決賽。2018年,Gombolay博士被選為DARPA Riser ,獲得了國家消防研討會的早期職業獎第一名,并因提高太空科學自主性而獲得了NASA的早期職業獎學金。
Zheyuan Wang,佐治亞理工學院電氣與計算機工程學院博士研究生。他在上海交通大學(Shanghai Jiao Tong University)獲得電氣工程學士學位和碩士學位。他還獲得了佐治亞理工學院ECE的碩士學位。他目前是由Matthew Gombolay教授領導的認知優化和關系(CORE)機器人實驗室的研究生研究助理。他目前的研究方向是基于圖的策略學習,利用圖神經網絡進行表示學習和強化學習進行決策,應用于人-機器人團隊協作、多智能體強化學習和隨機資源優化。
內容概覽
參考文獻:
Ernesto Nunes, Marie Manner, Hakim Mitiche, and Maria Gini. 2017. A taxonomy for task allocation problems with temporal and ordering constraints. Robotics and Autonomous Systems 90 (2017), 55–70. 1. Petar Veli?kovi?, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph attention networks. International Conference on Learning Representations (2018). 1. Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. 2019. Heterogeneous graph attention network. The World Wide Web Conference (2019), 2022–2032. 1. Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks: A review of methods and applications. AI Open 1 (2020), 57-81. 1. Zheyuan Wang and Matthew Gombolay. 2020. Learning scheduling policies for multi-robot coordination with graph attention networks. IEEE Robotics and Automation Letters 5, 3 (2020), 4509–4516. 1. Zheyuan Wang, Chen Liu, and Matthew Gombolay. 2021. Heterogeneous graph attention networks for scalable multi-robot scheduling with temporospatial constraints. Autonomous Robots (2021), 1–20.
在現實世界中,越來越多的客戶在使用人工智能服務時將隱私視為一個問題,尤其是當客戶內容包含敏感數據時。最近的研究表明,像GPT-2這樣的大型語言模型可以記憶內容,這些內容可以被對手提取出來。當模型在客戶數據上接受訓練時,這在部署場景中帶來了很高的隱私風險。由于其數學上的嚴密性,差分隱私被廣泛認為是隱私保護的黃金標準。為了緩解機器學習中對隱私的擔憂,許多研究工作都在研究具有不同隱私保障的機器學習。現在是時候澄清不同隱私下學習的挑戰和機會了。在本教程中,我們首先描述了機器學習模型中潛在的隱私風險,并介紹了差分隱私的背景,然后介紹了在機器學習中保障差分隱私的流行方法。在接下來的教程中,我們強調學習和隱私之間的相互作用。在第二部分中,我們展示了如何利用學習屬性來提高隱私學習的效用,特別是利用數據點之間的相關性和深度學習模型的低秩屬性來解決這些挑戰的最新進展。在第三部分,我們提出了研究的另一個方向,即利用差分隱私的工具來解決經典的泛化問題,并給出了利用差分隱私的思想來抵抗機器學習攻擊的具體場景。
本教程將是關于無監督學習和強化學習的交叉。隨著自然語言處理中基于語言模型的預訓練和計算機視覺中的對比學習的出現,無監督學習(UL)在過去幾年中真正得到了發展。在這些領域中,無監督預訓練的一些主要優勢是在下游有監督學習任務中出現的數據效率。在如何將這些技術應用于強化學習和機器人方面,社區中有很多人感興趣。考慮到問題的連續決策性質,RL和機器人技術比被動地從互聯網上的圖像和文本中學習面臨更大的挑戰,它可能不會那么簡單。本教程將涵蓋如何在強化學習中應用和使用無監督學習的基本模塊,希望人們可以帶回最新的最先進的技術和實踐的知識,以及在這個具有挑戰性和有趣的交叉領域的廣泛的未來可能性和研究方向。
因果學習
因果推理在許多領域都很重要,包括科學、決策制定和公共政策。確定因果關系的金標準方法使用隨機控制擾動實驗。然而,在許多情況下,這樣的實驗是昂貴的、耗時的或不可能的。從觀察數據中獲得因果信息是可替代的一種選擇,也就是說,從通過觀察感興趣系統獲得的數據中獲得而不使其受到干預。在這次演講中,我將討論從觀察數據中進行因果學習的方法,特別關注因果結構學習和變量選擇的結合,目的是估計因果效果。我們將用例子來說明這些概念。
對話人工智能系統通過完成用戶請求或進行簡單的聊天與人類用戶進行交互。這些系統的應用范圍從個人幫助、健康幫助到客戶服務等等。在這個由三部分組成的教程中,我們將首先概述最先進的模塊化對話AI方法,這些方法通常被面向任務的對話系統所采用。然后,我們將概述當前基于序列到序列、生成的對話AI方法。我們將討論普通的基于生成的模型的挑戰和缺點,如缺乏知識、一致性、同理心、可控性、多功能性等。然后我們將強調當前的工作,以解決這些挑戰,并在改進深度生成為基礎的ConvAI。在本教程的最后一部分,我們將指出對話AI的挑戰和未來研究的可能方向,包括如何減輕不適當的回復和終身學習。我們還將概述模塊化和基于生成的對話AI的共享任務和公開可用資源。
【導讀】Imitation Learning(模仿學習)機器學習新的研究熱點之一,因其能很好的解決強化學習中的多步決策(sequential decision)問題,近段時間得到了廣泛關注。那么模仿學習近期的前沿進展如何呢,來自加州理工大學的Yisong Yue在DAI'20 Workshop,做了名為《Towards Real-World Imitation Learning: Animation, Sports Analytics, Robotics, and More講座。新鮮出爐的PPT,一起來看看吧。
簡介:
隨著時空跟蹤和傳感數據的不斷增長,現在人們可以在大范圍內分析和建模細粒度行為。例如,收集每一場NBA籃球比賽的跟蹤數據,包括球員、裁判和以25hz頻率跟蹤的球,以及帶注釋的比賽事件,如傳球、投籃和犯規。其他設置包括實驗室動物、公共空間中的人、手術室等設置中的專業人員、演員的演講和表演、虛擬環境中的數字化身、自然現象(如空氣動力學),甚至其他計算系統的行為。
在這次演講中,我將描述正在進行的研究,即開發結構化模仿學習方法來開發細粒度行為的預測模型。模仿學習是機器學習的一個分支,研究模仿動態演示行為。結構化模仿學習涉及到使用數學上嚴格的領域知識,這些知識可以(有時是可以證明的)加速學習,還可以提供附加的好處(如Lyapunov穩定性或策略行為的可解釋性)。我將提供基本問題設置的高級概述,以及在動物建模、專業運動、語音動畫等項目。
本教程對基于模型的強化學習(MBRL)領域進行了廣泛的概述,特別強調了深度方法。MBRL方法利用環境模型來進行決策——而不是將環境視為一個黑箱——并且提供了超越無模型RL的獨特機會和挑戰。我們將討論學習過渡和獎勵模式的方法,如何有效地使用這些模式來做出更好的決策,以及規劃和學習之間的關系。我們還強調了在典型的RL設置之外利用世界模型的方式,以及在設計未來的MBRL系統時,從人類認知中可以得到什么啟示。
//sites.google.com/view/mbrl-tutorial
近年來,強化學習領域取得了令人印象深刻的成果,但主要集中在無模型方法上。然而,社區認識到純無模型方法的局限性,從高樣本復雜性、需要對不安全的結果進行抽樣,到穩定性和再現性問題。相比之下,盡管基于模型的方法在機器人、工程、認知和神經科學等領域具有很大的影響力,但在機器學習社區中,這些方法的開發還不夠充分(但發展迅速)。它們提供了一系列獨特的優勢和挑戰,以及互補的數學工具。本教程的目的是使基于模型的方法更被機器學習社區所認可和接受。鑒于最近基于模型的規劃的成功應用,如AlphaGo,我們認為對這一主題的全面理解是非常及時的需求。在教程結束時,觀眾應該獲得: