亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

來自UIUC的機器學習書稿,講述機器學習基礎知識,包含回歸、分類、聚類等

付費5元查看完整內容

相關內容

機器學習簡明指南,不可錯過!

A Machine Learning Primer

亞馬遜研究科學家Mihail Eric關于機器學習實踐重要經驗。包括監督學習、機器學習實踐、無監督學習以及深度學習。具體為:

監督學習

  • 線性回歸
  • 邏輯回歸
  • 樸素貝葉斯
  • 支持向量機
  • 決策樹
  • K-近鄰

機器學習實踐

  • 偏差-方差權衡
  • 如何選擇模型
  • 如何選擇特征
  • 正則化你的模型
  • 模型集成
  • 評價指標

無監督學習

  • 市場籃子分析
  • K均值聚類
  • 主成分分析

深度學習

  • 前向神經網絡
  • 神經網絡實踐
  • 卷積神經網絡
  • 循環神經網絡
付費5元查看完整內容

當前關于機器學習方面的資料非常豐富:Andrew NG在Coursera上的機器學習教程、Bishop的《機器學習與模式識別》 和周志華老師的《機器學習》都是非常好的基礎教材;Goodfellow等人的《深度學習》是學習深度學習技術的首選資料;MIT、斯坦福等名校的公開課也非常有價值;一些主要會議的Tutorial、keynote也都可以在網上搜索到。然而,在對學生們進行培訓的過程中, 我深感這些資料專業性很強,但入門不易。一方面可能是由于語言障礙,另一個主要原因在于機器學習覆蓋 面廣,研究方向眾多,各種新方法層出不窮,初學者往往在各種復雜的名詞,無窮無盡的 算法面前產生畏難情緒,導致半途而廢。

本書的主體內容是基于該研討班形成的總結性資料。基于作者的研究背景,這本書很難說 是機器學習領域的專業著作,而是一本學習筆記,是從一個機器學習 技術使用者角度對機器學習知識的一次總結,并加入我們在本領域研究中的一些經驗和發現。與其說是一本教材,不如說是一本科普讀物, 用輕松活潑的語言和深入淺出的描述為初學者打開機器學習這扇充滿魔力的大門。打開大門以后,我們會發現這是個多么讓人激動人心的 領域,每天都有新的知識、新的思路、新的方法產生,每天都有令人振奮的成果。我們希望這本書 可以讓更多學生、工程師和相關領域的研究者對機器學習產生興趣,在這片異彩紛呈的海域上找到 屬于自己的那顆貝殼。

強烈推薦給所有初學機器學習的人,里面有: 書籍的pdf 課堂視頻 課堂slides 各種延伸閱讀 MIT等世界名校的slides 學生的學習筆記等

付費5元查看完整內容

這本教科書通過提供實用的建議,使用直接的例子,并提供相關應用的引人入勝的討論,以一種容易理解的方式介紹了基本的機器學習概念。主要的主題包括貝葉斯分類器,最近鄰分類器,線性和多項式分類器,決策樹,神經網絡,和支持向量機。后面的章節展示了如何通過“推進”的方式結合這些簡單的工具,如何在更復雜的領域中利用它們,以及如何處理各種高級的實際問題。有一章專門介紹流行的遺傳算法。

這個修訂的版本包含關于工業中機器學習的實用應用的關鍵主題的三個全新的章節。這些章節研究了多標簽域,無監督學習和它在深度學習中的使用,以及歸納邏輯編程的邏輯方法。許多章節已經被擴展,并且材料的呈現已經被增強。這本書包含了許多新的練習,許多解決的例子,深入的實驗,和獨立工作的計算機作業。

//link.springer.com/book/10.1007/978-3-319-63913-0#about

付費5元查看完整內容

凸優化作為一個數學問題已經被研究了一個多世紀,并在許多應用領域的實踐中應用了大約半個世紀,包括控制、金融、信號處理、數據挖掘和機器學習。本文主要研究凸優化的幾個問題,以及機器學習的具體應用。

付費5元查看完整內容

有興趣的數據科學專業人士可以通過本書學習Scikit-Learn圖書館以及機器學習的基本知識。本書結合了Anaconda Python發行版和流行的Scikit-Learn庫,演示了廣泛的有監督和無監督機器學習算法。通過用Python編寫的清晰示例,您可以在家里自己的機器上試用和試驗機器學習的原理。

所有的應用數學和編程技能需要掌握的內容,在這本書中涵蓋。不需要深入的面向對象編程知識,因為工作和完整的例子被提供和解釋。必要時,編碼示例是深入和復雜的。它們也簡潔、準確、完整,補充了介紹的機器學習概念。使用示例有助于建立必要的技能,以理解和應用復雜的機器學習算法。

對于那些在機器學習方面追求職業生涯的人來說,Scikit-Learn機器學習應用手冊是一個很好的起點。學習這本書的學生將學習基本知識,這是勝任工作的先決條件。讀者將接觸到專門為數據科學專業人員設計的蟒蛇分布,并將在流行的Scikit-Learn庫中構建技能,該庫是Python世界中許多機器學習應用程序的基礎。

你將學習

  • 使用Scikit-Learn中常見的簡單和復雜數據集
  • 將數據操作為向量和矩陣,以進行算法處理
  • 熟悉數據科學中使用的蟒蛇分布
  • 應用帶有分類器、回歸器和降維的機器學習
  • 優化算法并為每個數據集找到最佳算法
  • 從CSV、JSON、Numpy和panda格式加載數據并保存為這些格式

這本書是給誰的

  • 有抱負的數據科學家渴望通過掌握底層的基礎知識進入機器學習領域,而這些基礎知識有時在急于提高生產力的過程中被忽略了。一些面向對象編程的知識和非常基本的線性代數應用將使學習更容易,盡管任何人都可以從這本書獲益。
付費5元查看完整內容

高斯過程(GPs)為核機器的學習提供了一種有原則的、實用的、概率的方法。在過去的十年中,GPs在機器學習社區中得到了越來越多的關注,這本書提供了GPs在機器學習中理論和實踐方面長期需要的系統和統一的處理。該書是全面和獨立的,針對研究人員和學生在機器學習和應用統計學。

這本書處理監督學習問題的回歸和分類,并包括詳細的算法。提出了各種協方差(核)函數,并討論了它們的性質。從貝葉斯和經典的角度討論了模型選擇。討論了許多與其他著名技術的聯系,包括支持向量機、神經網絡、正則化網絡、相關向量機等。討論了包括學習曲線和PAC-Bayesian框架在內的理論問題,并討論了幾種用于大數據集學習的近似方法。這本書包含說明性的例子和練習,和代碼和數據集在網上是可得到的。附錄提供了數學背景和高斯馬爾可夫過程的討論。

付費5元查看完整內容

書籍介紹: 機器學習是一門人工智能的科學,該領域的主要研究對象是人工智能,特別是如何在經驗學習中改善具體算法的性能。機器學習是人工智能及模式識別領域的共同研究熱點,其理論和方法已被廣泛應用于解決工程應用和科學領域的復雜問題。本書從機器學習的基礎入手,分別講述了分類、排序、降維、回歸等機器學習任務,是入門機器學習的一本好書。

作者: Mehryar Mohri,是紐約大學庫蘭特數學科學研究所的計算機科學教授,也是Google Research的研究顧問。

大綱介紹:

  • 介紹
  • PAC學習框架
  • rademacher復雜度和VC維度
  • 支持向量機
  • 核方法
  • Boosting
  • 線上學習
  • 多類別分類
  • 排序
  • 回歸
  • 算法穩定性
  • 降維
  • 強化學習

作者主頁//cs.nyu.edu/~mohri/

付費5元查看完整內容
北京阿比特科技有限公司