亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

書名

部分觀測動態系統的貝葉斯學習:Bayesian Learning for partially observed dynamical systems

書簡介

本書主要整理了最近關于動態系統中貝葉斯學習的著名講座,這里包含了關于該方面的最新知識講解,方便機器學習從事者及時快捷了解相關最新技術與研究。

目錄

  • 馬爾可夫鏈:核,不變測度。包括觀察驅動模型的示例
  • 貝葉斯推論,馬爾可夫鏈極大似然估計的漸近性質
  • 馬爾可夫鏈蒙特卡羅算法
  • MCMC算法的一些性質
  • 偽邊緣MCMC及其應用
  • 哈密頓蒙特卡羅算法
付費5元查看完整內容

相關內容

貝葉斯方法是貝葉斯學習的基礎,它提供了一種計算假設概率的方法,這種方法是基于假設的先驗概率、給定假設下觀察到不同數據的概率以及觀察到的數據本身而得出的。其方法為,將關于未知參數的先驗信息與樣本信息綜合,再根據貝葉斯公式,得出后驗信息,然后根據后驗信息去推斷未知參數的方法。

摘要

一個綜合的人工智能系統不僅需要用不同的感官(如視覺和聽覺)感知環境,還需要推斷世界的條件(甚至因果)關系和相應的不確定性。在過去的十年里,我們看到了許多感知任務的重大進展,比如視覺對象識別和使用深度學習模型的語音識別。然而,對于更高層次的推理,具有貝葉斯特性的概率圖模型仍然更加強大和靈活。近年來,貝葉斯深度學習作為一種將深度學習與貝葉斯模型緊密結合的統一的概率框架出現了。在這個總體框架中,利用深度學習對文本或圖像的感知可以提高更高層次推理的性能,推理過程的反饋也可以增強文本或圖像的感知。本文對貝葉斯深度學習進行了全面的介紹,并對其在推薦系統主題模型控制等方面的最新應用進行了綜述。此外,我們還討論了貝葉斯深度學習與其他相關課題如神經網絡的貝葉斯處理之間的關系和區別。

介紹

在過去的十年中,深度學習在許多流行的感知任務中取得了顯著的成功,包括視覺對象識別、文本理解和語音識別。這些任務對應于人工智能(AI)系統的看、讀、聽能力,它們無疑是人工智能有效感知環境所必不可少的。然而,要建立一個實用的、全面的人工智能系統,僅僅有感知能力是遠遠不夠的。首先,它應該具備思維能力。

一個典型的例子是醫學診斷,它遠遠超出了簡單的感知:除了看到可見的癥狀(或CT上的醫學圖像)和聽到患者的描述,醫生還必須尋找所有癥狀之間的關系,最好推斷出它們的病因。只有在那之后,醫生才能給病人提供醫療建議。在這個例子中,雖然視覺和聽覺的能力讓醫生能夠從病人那里獲得信息,但醫生的思維能力才是關鍵。具體來說,這里的思維能力包括識別條件依賴、因果推理、邏輯演繹、處理不確定性等,顯然超出了傳統深度學習方法的能力。幸運的是,另一種機器學習范式,概率圖形模型(PGM),在概率或因果推理和處理不確定性方面表現出色。問題在于,PGM在感知任務上不如深度學習模型好,而感知任務通常涉及大規模和高維信號(如圖像和視頻)。為了解決這個問題,將深度學習和PGM統一到一個有原則的概率框架中是一個自然的選擇,在本文中我們稱之為貝葉斯深度學習(BDL)。 在上面的例子中,感知任務包括感知病人的癥狀(例如,通過看到醫學圖像),而推理任務包括處理條件依賴性、因果推理、邏輯推理和不確定性。通過貝葉斯深度學習中有原則的整合,將感知任務和推理任務視為一個整體,可以相互借鑒。具體來說,能夠看到醫學圖像有助于醫生的診斷和推斷。另一方面,診斷和推斷反過來有助于理解醫學圖像。假設醫生可能不確定醫學圖像中的黑點是什么,但如果她能夠推斷出癥狀和疾病的病因,就可以幫助她更好地判斷黑點是不是腫瘤。 再以推薦系統為例。一個高精度的推薦系統需要(1)深入了解條目內容(如文檔和電影中的內容),(2)仔細分析用戶檔案/偏好,(3)正確評價用戶之間的相似度。深度學習的能力有效地處理密集的高維數據,如電影內容擅長第一子任務,而PGM專攻建模條件用戶之間的依賴關系,項目和評分(參見圖7為例,u, v,和R是用戶潛在的向量,項目潛在的向量,和評級,分別)擅長其他兩個。因此,將兩者統一在一個統一的概率原則框架中,可以使我們在兩個世界中都得到最好的結果。這種集成還帶來了額外的好處,可以優雅地處理推薦過程中的不確定性。更重要的是,我們還可以推導出具體模型的貝葉斯處理方法,從而得到更具有魯棒性的預測。

作為第三個例子,考慮根據從攝像機接收到的實時視頻流來控制一個復雜的動態系統。該問題可以轉化為迭代執行兩項任務:對原始圖像的感知和基于動態模型的控制。處理原始圖像的感知任務可以通過深度學習來處理,而控制任務通常需要更復雜的模型,如隱馬爾科夫模型和卡爾曼濾波器。由控制模型選擇的動作可以依次影響接收的視頻流,從而完成反饋回路。為了在感知任務和控制任務之間實現有效的迭代過程,我們需要信息在它們之間來回流動。感知組件將是控制組件估計其狀態的基礎,而帶有動態模型的控制組件將能夠預測未來的軌跡(圖像)。因此,貝葉斯深度學習是解決這一問題的合適選擇。值得注意的是,與推薦系統的例子類似,來自原始圖像的噪聲和控制過程中的不確定性都可以在這樣的概率框架下自然地處理。 以上例子說明了BDL作為一種統一深度學習和PGM的原則方式的主要優勢:感知任務與推理任務之間的信息交換、對高維數據的條件依賴以及對不確定性的有效建模。關于不確定性,值得注意的是,當BDL應用于復雜任務時,需要考慮三種參數不確定性:

  1. 神經網絡參數的不確定性
  2. 指定任務參數的不確定性
  3. 感知組件和指定任務組件之間信息交換的不確定性

通過使用分布代替點估計來表示未知參數,BDL提供了一個很有前途的框架,以統一的方式處理這三種不確定性。值得注意的是,第三種不確定性只能在BDL這樣的統一框架下處理;分別訓練感知部分和任務特定部分相當于假設它們之間交換信息時沒有不確定性。注意,神經網絡通常是過參數化的,因此在有效處理如此大的參數空間中的不確定性時提出了額外的挑戰。另一方面,圖形模型往往更簡潔,參數空間更小,提供了更好的可解釋性。

除了上述優點之外,BDL內建的隱式正則化還帶來了另一個好處。通過在隱藏單元、定義神經網絡的參數或指定條件依賴性的模型參數上施加先驗,BDL可以在一定程度上避免過擬合,尤其是在數據不足的情況下。通常,BDL模型由兩個組件組成,一個是感知組件,它是某種類型神經網絡的貝葉斯公式,另一個是任務特定組件,使用PGM描述不同隱藏或觀察變量之間的關系。正則化對它們都很重要。神經網絡通常過度參數化,因此需要適當地正則化。正則化技術如權值衰減和丟失被證明是有效地改善神經網絡的性能,他們都有貝葉斯解釋。在任務特定組件方面,專家知識或先驗信息作為一種正規化,可以在數據缺乏時通過施加先驗來指導模型。 在將BDL應用于實際任務時,也存在一些挑戰。(1)首先,設計一個具有合理時間復雜度的高效的神經網絡貝葉斯公式并非易事。這一行是由[42,72,80]開創的,但是由于缺乏可伸縮性,它沒有被廣泛采用。幸運的是,這個方向的一些最新進展似乎為貝葉斯神經網絡的實際應用提供了一些啟示。(2)第二個挑戰是如何確保感知組件和任務特定組件之間有效的信息交換。理想情況下,一階和二階信息(例如,平均值和方差)應該能夠在兩個組件之間來回流動。一種自然的方法是將感知組件表示為PGM,并將其與特定任務的PGM無縫連接,如[24,118,121]中所做的那樣。 本綜述提供了對BDL的全面概述,以及各種應用程序的具體模型。綜述的其余部分組織如下:在第2節中,我們將回顧一些基本的深度學習模型。第3節介紹PGM的主要概念和技術。這兩部分作為BDL的基礎,下一節第4節將演示統一BDL框架的基本原理,并詳細說明實現其感知組件和特定于任務的組件的各種選擇。第5節回顧了應用于不同領域的BDL模型,如推薦系統、主題模型和控制,分別展示了BDL在監督學習、非監督學習和一般表示學習中的工作方式。第6部分討論了未來的研究問題,并對全文進行了總結。

結論和未來工作

BDL致力于將PGM和NN的優點有機地整合在一個原則概率框架中。在這項綜述中,我們確定了這種趨勢,并回顧了最近的工作。BDL模型由感知組件和任務特定組件組成;因此,我們分別描述了過去幾年開發的兩個組件的不同實例,并詳細討論了不同的變體。為了學習BDL中的參數,人們提出了從塊坐標下降、貝葉斯條件密度濾波、隨機梯度恒溫器到隨機梯度變分貝葉斯等多種類型的算法。 BDL從PGM的成功和最近在深度學習方面有前景的進展中獲得了靈感和人氣。由于許多現實世界的任務既涉及高維信號(如圖像和視頻)的有效感知,又涉及隨機變量的概率推理,因此BDL成為利用神經網絡的感知能力和PGM的(條件和因果)推理能力的自然選擇。在過去的幾年中,BDL在推薦系統、主題模型、隨機最優控制、計算機視覺、自然語言處理、醫療保健等各個領域都有成功的應用。在未來,我們不僅可以對現有的應用進行更深入的研究,還可以對更復雜的任務進行探索。此外,最近在高效BNN (BDL的感知組件)方面的進展也為進一步提高BDL的可擴展性奠定了基礎。

付費5元查看完整內容

【導讀】《機器學習:貝葉斯和優化的視角》是雅典大學信息學和通信系的教授Sergios Theodoridis的經典著作,對所有主要的機器學習方法和新研究趨勢進行了深入探索,涵蓋概率和確定性方法以及貝葉斯推斷方法。非常值得學習。

Sergios Theodoridis教授是雅典大學信息學和通信系的教授,香港中文大學(深圳)客座教授。他的研究領域是信號處理和機器學習。他的研究興趣是自適應算法,分布式和稀疏性感知學習,機器學習和模式識別,生物醫學應用中的信號處理和學習以及音頻處理和檢索。

他的幾本著作與合著蜚聲海內外,包括《機器學習:貝葉斯和優化的視角》以及暢銷書籍《模式識別》。他是2017年EURASIP Athanasios Papoulis獎和2014年EURASIP Meritorious Service獎的獲得者。

//cgi.di.uoa.gr/~stheodor/

機器學習:貝葉斯和優化方法

本書對所有主要的機器學習方法和新研究趨勢進行了深入探索,涵蓋概率和確定性方法以及貝葉斯推斷方法。其中,經典方法包括平均/小二乘濾波、卡爾曼濾波、隨機逼近和在線學習、貝葉斯分類、決策樹、邏輯回歸和提升方法等,新趨勢包括稀疏、凸分析與優化、在線分布式算法、RKH空間學習、貝葉斯推斷、圖模型與隱馬爾可夫模型、粒子濾波、深度學習、字典學習和潛變量建模等。全書構建了一套明晰的機器學習知識體系,各章內容相對獨立,物理推理、數學建模和算法實現精準且細致,并輔以應用實例和習題。本書適合該領域的科研人員和工程師閱讀,也適合學習模式識別、統計/自適應信號處理和深度學習等課程的學生參考。

付費5元查看完整內容

近年來,神經網絡已成為分析復雜和抽象數據模型的有力工具。然而,它們的引入本質上增加了我們的不確定性,即分析的哪些特征是與模型相關的,哪些是由神經網絡造成的。這意味著,神經網絡的預測存在偏差,無法與數據的創建和觀察的真實本質區分開來。為了嘗試解決這些問題,我們討論了貝葉斯神經網絡:可以描述由網絡引起的不確定性的神經網絡。特別地,我們提出了貝葉斯統計框架,它允許我們根據觀察某些數據的根深蒂固的隨機性和我們缺乏關于如何創建和觀察數據的知識的不確定性來對不確定性進行分類。在介紹這些技術時,我們展示了如何從原理上獲得神經網絡預測中的誤差,并提供了描述這些誤差的兩種常用方法。我們還將描述這兩種方法在實際應用時如何存在重大缺陷,并強調在使用神經網絡時需要其他統計技術來真正進行推理。

付費5元查看完整內容

機器學習方法以有限的資源快速地從大量的數據中提取價值。它們是在廣泛的工業應用中建立起來的工具,包括搜索引擎、DNA測序、股票市場分析和機器人移動,它們的使用正在迅速蔓延。了解這些方法的人可以選擇有回報的工作。這個動手實踐書冊為計算機科學學生打開這些機會。它是專為具有有限的線性代數和微積分背景的大四本科生和碩士生設計的。它在圖模型的框架內開發了從基本推理到高級技術的所有內容。學生們學到的不僅僅是一系列的技巧,他們還會發展分析和解決問題的技巧,這些技巧使他們能夠適應真實的世界。許多例子和練習,以計算機為基礎和理論,包括在每一章。為學生和教師的資源,包括一個MATLAB工具箱,可在網上獲得。

付費5元查看完整內容

作為布爾邏輯的替代

雖然邏輯是理性推理的數學基礎和計算的基本原理,但它僅限于信息既完整又確定的問題。然而,許多現實世界的問題,從金融投資到電子郵件過濾,本質上是不完整或不確定的。概率論和貝葉斯計算共同提供了一個處理不完整和不確定數據的框架。

不完全和不確定數據的決策工具和方法

貝葉斯編程強調概率是布爾邏輯的替代選擇,它涵蓋了為真實世界的應用程序構建概率程序的新方法。本書由設計并實現了一個高效概率推理引擎來解釋貝葉斯程序的團隊編寫,書中提供了許多Python示例,這些示例也可以在一個補充網站上找到,該網站還提供了一個解釋器,允許讀者試驗這種新的編程方法。

原則和建模

只需要一個基本的數學基礎,本書的前兩部分提出了一種新的方法來建立主觀概率模型。作者介紹了貝葉斯編程的原理,并討論了概率建模的良好實踐。大量簡單的例子突出了貝葉斯建模在不同領域的應用。

形式主義和算法

第三部分綜合了已有的貝葉斯推理算法的工作,因為需要一個高效的貝葉斯推理引擎來自動化貝葉斯程序中的概率演算。對于想要了解貝葉斯編程的形式主義、主要的概率模型、貝葉斯推理的通用算法和學習問題的讀者,本文提供了許多參考書目。

常見問題

第四部分連同詞匯表包含了常見問題的答案。作者比較了貝葉斯規劃和可能性理論,討論了貝葉斯推理的計算復雜性,討論了不完全性的不可約性,討論了概率的主觀主義和客觀主義認識論。

貝葉斯計算機的第一步

創建一個完整的貝葉斯計算框架需要新的建模方法、新的推理算法、新的編程語言和新的硬件。本書著重于方法論和算法,描述了實現這一目標的第一步。它鼓勵讀者探索新興領域,例如仿生計算,并開發新的編程語言和硬件架構。

付費5元查看完整內容

本文介紹了一階優化方法及其在機器學習中的應用。這不是一門關于機器學習的課程(特別是它不涉及建模和統計方面的考慮),它側重于使用和分析可以擴展到具有大量參數的大型數據集和模型的廉價方法。這些方法都是圍繞“梯度下降”的概念而變化的,因此梯度的計算起著主要的作用。本課程包括最優化問題的基本理論性質(特別是凸分析和一階微分學)、梯度下降法、隨機梯度法、自動微分、淺層和深層網絡。

付費5元查看完整內容

決策理論是現代人工智能和經濟學的基礎。本課程主要從統計學的角度,也從哲學的角度,為決策理論打下堅實的基礎。本課程有兩個目的:

  • 深入了解統計決策理論、實驗設計的自動化方法,并將其與人類決策聯系起來。
  • 通過開發算法和智能代理的實驗,將該理論應用到強化學習和人工智能的實際問題中。

課程可分為兩部分。

  • 第一部分,我們介紹了主觀概率和效用的概念,以及如何用它們來表示和解決決策問題。然后討論未知參數的估計和假設檢驗。最后,我們討論了順序抽樣、順序實驗,以及更一般的順序決策。

  • 第二部分是不確定性下的決策研究,特別是強化學習和專家咨詢學習。首先,我們研究幾個有代表性的統計模型。然后,我們給出了使用這些模型做出最優決策的算法的概述。最后,我們來看看學習如何根據專家的建議來行動的問題,這個領域最近在在線廣告、游戲樹搜索和優化方面有很多應用。

付費5元查看完整內容

臺灣交通大學的Jen-Tzung Chien教授在WSDN 2020會議上通過教程《Deep Bayesian Data Mining》介紹了深度貝葉斯數據挖掘的相關知識,涵蓋了貝葉斯學習、深度序列學習、深度貝葉斯挖掘和學習等內容。

Jen-Tzung Chien教授在WSDM 2020的教程《Deep Bayesian Data Mining》(《深度貝葉斯數據挖掘》)介紹了面向自然語言的深度貝葉斯挖掘和學習,包括了它的基礎知識和進展,以及它無處不在的應用,這些應用包括語音識別、文檔摘要、文本分類、文本分割、信息抽取、圖像描述生成、句子生成、對話控制、情感分類、推薦系統、自動問答和機器翻譯等。

從傳統上,“深度學習”被認為是一個學習過程,過程中的推斷和優化都使用基于實數的判別模型。然而,從大量語料中提取出的詞匯、句子、實體、行為和文檔的“語義結構”在數學邏輯或計算機程序中可能不能很好地被這種方式表達或正確地優化。自然語言的離散或連續潛在變量模型中的“分布函數”可能不能被正確分解或估計。

該教程介紹了統計模型和神經網絡的基礎,并聚焦于一系列先進的貝葉斯模型和深度模型,包括層次狄利克雷過程、中國餐館過程、遞歸神經網絡、長短期記憶網絡、序列到序列模型、變分自編碼器、生成式對抗網絡、策略神經網絡等。教程還介紹了增強的先驗/后驗表示。教程展示了這些模型是如何連接的,以及它們為什么適用于自然語言中面向符號和復雜模式的各種應用程序。

變分推斷和采樣被提出解決解決復雜模型的優化問題。詞和句子的嵌入、聚類和聯合聚類被語言和語義約束合并。針對深度貝葉斯挖掘、搜索、學習和理解中的不同問題,一系列的案例研究、任務和應用被提出。最后,教程指出一些未來研究的方向和展望。教程旨在向初學者介紹深度貝葉斯學習中的主要主題,激發和解釋它對數據挖掘和自然語言理解正在浮現的重要性,并提出一種結合不同的機器學習工作的新的綜合方法。

教程的內容大致如下:

  • 簡介
    • 動機和背景
    • 概率模型
    • 神經網絡
  • 貝葉斯學習
    • 推斷和優化
    • 變分貝葉斯推斷
    • 蒙特卡羅馬爾科夫鏈推斷
  • 深度序列學習
    • 深度非展開主題模型
    • 門遞歸神經網絡
    • 貝葉斯遞歸神經網絡
    • 記憶增強神經網絡
    • 序列到序列學習
    • 卷積神經網絡
    • 擴增神經網絡
    • 基于Transformer的注意力網絡
  • 深度貝葉斯挖掘和學習
    • 變分自編碼器
    • 變分遞歸自編碼器
    • 層次變分自編碼器
    • 隨機遞歸神經網絡
    • 正則遞歸神經網絡
    • 跳躍遞歸神經網絡
    • 馬爾科夫遞歸神經網絡
    • 時間差分變分自編碼器
    • 未來挑戰和發展
  • 總結和未來趨勢

完整教程下載

請關注專知公眾號(點擊上方藍色專知關注) 后臺回復“DBDM20” 就可以獲取完整教程PDF的下載鏈接~

教程部分內容如下所示:

參考鏈接:

//chien.cm.nctu.edu.tw/home/wsdm-tutorial/

-END- 專 · 知

專知,專業可信的人工智能知識分發,讓認知協作更快更好!歡迎注冊登錄專知www.zhuanzhi.ai,獲取更多AI知識資料!

歡迎微信掃一掃加入專知人工智能知識星球群,獲取最新AI專業干貨知識教程視頻資料和與專家交流咨詢!

請加專知小助手微信(掃一掃如下二維碼添加),獲取專知VIP會員碼,加入專知人工智能主題群,咨詢技術商務合作~

點擊“閱讀原文”,了解注冊使用專知

付費5元查看完整內容

題目: Reinforcement Learning:Theory and Algorithms

簡介:

強化學習是近幾年研究的熱點,特別是伴隨DeepMind AlphaGo的出現名聲大噪。強化學習(RL)是一種機器學習范式,在這種范式中,agent從經驗中學習完成順序決策任務,RL在機器人、控制、對話系統、醫療等領域有廣泛的應用。《強化學習:理論與算法》這本書講述了強化學習最新進展,包括MDP、樣本復雜度、策略探索、PG、值函數等關鍵議題,是了解強化學習的材料。

章節:

  • 第一章:馬爾科夫決策過程MDP 預介紹
  • 第二章:生成模型的樣本復雜度
  • 第三章:強化學習的策略探索
  • 第四章:策略梯度方法
  • 第五章:值函數近似
  • 第六章:RL的戰略探索和豐富的觀測資料
  • 第七章:行為克隆和學徒學習

作者簡介:

Alekh Agarwal目前是微軟人工智能研究中心的研究員,領導強化學習研究小組。之前,在加州大學伯克利分校獲得計算機科學博士學位后,與彼得·巴特利特(Peter Bartlett)和馬丁·溫賴特(Martin Wainwright)一起在紐約微軟研究院(Microsoft Research)度過了六年美好的時光。

姜楠,UIUC助理教授,機器學習研究員。核心研究領域是強化學習(RL),關注于RL的樣本效率,并利用統計學習理論中的思想來分析和開發RL算法。

沙姆·卡卡德(Sham M. Kakade)是華盛頓研究基金會(Washington Research Foundation)數據科學主席,同時在華盛頓大學(University of Washington)艾倫學院(Allen School)和統計學系任職。他致力于機器學習的理論基礎,專注于設計(和實現)統計和計算效率的算法。

付費5元查看完整內容
北京阿比特科技有限公司