亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

題目: Sum-product networks: A survey

摘要: 和積網絡是一種基于有根無環有向圖的概率模型,其中終端節點表示單變量概率分布,非終端節點表示概率函數的凸組合(加權和)和乘積。它們與概率圖形模型密切相關,特別是與具有多種上下文特定獨立性的貝葉斯網絡。它們的主要優點是可以根據數據建立可處理的模型,即,該模型可以根據圖中鏈接的數量及時地執行多個推理任務。它們有點類似于神經網絡,可以解決類似的問題,如圖像處理和自然語言理解。本文綜述了SPN的定義、數據推理和學習的主要算法、主要應用、軟件庫的簡要介紹,并與相關模型進行了比較。

付費5元查看完整內容

相關內容

貝葉斯網絡是一種概率網絡,它是基于概率推理的圖形化網絡,而貝葉斯公式則是這個概率網絡的基礎。貝葉斯網絡是基于概率推理的數學模型,所謂概率推理就是通過一些變量的信息來獲取其他的概率信息的過程,基于概率推理的貝葉斯網絡(Bayesian network)是為了解決不定性和不完整性問題而提出的,它對于解決復雜設備不確定性和關聯性引起的故障有很大的優勢,在多個領域中獲得廣泛應用。

現實網絡由多種相互作用、不斷進化的實體組成,而現有的研究大多將其簡單地描述為特定的靜態網絡,而沒有考慮動態網絡的演化趨勢。近年來,動態網絡的特性跟蹤研究取得了重大進展,利用網絡中實體和鏈接的變化來設計網絡嵌入技術。與被廣泛提出的靜態網絡嵌入方法相比,動態網絡嵌入努力將節點編碼為低維密集表示,有效地保持了網絡結構和時間動態,有利于處理各種下游機器學習任務。本文對動態網絡嵌入問題進行了系統的研究,重點介紹了動態網絡嵌入的基本概念,首次對現有的動態網絡嵌入技術進行了分類,包括基于矩陣分解的、基于躍格的、基于自動編碼器的、基于神經網絡的等嵌入方法。此外,我們仔細總結了常用的數據集和各種各樣的后續任務,動態網絡嵌入可以受益。在此基礎上,提出了動態嵌入模型、大規模動態網絡、異構動態網絡、動態屬性網絡、面向任務的動態網絡嵌入以及更多的嵌入空間等現有算法面臨的挑戰,并提出了未來可能的研究方向。

付費5元查看完整內容

題目: A Survey on Dynamic Network Embedding

簡介:

現實世界的網絡由各種相互作用和不斷發展的實體組成,而大多數現有研究只是將它們描述為特定的靜態網絡,而沒有考慮動態網絡的發展趨勢。近來,在跟蹤動態網絡特性方面取得了重大進展,它利用網絡中實體和鏈接的變化來設計網絡嵌入技術。與靜態網絡嵌入方法相比,動態網絡嵌入致力于將節點編碼為低維密集表示形式,從而有效地保留了網絡結構和時間動態特性,這對眾多下游機器學習任務是有益的。在本文中,我們對動態網絡嵌入進行了系統的調查。特別是,描述了動態網絡嵌入的基本概念,特別是,我們首次提出了一種基于現有動態網絡嵌入技術的新分類法,包括基于矩陣分解的方法,基于Skip-Gram的方法,基于自動編碼器,基于神經網絡和其他嵌入方法。此外,我們仔細總結了常用的數據集以及動態網絡嵌入可以帶來的各種后續任務。之后,我們提出了現有算法面臨的幾個挑戰,并概述了促進未來研究的可能方向,例如動態嵌入模型,大規模動態網絡,異構動態網絡,動態屬性網絡,面向任務的動態網絡嵌入和更多的嵌入空間。

付費5元查看完整內容

作為布爾邏輯的替代

雖然邏輯是理性推理的數學基礎和計算的基本原理,但它僅限于信息既完整又確定的問題。然而,許多現實世界的問題,從金融投資到電子郵件過濾,本質上是不完整或不確定的。概率論和貝葉斯計算共同提供了一個處理不完整和不確定數據的框架。

不完全和不確定數據的決策工具和方法

貝葉斯編程強調概率是布爾邏輯的替代選擇,它涵蓋了為真實世界的應用程序構建概率程序的新方法。本書由設計并實現了一個高效概率推理引擎來解釋貝葉斯程序的團隊編寫,書中提供了許多Python示例,這些示例也可以在一個補充網站上找到,該網站還提供了一個解釋器,允許讀者試驗這種新的編程方法。

原則和建模

只需要一個基本的數學基礎,本書的前兩部分提出了一種新的方法來建立主觀概率模型。作者介紹了貝葉斯編程的原理,并討論了概率建模的良好實踐。大量簡單的例子突出了貝葉斯建模在不同領域的應用。

形式主義和算法

第三部分綜合了已有的貝葉斯推理算法的工作,因為需要一個高效的貝葉斯推理引擎來自動化貝葉斯程序中的概率演算。對于想要了解貝葉斯編程的形式主義、主要的概率模型、貝葉斯推理的通用算法和學習問題的讀者,本文提供了許多參考書目。

常見問題

第四部分連同詞匯表包含了常見問題的答案。作者比較了貝葉斯規劃和可能性理論,討論了貝葉斯推理的計算復雜性,討論了不完全性的不可約性,討論了概率的主觀主義和客觀主義認識論。

貝葉斯計算機的第一步

創建一個完整的貝葉斯計算框架需要新的建模方法、新的推理算法、新的編程語言和新的硬件。本書著重于方法論和算法,描述了實現這一目標的第一步。它鼓勵讀者探索新興領域,例如仿生計算,并開發新的編程語言和硬件架構。

付費5元查看完整內容

最新的技術進步提高了交通運輸的質量。新的數據驅動方法為所有基于控制的系統(如交通、機器人、物聯網和電力系統)帶來了新的研究方向。將數據驅動的應用與運輸系統相結合在最近的運輸應用程序中起著關鍵的作用。本文綜述了基于深度強化學習(RL)的交通控制的最新應用。其中,詳細討論了基于深度RL的交通信號控制(TSC)的應用,這在文獻中已經得到了廣泛的研究。綜合討論了TSC的不同問題求解方法、RL參數和仿真環境。在文獻中,也有一些基于深度RL模型的自主駕駛應用研究。我們的調查廣泛地總結了這一領域的現有工作,并根據應用程序類型、控制模型和研究的算法對它們進行了分類。最后,我們討論了基于深度可編程邏輯語言的交通應用所面臨的挑戰和有待解決的問題。

付費5元查看完整內容

題目: Meta-Learning in Neural Networks: A Survey

簡介: 近年來,元學習領域的興趣急劇上升。與使用固定學習算法從頭解決給定任務的傳統AI方法相反,元學習旨在根據多次學習事件的經驗來改善學習算法本身。這種范例為解決深度學習的許多傳統挑戰提供了機會,包括數據和計算瓶頸以及泛化的基本問題。在本次調查中,我們描述了當代的元學習環境。我們首先討論元學習的定義,并將其相對于相關領域(例如轉移學習,多任務學習和超參數優化)進行定位。然后,我們提出了一種新的分類法,該分類法為當今的元學習方法提供了更為全面的細分。我們調查了元學習的有希望的應用程序和成功案例,包括,強化學習和架構搜索。最后,我們討論了未來研究的突出挑戰和有希望的領域。

付費5元查看完整內容

題目: A Survey on Edge Intelligence

簡介:

邊緣智能是指一組連接的系統和設備,用于在靠近基于人工智能捕獲數據的位置進行數據收集,緩存,處理和分析。邊緣智能的目的是提高數據處理的質量和速度,并保護數據的隱私和安全性。盡管最近出現,從2011年到現在,這個研究領域在過去五年中顯示出爆炸性增長。在本文中,我們對有關邊緣智能的文獻進行了全面的調查。我們首先根據與擬議和部署的系統有關的理論和實踐結果,確定邊緣智能的四個基本組成部分,即邊緣緩存,邊緣訓練,邊緣推理和邊緣卸載。然后,我們通過檢查四個組成部分每個的研究結果和觀察結果,來對解決方案的狀態進行系統的分類,并提出一種分類法,其中包括實際問題,采用的技術和應用目標。對于每個類別,我們從采用的技術,目標,性能,優點和缺點等方面詳細闡述,比較和分析文獻。本調查文章全面介紹了邊緣智能及其應用領域。此外,我們總結了新興研究領域的發展和當前的最新技術,并討論了重要的開放性問題以及可能的理論和技術解決方案。

付費5元查看完整內容

題目: MEMORY-BASED GRAPH NETWORKS

摘 要:

圖神經網絡是一類對任意拓撲結構的數據進行操作的深度模型。我們為GNNs引入了一個有效的記憶層,它可以聯合學習節點表示并對圖進行粗化。在此基礎上,我們還引入了兩個新的網絡:基于記憶的GNN (MemGNN)和可以學習層次圖表示的圖存儲網絡(GMN)。實驗結果表明,所提出的模型在9個圖分類和回歸基準中有8個達到了最新的結果。我們也證明了這些表示學習可以對應于分子數據中的化學特征。

付費5元查看完整內容

簡介: 在許多將數據表示為圖形的領域中,學習圖形之間的相似性度量標準被認為是一個關鍵問題,它可以進一步促進各種學習任務,例如分類,聚類和相似性搜索。 最近,人們對深度圖相似性學習越來越感興趣,其中的主要思想是學習一種深度學習模型,該模型將輸入圖映射到目標空間,以使目標空間中的距離近似于輸入空間中的結構距離。 在這里,我們提供對深度圖相似性學習的現有文獻的全面回顧。 我們為方法和應用提出了系統的分類法。 最后,我們討論該問題的挑戰和未來方向。

在特征空間上學習足夠的相似性度量可以顯著確定機器學習方法的性能。從數據自動學習此類度量是相似性學習的主要目的。相似度/度量學習是指學習一種功能以測量對象之間的距離或相似度,這是許多機器學習問題(例如分類,聚類,排名等)中的關鍵步驟。例如,在k最近鄰(kNN)中分類[25],需要一個度量來測量數據點之間的距離并識別最近的鄰居;在許多聚類算法中,數據點之間的相似性度量用于確定聚類。盡管有一些通用度量標準(例如歐幾里得距離)可用于獲取表示為矢量的對象之間的相似性度量,但是這些度量標準通常無法捕獲正在研究的數據的特定特征,尤其是對于結構化數據。因此,找到或學習一種度量以測量特定任務中涉及的數據點的相似性至關重要。

付費5元查看完整內容
北京阿比特科技有限公司