為了實現和保持決策和任務的優越性,美海軍已經將計算技術和數據分析方法的研究作為優先事項,用于自動化和改善戰斗管理和決策。該項目使用多學科系統分析方法研究了新的自動化技術,并為自動化兵棋推演系統開發了概念設計,以支持戰術決策和作戰規劃。該研究方法揭示了自動兵棋推演的三種不同應用:(1)支持桌面兵棋推演,作為裁決的自動白隊或作為紅隊認知智能體;(2)支持作戰任務規劃者,作為非實時行動方案(COA)引擎;以及(3)支持戰術士兵,作為實時COA引擎,在評估和推薦可能的戰術COA時考慮二階、三階和九階效應。該研究發現,需要自動化的兵棋推演戰斗管理系統(利用博弈論、規定性分析、預測性分析、人工智能等)來支持增強的態勢感知、推理和問題解決、更快的決策時間,以及對戰術和作戰COA的識別和評估。該研究建議進一步研究自動戰爭游戲系統的使用、新興的行動方案工程領域,以及這些新技術在支持桌面兵棋推演、作戰規劃和戰術決策方面的應用。
博弈論和規范性分析法為美海軍的任務和決策優勢提供了兩種潛在的改變游戲規則的能力。在實時自動兵棋推演戰斗管理輔助工具的幫助下,戰術行動可以有一個重大的飛躍,它可以預測不同行動方案(COA)的成功,并考慮可能的二階和三階效應。這種未來的能力將伴隨著目前的發展,即使用人工智能(AI)來提高戰斗空間知識,并為戰術作戰人員提供決策幫助。
主要的研究目標是開發和評估一種實時兵棋推演能力的概念設計,這種能力可以作為戰術戰斗管理的輔助手段在作戰中使用。其他的研究目標是:
研究對實時海軍兵棋推演戰斗管理援助的業務需求。
為實時海軍兵棋推演的戰斗管理援助制定要求和概念設計,以及
識別和評估數據分析方法,包括博弈論和規定性分析,以應用于實時兵棋推演的戰斗管理輔助能力。
由NPS研究人員和NPS研究生組成的NPS研究團隊對該項目采用了系統分析方法。研究小組首先對以下方面進行了文獻回顧:(1)自動化高級數據分析方法;(2)美海軍和美國防部已經開發的分析能力;以及(3)海軍兵棋推演的應用。研究小組確定了可以為海軍開發的三種類型的自動兵棋推演系統:(1)支持桌面兵棋推演的系統,(2)支持作戰計劃的系統,以及(3)支持實時戰術決策的系統。研究小組重點關注后兩種類型的自動兵棋推演能力。然后,研究小組對這些類型中的每一種應用了系統分析方法--從需求分析開始,然后開發需求,然后綜合概念設計。最后,研究小組用操作分析法研究了每一個概念設計--研究這些未來的概念性自動兵棋推演系統如何能提高每個應用中的兵棋推演需求。
本報告分為五章。第1章介紹了本研究,第2章包含文獻回顧,第3章和第4章介紹了對兩類自動兵棋推演系統的系統分析,第5章總結了本研究。
這篇論文試圖研究能夠改善復雜軍事戰術環境中決策的人工智能(AI)技術。戰術環境在威脅、事件的節奏、突發或意外事件的因素、戰斗空間意識的限制以及潛在的致命后果方面可能變得非常復雜。這種類型的環境對戰術作戰人員來說是一個極具挑戰性的決策空間。戰術決策任務在識別決策選項、權衡眾多選項的相對價值、計算選項的預測成功率以及在極短的時間內執行這些任務方面迅速超越了人類的認知能力。海軍已經確定需要開發自動戰斗管理輔助工具(ABMA)來支持人類決策者。這個概念是讓ABMA處理大量的數據來發展戰斗空間知識和意識,并確定戰爭資源和行動方案的優先次序。人工智能方法的最新發展表明,它有望成為ABMAs支持戰術決策的重要推動者。本論文研究人工智能的方法,目的是確定在戰術決策領域的具體應用。
本論文分為五章。第一章概述了本課題的背景,描述了本論文所探討的問題,本論文的目的,以及研究的方法和范圍。第二章對論文中討論的定義和概念進行了全面的背景回顧,包括自動戰斗管理輔助工具、決策復雜性和人工智能及自主系統的概念。第三章描述了用于協調數據采集和理解檢索數據要求的研究方法。第四章提供了分析的結果,并探討了從分析結果中得出的潛在好處和局限。本論文的最后一章包含最后的結論和對未來工作的建議。
軍隊為訓練、規劃和研究目的進行兵棋推演。人工智能(AI)可以通過降低成本、加快決策過程和提供新的見解來改善軍事兵棋推演。以前的研究人員根據強化學習(RL)在其他人類競技游戲中的成功應用,探討了將強化學習(RL)用于兵棋推演。雖然以前的研究已經證明RL智能體可以產生戰斗行為,但這些實驗僅限于小規模的兵棋推演。本論文研究了擴展分層強化學習(HRL)的可行性和可接受性,以支持將人工智能融入大型軍事兵棋推演。此外,本論文還通過探索智能體導致兵棋推演失敗的方式,研究了用智能體取代敵對勢力時可能出現的復雜情況。在越來越復雜的兵棋推演中,對訓練封建多智能體層次結構(FMH)和標準RL智能體所需的資源以及它們的有效性進行了比較。雖然FMH未能證明大型兵棋推演所需的性能,但它為未來的HRL研究提供了啟示。最后,美國防部提出了核查、驗證和認證程序,作為一種方法來確保未來應用于兵棋推演的任何人工智能應用都是合適的。
兵棋推演是成功軍隊的寶貴訓練、規劃和研究工具。自然,美國(U.S.)國防部(DOD)計劃將人工智能(AI)納入兵棋推演。將人工智能融入兵棋推演的一種方式是用智能體取代人類玩家;能夠展示戰斗行為的算法。本論文研究了用智能體取代人類兵棋推演操作員的可行性、可接受性和適宜性。為此,本章解釋了為什么兵棋推演對成功的軍隊至關重要。
軍隊進行兵棋推演是為了回答關于戰爭的關鍵問題,這些問題必須在實際沖突發生之前被理解。兵棋推演是利用對立的力量模擬實際的戰斗,并由人類的決策來決定[1]。雖然有廣泛的不同類型的兵棋推演,但它們都有一個共同的目標:"獲得有效和有用的知識" [2]。這種劃分很重要,因為兵棋推演的不同目的會導致玩家和游戲控制者的行為不同。圖1顯示了兵棋推演從訓練到分析到實驗的廣泛范圍。
1.訓練用的兵棋推演
最直接的兵棋推演類型是用于訓練的兵棋推演。大型參謀部使用建設性的模擬(數字兵棋推演)來鍛煉他們的參謀過程,并驗證他們的軍事準備。小型參謀部使用虛擬模擬器來訓練他們的戰斗演習和船員演習。軍隊進行這些兵棋推演是為了了解戰爭和鍛煉決策能力[3]。所有隊員的行動和決策一般都要符合已知的條令和戰術、技術和程序(TTP)。對于大型的參謀部演習,對手可能會突破TTP的界限來挑戰參謀部(例如,表現得更有侵略性,但仍然依賴相同的TTP)。
2.用于分析的兵棋推演
兵棋推演可用于分析,即 "確定在部隊對抗中會發生什么"[3]。這些是大多數軍事人員所熟悉的兵棋推演類型:作為行動方案(COA)分析的一部分而進行的兵棋推演。這些類型的兵棋推演允許對戰爭計劃、部隊結構或理論進行評估。在這些戰役中,雙方都要采用已知的理論和TTP,但 "在這些戰役中,創新精神可以自由發揮"[4]。
3.實驗性的兵棋推演
在譜的另一端是實驗性兵棋推演。在這些戰役中,雙方都可以使用新的力量、武器和/或戰術來探索潛在的未來戰爭[5]。歸根結底,組織進行實驗性兵棋推演是為了產生 "關于戰爭問題性質的知識"[2]。美國軍方在演習中整合了這些類型的兵棋推演,如美國陸軍未來司令部的聚合項目和聯合作戰人員評估。
4.兵棋推演的好處
盡管兵棋推演既不是預測性的,也不是對現實的完全復制,但它們確實提供了一些沒有實戰就無法獲得的東西:對戰爭中決策的洞察力。當為訓練而進行戰爭演習時,組織正在學習良好的決策是什么樣子的(包括過程和最終結果)。當為分析而進行戰爭演習時,計劃者正在評估他們在計劃期間做出的決定,以及在執行期間需要做出的潛在決定。
這些好處足以讓美國防部副部長羅伯特-沃克在2015年發布了一份備忘錄,呼吁在整個美國防部重新努力開展兵棋推演[6]。沃克副部長認為,兵棋推演有利于創新、風險管理和專業軍事教育。沃克認為,最終,兵棋推演將推動美國防部的規劃、計劃、預算和執行過程,這是告知國防部資源分配的方法。美國和它的西方盟友并不是唯一相信兵棋推演好處的軍隊。中國正在為兵棋推演投入大量資源,包括將人工智能融入兵棋推演[7]。
人工智能提供了一個機會,通過降低成本、加快決策過程和提供新的見解來改善軍事兵棋推演。為兵棋推演中的許多角色雇用人類操作員是昂貴的。組織必須給自己的人員分配任務(使他們脫離正常的職能)或支付外部支持。這種成本可以通過將人工智能整合到兵棋推演中而消除。兵棋推演分析的速度只能和人類操作者一樣快。用智能體代替操作員可以加快兵棋推演的速度,并允許多個兵棋推演同時發生,從而實現更廣泛的分析。最后,智能體因其在游戲中的創造性而受到關注[8]。創造性的智能體可以通過探索人類戰爭者可能沒有考慮的可能性,使戰爭計劃、部隊編隊或戰術得到更好的分析。
美國國內的國家安全組織認識到將人工智能融入兵棋推演的潛力。人工智能國家安全委員會在其最終報告中主張立即將人工智能能力整合到兵棋推演中,以確保美國及其盟友保持與同行的競爭力[9]。美國陸軍未來的模擬訓練系統--合成訓練環境(STE)設想整合人工智能來監測和調整訓練場景的難度[10]。美國陸軍研究實驗室有許多項目在調查人工智能與軍事指揮和控制系統的整合。具體來說,他們正在探索使用人工智能的一個子領域,即強化學習(RL)來進行連續規劃,以開發 "藍色部隊的新計劃"[11]。連續規劃將需要一個能夠評估其計劃的智能體,可能通過兵棋推演。
基于其他RL智能體在人類競技游戲中的成功,如《星際爭霸II》[12]、《古人防御》(DotA)[13]和圍棋[14],多名研究人員正在研究用于戰爭游戲的RL智能體。像《星際爭霸II》和DotA這樣的實時戰略(RTS)游戲最能代表兵棋推演。與兵棋推演類似,RTS游戲需要在有限的信息環境中進行長期的目標規劃和短期的戰術決策。以前的研究表明,RL智能體可以在兵棋推演中復制理想的戰斗行為[5], [11]。根據Kania和McCaslin的說法,谷歌的AlphaGo成功擊敗了世界上最好的圍棋大師,證明了人工智能可以應用于兵棋推演[7]。
雖然以前的研究已經證明RL智能體可以產生戰斗行為,但實驗僅限于小型交戰。研究人員只要求RL智能體控制三到五個下屬單位。強化學習智能體將需要成功擴展,以滿足涉及幾百個單位的大型兵棋推演的規模要求。
問題是,隨著兵棋推演中單位數量和類型的增加,信息量和可能的動作數量變得難以解決。Newton等人提出可擴展性是一組目標:速度、收斂和性能,同時保持在一組約束條件下:隨著項目規模的增加,成本、計算能力和時間[15] 。分層組織是擴展的一種方法。本論文將研究分層強化學習(HRL)的可擴展性。換句話說,任何可行的、可接受的人工智能集成到戰爭游戲中,隨著戰爭游戲中單位數量的增加,必須仍然顯示出理想的戰斗行為。
除了將人工智能整合到軍事兵棋推演中的可行性和可接受性之外,這種整合還需要是合適的。開發和執行一個失敗的兵棋推演是有可能的,因為從中得出的知識是無效的或沒有用的。Weuve等人[16]解釋了可能導致兵棋推演失敗的不同途徑,他們稱之為兵棋推演病癥。以取代人類操作者為目的的智能體的設計和實施,需要防止兵棋推演的病態,從而確保有效的結果。
這導致了以下的研究問題。HRL是否允許智能體在不損失性能的情況下增加合作單位的數量和有效性?什么框架可以確保智能體的設計和應用正確,以滿足兵棋推演的目的?
本論文延續了[17]和[18]對Atlatl戰斗環境中RL的調查。Atlatl是一個離散的、基于六邊形的兵棋推演,模擬陸地作戰行動。最初的研究使用一個簡單的多層感知器[17]成功地在RL智能體中產生了戰斗行為。隨后的研究使用卷積神經網絡(CNN)架構在復雜的地形和動態的對手中研究RL智能體[18]。
雖然有廣泛的HRL方法,但本研究的重點是封建多智能體層次結構(FMH)。在FMH中,一個單一的R智能體(即經理),將任務分配給一系列被稱為工人的下級RL智能體[19]。本論文比較了在Atlatl中越來越大的場景中采用基于規則的智能體、單一RL智能體和FMH所需的資源和有效性。
兵棋推演是由玩家和裁判員組成的[1]。友軍單位的玩家被稱為藍軍,他們的對手被稱為紅軍,任何一個玩家之外的平民或軍事單位被稱為綠軍。雖然有可能通過使用所有玩家和裁判員的智能體來實現兵棋推演的完全自動化,但本論文只評估了對單個玩家的替換。
本論文還研究了用智能體替換對方部隊(OPFOR)即紅色部隊時可能出現的復雜情況。討論了具體的兵棋推演病癥,并提出了緩解這些病癥的方法。美國防部的驗證、核實和認證(VV&A)框架被應用于通過RL對OPFOR的建模。
本論文發現,當FMH智能體以分布式方式進行訓練時,FMH智能體未能比單一RL智能體表現得更好。當經理和工人在同一環境中訓練時,FMH智能體的學習能力有所提高。然而,工人的不一致行動使經理無法制定最佳策略。此外,FMH的訓練要求超過了單個RL智能體的要求,這抑制了FMH擴展到大型軍事兵棋推演的能力。最后,本論文發現,將人工智能整合到軍事兵棋推演中的方法適合于像美國防部的VV&A框架那樣的過程。否則,基于模型的去太原的病癥會使兵棋推演的目標失效,并對美軍產生負面影響。
本論文通過進一步研究在建設性模擬中采用完全自主的智能體,對美國政府有直接好處。完全自主的兵棋推演智能體,能夠在多個層次上運作,需要支持兵棋推演的全部范圍。這很容易延伸到軍事規劃期間的決策支持工具,協助規劃者快速評估不同的COA。此外,探索在兵棋推演中使用智能體的適宜性將促進兵棋推演界采用人工智能。
在軍事行動中可能會出現復雜的情況,需要在有限的戰爭資源下進行跨域和多任務行動。這些情況給戰術決策者帶來了挑戰,他們需要在當下使用戰爭資源,而這些資源可能還需要用于其他同時進行的任務需要,并在以后完成一系列的任務。這些情況需要在行動中進行動態的重新規劃,以確保計劃中的任務是可以實現的,并且任務的修改支持戰略目標。該項目探索了人工智能和先進的數據分析方法,以開發未來的自動決策輔助工具,用于任務規劃和戰術決策,可以支持復雜的跨領域和多任務行動。
主要研究目標是探索新興的創新數據分析技術(包括博弈論、機器學習和兵棋推演),以優化海軍資源分配和跨任務領域的重新規劃。
其他研究目標是
探索新興的技術和數據分析工具,以解決不確定性和優化各任務領域的成功。
研究在特定領域的戰斗管理輔助工具之間進行平衡所需的選擇和能力,并優化跨領域的資源分配。
研究如何將這些技術結合起來,以優化跨領域的多戰爭規劃、執行支持和重新規劃。
由NPS研究人員和NPS研究生組成的NPS研究團隊對該項目采用了系統分析方法。研究小組首先對以下方面進行了文獻回顧:(1)自動化高級數據分析方法;(2)跨領域和多任務行動;(3)戰術決策和任務規劃。研究小組確定并描述了復雜的戰術情況,在這種情況下,需要對多任務進行優先排序,并需要進行動態重新規劃。研究小組開發了一種概念性方法,利用先進的數據分析、博弈論、戰爭游戲、人工智能和機器學習來支持和促成這些復雜戰術情況下的決策(以最佳方式使用和分配戰爭資源和部隊)。該團隊為概念設計開發了基于模型的系統工程表述,并對涉及復雜戰術、作戰和戰略情況的用例情景進行了建模。該團隊設想并模擬了一種創新的戰爭游戲決策輔助工具,以支持可能遇到類似復雜情況的作戰級別的任務規劃人員,這些情況需要在更高的級別上采用動態的跨域多任務方法。
本報告分為六章。第1章介紹了該研究。第2章包含了跨域多任務問題領域的特征。第3章包含了對使用自動化高級數據分析方法進行任務規劃的討論。第4章介紹了多任務資源分配(MMRA)決策輔助概念的系統分析。第5章包含了在三個不同的多任務場景中對MMRA能力的使用案例研究。第6章是技術報告的結論。
在本文中,我們討論了如何將人工智能(AI)用于政治-軍事建模、仿真和兵棋推演,針對與擁有大規模殺傷性武器和其他高端能力(包括太空、網絡空間和遠程精確武器)國家之間的沖突。人工智能應該幫助兵棋推演的參與者和仿真中的智能體,理解對手在不確定性和錯誤印象中行動的可能視角、感知和計算。人工智能應該認識到升級導致無贏家的災難的風險,也應該認識到產生有意義的贏家和輸家的結果可能性。我們將討論使用幾種類型的AI功能對建模、仿真和兵棋的設計和開發的影響。 我們在使用或沒有使用AI的情況下,根據理論和使用仿真、歷史和早期兵棋推演的探索工作,討論了基于兵棋推演的決策輔助。
在本文中,我們認為(1)建模、仿真和兵棋推演(MSG)是相關的調查方法,應該一起使用;(2)人工智能(AI)可以為每個方法做出貢獻;(3)兵棋推演中的AI應該由建模和仿真(M&S)提供信息,而M&S的AI應該由兵棋推演提供信息。我們概述了一種方法,為簡潔起見,重點是涉及擁有大規模毀滅性武器(WMD)和其他高端武器的國家的政治-軍事MSG。第2節提供了我們對MSG和分析如何相互聯系的看法。第3節通過討論20世紀80年代的系統來說明這一點是可行的。第4節指出今天的挑戰和機遇。第5節簡述了結構的各個方面。第6節強調了在開發人工智能模型和決策輔助工具方面的一些挑戰。第7節得出了結論。在本文中,我們用 "模型"來涵蓋從簡單的數學公式或邏輯表到復雜的計算模型的范圍;我們用"兵棋"來包括從小型的研討會練習(例如Day-After練習)到大型的多天、多團隊的兵棋推演。
MSG可以用于廣泛的功能,如表1所示。每種功能都可以由每個MSG元素來解決,盡管相對簡單的人類活動,如研討會兵棋和Day-After練習已被證明對后兩個主題具有獨特的價值。
通常形式的M&S和兵棋推演有不同的優勢和劣勢,如表2前三欄中的定型。M&S被認為是定量的、嚴格的和 "權威的",但由于未能反映人的因素而受到嚴重的限制。M&S的批評者走得更遠,認為M&S的 "嚴格 "轉化為產生的結果可能是精確的,但卻是錯誤的。在他們看來,兵棋推演糾正了M&S的缺點。M&S的倡導者則有不同的看法。
我們確實認識到并長期批評了正常建模的缺點。我們也從兵棋推演中受益匪淺,部分是通過與赫爾曼-卡恩(P.B.)、蘭德公司和安德魯-馬歇爾的長期合作,但兵棋推演的質量從浪費時間甚至起反作用到成為豐富的洞察力來源。雖然這種見解在沒有后續研究的情況下是不可信的,但來自建模的見解也是如此。
我們本文的一個論點是,這種刻板印象不一定是正確的,我們的愿望(不加掩飾的崇高)應該是表的最后一欄--"擁有一切",將建模、仿真和推演整合在一起。圖1顯示了一個相應的愿景。
這種理想化的活動隨著時間的推移,從研究、兵棋推演、軍事和外交經驗、人類歷史、人類學等方面開始(第1項),匯集關于某個領域(例如印度-太平洋地區的國際安全問題)的知識。這就是對棋盤、行動者、潛在戰略和規則書的定性。
兩項工作的進行是不同步的。如圖1的上半部分,兵棋推演在進行中,為某種目的而結構化。無論圖中的其他部分是否成功執行,這都可能獨立發生。同時,M&S以游戲結構化模擬的形式進行。隨著時間的推移,從M&S和兵棋推演中獲得的經驗被吸收,使用人工智能從M&S實驗中挖掘數據(第4項),以便為后續周期完善理論和數據(第5項)。在任何時候,根據問題定制的MSG都會解決現實世界的問題(第7項)。如同在淺灰色的氣泡中,人類團隊的決策輔助工具(項目6a)和智能體的啟發式規則(項目6b)被生成和更新。有些是直接構建的,但其他的是從分析實驗和兵棋推演中提煉出來的知識。有些智能體直接加入了人工智能,有些是間接的,有些則根本沒有。圖1鼓勵MSG活動之間的協調,盡管這種協調有時可能是非正式的,可能只是偶爾發生。
圖1的意圖可以在一個單一的組織中完成(例如,敏感的政府內工作)和/或在智囊團、實驗室、私營企業、學術界和政府中更開放的持續努力計劃中完成,就像圖2中的DARPA研究稱為社會行為建模實驗室(SBML)。在任何一種情況下,這種方法都會鼓勵多樣性、辯論和競爭。它也會鼓勵使用社區模塊來組成專門的MSG組件。這與專注于一個或幾個得天獨厚的單一模型形成鮮明對比。直截了當地說,這個愿景是革命性的。
圖1的愿景的一個靈感是20世紀80年代的蘭德公司戰略評估系統(RSAS)(附錄1指出了文件)。為了回應美國防部關于更好地利用兵棋推演進行戰略分析的要求,由卡爾-鮑爾領導的蘭德公司團隊提出了自動化兵棋推演,它將利用那個時代的人工智能、專家系統,但它將允許可互換的人工智能模型和人類團隊。這導致了一個多年的項目,我們中的一個人(P.K.D.)在1981年加入蘭德公司后領導這個項目。
該項目從深入設計開始,保留了可互換團隊和人工智能智能體的開創性想法,但也包括一個靈活的全球軍事模型;與人工智能有關的新概念,如替代的紅方和藍方智能體,每個都有彼此的模型;代表其他各方的綠方智能體,有簡單的參數化規則子模型;紅方和藍方智能體在做決定前做 "前瞻 "的能力;以及 "分析性戰爭計劃"--代表軍事指揮官的自適應插槽式腳本人工智能模型。該設計還預計:多情景分析,納入 "軟因素",如定性的戰斗力,以及人工智能模型的解釋能力。圖3勾勒出高級RSAS架構。整個80年代都在實施。蘭德公司將RSAS用于國防部的研究,例如,歐洲的常規平衡和常規軍備控制的建議,并將其出口到各政府機構和戰爭學院。聯合參謀部收到了RSAS,但事實證明連續性是不切實際的,因為一旦有適當才能的官員學會使用它,他們就會被提升到其他任務。
盡管RSAS在技術上取得了成功,但它在某些方面還是領先于時代。一方面,其創新的全球作戰模型被廣泛接受并用于分析和聯合兵棋推演。它成為聯合綜合作戰模型(JICM),在過去的30年中不斷發展,現在仍在使用。另一方面,RSAS的人工智能部分除了用于演示外,很少在蘭德公司之外使用。大多數指導RSAS工作的政府辦公室對政治層面的問題沒有興趣,如危機決策、戰爭路徑或升級。少數人有興趣,這導致了蘭德公司的研究,但在大多數情況下,他們的需求可以通過相對簡單的兵棋推演來解決,包括事后演習(Roger Molander,Peter Wilson)。此外,完整的RSAS是昂貴、復雜和苛刻的。更為普遍的是,隨著蘇聯的解體,美國防部對兵棋推演的興趣驟然下降。
幸運的是,事實證明有可能實現 "去粗取精":用人工智能智能體進行類似RSAS的模擬,可以通過非常簡單的模型和游戲獲得一些重要的見解,正如最近未發表的用對手的替代形象進行核戰爭的工作中所說明的。
RSAS在某種程度上納入了表2最后一欄的大部分想法,所以它顯示了可行性。也就是說,它可以作為某種存在的證明。然而,那是在冷戰時期,采用1980年代的技術。今天能做什么?
今天的國際安全挑戰遠遠超出了冷戰時期的范圍。它們呼喚著新的兵棋推演和新的M&S。新的挑戰包括以下內容。
現在的世界有多個決策中心,他們的行動是相互依賴的。從概念上講,這將我們置于n人博弈論的世界中。不幸的是,盡管諸如公地悲劇和食客困境等現象可以用n人博弈論的語言來描述,而且平均場理論有時也可以作為一種近似的方法來使用,但似乎n人博弈的復雜的解決方案概念還沒有被證明是非常有用的。由于種種原因,這種解決方案并沒有被廣泛采用。商學院的戰略課程很少使用這些技術,國防部的智囊團也很少將這些技術納入他們的M&S中。可能是現實世界的多極化太過復雜,難以建模,盡管在戰略穩定方面已經做出了一些努力。就像物理學中的三體問題一樣,n方系統的行為甚至可能是混亂的。我們還注意到,隨機混合策略在n人博弈中通常發揮的作用很小。同樣,在計算其他玩家的行動時,可能有很多內在的復雜性,以至于隨機化產生的一層額外的不確定性對我們理解未來的危機動態沒有什么貢獻。
與1980年代相比,有更多的國家擁有大規模殺傷性武器(即印度、巴基斯坦、朝鮮),甚至更多的國家擁有大規模破壞性武器。網絡作為一種戰略武器的加入,使問題進一步復雜化。在這里,人工智能可能有助于理解事件。作為一個例子,假設一支核力量受到攻擊,使其用于電子控制的電力系統癱瘓(由于分散和防御,這可能并不容易)。一支導彈部隊只能在短時間內依靠備用電力系統執行任務。大國肯定意識到自己和對手的這種脆弱性。在商業電力領域,人工智能對于在電力中斷后向需求節點快速重新分配電力資源變得非常重要,例如2021年發生在德克薩斯州的全州范圍內的冰凍溫度。
武器裝備的變化擴大了高端危機和沖突的維度,如遠程精確打擊和新形式的網絡戰、信息戰和太空戰。這意味著卡恩很久以前提出的44級升級階梯現在必須被更復雜的東西所取代,正如后面6.3節中所討論的。
一個推論被低估了,那就是現在的世界比以前更加成熟,可以進行有限的高端戰爭--盡管更熱衷于威懾理論的人有相反的斷言--其中可能存在有意義的贏家和輸家。在考慮俄羅斯入侵波羅的海國家、朝鮮入侵韓國等可能性時,這一點變得很明顯。出現的一些問題包括俄羅斯對 "升級-降級 "戰略(北約冷戰戰略的俄羅斯版本)的依賴,以及網絡戰爭和攻擊空間系統的前景。因此,觀察到更多國家部署跨洋范圍的精確打擊武器也是麻煩的。即使是曠日持久的“有限”戰略戰爭現在也可能發生,盡管如第6.3節所討論的那樣,升級很容易發生。
今天的美國安全伙伴有著不同的重要利益和看法。北約在整個冷戰期間表現出的非凡的團結,在現代危機或沖突中可能無法重現。在亞太地區,朝鮮和韓國、中國、日本、臺灣、印度和巴基斯坦之間的矛盾關系是危機中困難的預兆。所有這些國家都有通過使用太空、網絡空間或區域范圍內的精確武器進行升級的選擇。
這里的總體問題是,聯盟仍然非常重要,但今天的聯盟可能與冷戰時期緊繃的街區不同。我們可能正在進入一個類似于20世紀初的多極化階段。第一次世界大戰爆發的一個因素是,柏林認為倫敦不會與法國一起發動戰爭,在歐洲阻擊德國。這導致人們相信,戰爭將類似于1871年的普法戰爭--有限、短暫,而且沒有特別的破壞性。甚至法國在1914年8月之前也不確定英國是否會加入戰爭。這種對自己的盟友會做什么的計算,對穩定至關重要。這里的不確定性確實是一個具有巨大意義的戰略問題。
在考慮現代分析性兵棋推演的前景時,新的技術機會比比皆是。下面的章節列出了一些。
基于智能體的建模(ABM)已經取得了很大的進展,對生成性建模尤其重要,它提供了對現象如何展開的因果關系的理解。這種生成性建模是現代科學的革命性發展。與早期專家系統的智能體不同,今天的智能體在本質上通常是追求目標或提高地位的,這可能使它們更具有適應性。
當然,更普遍的人工智能研究比ABM要廣泛得多。它提供了無限的可能性,正如現代文本中所描述的那樣。我們在本文中沒有多加討論,但是在考慮M&S的未來,以及兵棋推演的決策輔助工具時,最好能有長篇大論的章節來論述有時被確認的每一種人工智能類型,即反應式機器、有限記憶的機器、有限自動機、有自己的思維理論的機器,以及有自我意識的機器。這在這里是不可能的,這一限制也許會被后來的作者所彌補。
聯網現在是現代生活的一個核心特征,人與人之間、組織與組織之間都有全球聯系。數據是無處不在的。這方面的一個方面是分布式兵棋推演和練習。另一個方面是在線游戲,甚至到了大規模并行娛樂游戲的程度,對這些游戲的研究可能產生國家安全方面的見解。這類游戲并不"嚴肅",但在其中觀察到的行為可能暗示了在更多的學術研究中無法認識到的可能性和傾向性。
現在,建立獨立有用的模型(即模塊)并根據手頭問題的需要組成更復雜的結構是有意義的。這種組合與國防部歷史上對標準化的大型綜合單體模型的偏愛形成鮮明對比。在不確定因素和分歧普遍存在的情況下,這種標準化的吸引力要小得多,比如在更高層次的M&S或兵棋推演中。模塊化設計允許帶著對被建模的東西的不同概念。這可以打開思路,這對預見性是很有用的,就像避免驚訝或準備適應一樣。也有可能將替代模型與數據進行常規比較,部分用于圖2中建議的常規更新。另外,模塊化開發有利于為一個特定的問題插入專業性,這是2000年中期國防部研討會上建模人員和分析人員社區推薦的方法。
今天,AI一詞通常被用來指機器學習(ML),這只是AI的一個版本。ML已經有了很大的進步,ML模型通常可以準確地擬合過去的數據,并找到其他未被認識到的關系。一篇評論描述了進展,但也指出了局限性--提出了有理論依據的ML版本,在面向未來的工作中會更加有效,并強調了所謂的對抗性人工智能,包括擊敗對手的深度學習算法的戰術。
規劃的概念和技術取得了根本性的進展,在深度不確定性下的決策(DMDU)的標題下討論。這從 "優化 "最佳估計假設的努力,轉向預期在廣泛的可能未來,也就是在許多不確定的假設中表現良好的戰略。在過去,解決不確定性問題往往是癱瘓的,而今天則不需要這樣。這些見解和方法在國防規劃和社會政策分析中有著悠久的歷史,應該被納入人工智能和決策輔助工具中。
設計"永遠在線"的系統,并不斷提高智能。從技術上講,大多數國防部的MSG都是人工智能界所謂的"轉型"。該模型或游戲有一個起點;它運行后會報告贏家和輸家。可以進行多次運行,并將結果匯總,以捕捉復雜動態中固有的差異。較新的人工智能模型的設計是不同的,它所模擬的系統是 "永遠在線的"。這被稱為反應式編程,與轉化式編程不同。這些系統永遠不會停止,并且不只是將輸入數據轉化為輸出數據。例子包括電梯系統和計算機操作系統。國防方面的例子包括網絡預警系統,導彈預警系統,或作戰中心。這些都不會"關閉"。防御系統正變得更加反應靈敏,所以必須用模型來表示它們。這一點在1980年代RSAS的更高級別的紅方和藍方智能體的設計中已經預見到了,它們會在事件發生后'醒來',并對局勢和選項進行新的評估,而不是繼續按照腳本行事。
在轉換型模型中,環境中的事件可能會觸發程序按順序采取某種行動。反應式模型則不同。程序在環境中同時做出改變。他們一起改變,或幾乎一起改變。國防工作的一個有趣的例子涉及自主武器。人類和機器決策之間的界限已經模糊了,因為在一個反應式系統中人和機器之間的互動可能是連續和交織的。反應式系統是美國、中國和俄羅斯國防投資的一個主旨。無人機群和網絡預警系統將如何在M&S和兵棋推演中得到體現?除非表述恰當,否則相關人工智能模型在模擬中的價值可能會適得其反。
然而,這僅僅是個開始。隨著機器擁有更好的記憶和利用它們所學到的東西,以及它們納入世界理論,包括對手的思想理論,人工智能將如何變化?一個令人擔憂的問題是,正如Yuna Wong及其同事所討論的那樣,對人工智能的更多使用將增加快速升級的前景。這方面的風險對于專注于最大化某些相對量化措施,而不是更多的絕對結果及其定性評價的人工智能來說尤其高。以冷戰時期的經驗為例,執著于誰會在全球核戰爭中以較高的核武器交換后比率 "贏得"的分析是危險的。幸運的是,決策者們明白,結果將是災難性的,沒有真正的勝利者。即使是1983年電影《兵棋》中的計算機約書亞也明智地得出結論:"核戰爭。一個奇怪的游戲。唯一的勝利之舉就是不玩。來一盤漂亮的國際象棋如何?無論約書亞體現的是什么人工智能,它都不只是關于如何通過數字贏得一場娛樂游戲的ML。
為現代分析性兵棋推演開發一個完整的架構超出了本文的范圍,但建議一些方向是可能的。圖4勾勒了一個頂層架構,表3則更詳細地提出了各種特征。圖4認識到,在考慮許多可能的危機和沖突時,需要深入關注至少三個主要的行為者,以解決當前時代的危機和沖突。一個例子可能是朝鮮、韓國、美國和中國。圖4還要求對軍事模擬采取模塊化方法。
如表3所示,1980年代RSAS的一些特征可能會延續到現代化的版本。然而,許多其他特征應該有很大不同。我們認為表3是討論的開端,而不是終點。
由于在我們的討論中,為大規模的場景生成、探索性分析和不確定性下的決策做準備是很突出的,因此需要強調兩個重要問題:
只有當模擬在結構上是有效的(即只有當模型本身是有效的),不同參數值的探索性分析才是有用的。
從探索性分析中得出的結論可能會有問題,當所研究的案例(情景)的可能性不一樣,它們的概率是相關的,但沒有很好的基礎來分配概率分布。
1、模型驗證
正如其他地方所討論的,模型的有效性和數據的有效性應該分別對描述、解釋、后預測、探索和預測進行定性。另外,必須根據特定的問題和背景來判斷它們。參數化方法有很長的路要走,但模型的不確定性常常被忽視,需要更多的關注,正如最近的一篇文章中所討論的那樣。攜帶目標和價值非常不同的對手模型只是這樣做的一個例子。
關于在不知道案件的相對概率的情況下如何使用探索性分析這個令人困擾的問題,我們建議探索性分析至少在表4中說明的目的上很可能有價值,這些目的都不需要概率。對于每一個例子,探索的目的是找到可能性(如脆弱性或機會),促使采取措施來防止它們,預測它們,或準備相關的適應措施。如果存在一個關鍵的漏洞,就應該修復它,無論它被利用的概率 "看起來 "是低還是高(如果它的概率被知道是很小的,那將是另外一回事)。
本節討論了在思考建模和兵棋推演的人工智能和決策輔助工具時出現的一些問題。首先討論了決策輔助功能。接下來討論了在設想使用人工智能的ML版本來利用大規模場景生成時的一個挑戰。最后一節討論了開發 "認知人工智能 "和相關決策輔助工具所涉及的基本挑戰之一。
如果我們根據我們所看到的對玩家的重要性,而不是對人工智能提供者的興奮點來詢問決策輔助工具的主要功能,那么一些關鍵的功能就會如表5所示。
從科幻小說中,我們可能期望現代游戲的決策輔助工具是高度計算機化的,并由人工智能以相對個性化的形式提供信息,就像艾薩克-阿西莫夫的機器人或電影《2001》中不那么邪惡的計算機哈爾9000。然而,作者迄今為止的經驗是,在游戲中 "幫助 "人類的努力往往被證明是適得其反的,阻礙了本質上人類的自由討論。事實上,這些努力有時會因為分散注意力而使玩家生氣。考慮到這一點,我們分別討論了實用的短期決策輔助工具和更具推測性的長期目標。
表6提供了我們對第一欄所示的簡單決策輔助工具的價值的主觀估計,從低到高。這些都不涉及人工智能。相反,最有價值的輔助工具是具有簡潔的檢查表、信息表或圖表的簡單視圖。評估區分了不同類型的游戲或演習,也區分了玩家之前是否接受過決策輔助工具訓練的游戲。這些評價是在蘭德公司與韓國國防分析研究所合作進行的一些兵棋推演實驗后制定的。
關于簡單決策輔助工具的另一個數據點是蘭德公司同事開發的(但尚未出版)的 "奇怪的游戲"。這是一個關于核使用的高效兵棋推演,玩家代表一個戰區指揮官,通過選擇適當的卡片來進行游戲。該游戲建立了決策輔助工具,包括目標類別和評估選擇何種目標的簡單線性算術。
作為近期決策輔助工具的最后一個例子,最近的一個原型研究采用了一種低技術的方法來進行人類演習,考慮如何在危機和沖突中影響對手。該方法涉及一種定性的方法,即不確定性敏感認知模型(UCM),如圖5所概述。這些機制都是定性的,通過真實或虛擬的白板和互動軟件進行展示和討論。它們包括因素樹、表示有限理性的Red替代模型、影響圖以及戰略明顯優缺點的表格比較。沒有一個涉及人工智能。很明顯,人工智能甚至不會有幫助。也許這是一個重要的洞察力,也許這反映了想象力的不足。現在讓我們來看看長期的情況。
從長遠來看,可能會有更多的東西,我們應該從科幻小說、電子娛樂游戲、甚至主要電視網絡對新出現的選舉結果的實時討論中尋找靈感。僅僅舉例說明在不遠的將來可能出現的功能,在每一個功能中,人工智能系統都會對查詢作出反應。
一個團隊口頭命令對 "成功之路 "進行探索性分析,包括是否有某一盟友的堅定合作。
一個小組詢問,鑒于最近發生的事件,對手的哪些替代模型仍然是可信的。人工智能報告反映了依賴于主觀可能性函數的貝葉斯式分析,這些函數已被更新以反映最近的歷史。
一個考慮有限升級的團隊詢問了潛在的反應。人工智能幫助器顯示了在以前的兵棋推演中觀察到的反應,玩家被認為很好地代表了實際的決策人。它還確定了在模擬中反應不好的條件(在下一節中討論),從而強調了條件的哪些方面需要特別注意以避免災難。
這些猜測是最低限度的,只是為了激發人們對人工智能如何在決策輔助方面發揮作用的更多創造性思維。這個領域是開放的,從某些類型的人工智能的名稱中可以看出,從反應型機器到具有有限記憶、內置心智理論和自我意識的機器,這個領域是開放的,甚至更加明顯。一些主要人物,如珀爾和麥肯錫,自信地預計后者將包括意識本身。然而,那是未來的事了。佩爾將目前的機器人描述為 "像鼻涕蟲一樣有意識"。也就是說,蜂群武器很快就會像鳥群、魚群和昆蟲一樣有 "意識"。
讓我們接下來談談涉及人工智能與M&S的一些棘手問題。它們涉及到哪些人工智能決策輔助工具是可行的。
如前所述,機器學習類人工智能(AI/ML)有可能通過挖掘大規模場景生成的結果來尋找洞察力。然而,成功取決于(1)模擬的質量和(2)用于搜索結果的方法。
大量場景生成的成果可能是有用的,也可能是反作用的,這取決于基礎模型是否足夠豐富,結構上是否符合探索的目的。在研究可能的高端危機時,如果基礎模型假設了完美的理性、認知、聯盟關系,并專注于例如核武器的交換后比率作為結果的衡量標準,那么一百萬種情景的數據庫有什么用呢?對于軍事技術目的,如部隊規劃,可能有價值,但對于威懾或預測實際沖突中的問題,甚至是嚴肅的精英兵棋推演,可能沒有價值。
模型建立者所面臨的挑戰的某些方面是眾所周知的,如認識到對決策者(性格、人格、健康)的替代概念的需要,認識到錯誤認知的可能性,以及允許卡尼曼和特沃斯基的前景理論和其他心理現象所描述的那種非理性決策。應對這些挑戰,至少可以說是困難重重,但至少挑戰是被認可的。
相比之下,軍事模擬和社會行為模擬的一個骯臟的小秘密是,工作場所的模型通常不會產生黑天鵝事件、不連續現象或各種突發現象,而這些現象是研究復雜適應性系統的核心要素,在現實世界和一些大型游戲中都會出現,比如20世紀50年代的 "精英 "高級冷戰兵棋推演。原因有很多,但通常是由于模型是 "腳本化的",而不是基于智能體的,或者--即使它們確實有智能體--沒有給智能體足夠的多樣性、自由度和激勵來產生現實的適應性行為,以及不允許有長尾分布的隨機性。在這些問題上做得更好,對社會行為模擬來說是一個巨大的挑戰,特別是對那些打算與現實兵棋推演相聯系的模擬來說。一些成分包含在復雜的兵棋推演中,因此人們可以觀察到,例如,聯盟的解體和新集團的建立,在團隊看來,這更符合他們的國家利益。今天的模擬通常不允許這樣做。從推測上看,我們認為至少有兩條路可以做得更好。如果可以預見感興趣的突發現象(比如上面的聯盟問題),那么就可以建立適當的對象,模擬可能會識別出何時引導它們出現或消失。但是,最重要的突發現象(包括一些在兵棋推演中出現的現象)可能無法被預期。盡管我們并不聲稱知道什么是必要的,但我們從過去的復雜性研究的經驗中觀察到,突發現象的產生往往是因為復雜的自下而上的互動、多樣性和隨機事件。然而,傳統的高層政治軍事模擬并不具備這些特征。它們的價值在很大程度上是由于它們代表了更高層次的實體和過程,大致與系統動力學的模型相類似。我們的結論是,在前進的過程中,重要的是開發多分辨率的模型系列和將它們相互聯系的方法。例如,一個更高分辨率的基于智能體的模型可能有適應性的智能體,用于所有卷入危機或沖突的國家。仿真實驗可能會發現(就像人類游戲一樣)上面提到的那種突發行為,例如聯盟的偶爾解散、側翼切換和新的便利聯盟的出現。這將是''洞察力'',然后可以導致在更高層次的模型中添加新的智能體,根據模擬中的情況激活或停用的智能體。然而,這將需要類似于最近一本關于社會行為建模的書中所討論的 "自我感知的模擬",特別是伊爾馬茲的那一章,他設想的計算可以監測自己的狀態,并在必要時改變自己的結構,還有一章是作者之間關于出現的辯論。
如果模擬足夠豐富,那么有意義的大規模場景生成是可能的。但然后呢?對模擬數據進行探索性分析的一個核心挑戰是了解如何評估不同情況的相對重要性。一種方法是分配主觀的概率分布,但哪里能找到能夠可靠地估計概率的專家,而不在前面加上諸如 "嗯,如果明天像過去一樣 "的評論。現實上,專家并不是預測或概率的好來源,Tetlock及其同事已經深入討論過了。
一種變通的方法是報告結果的頻率(以百分比計算),例如,好或壞。這可以通過全因子設計或使用蒙特卡洛抽樣來完成。不幸的是,存在著滑向討論"可能性"而不是百分比的趨勢,即使案例的可能性不一樣。另外,在MSG的背景下,這種類型的展示掩蓋了這樣一個現實,即行為者不斷尋找他們將獲得重大優勢的情景空間的模糊 "角落"。因此,在模擬中不經常觀察到的情況可能正是發展中的情況。
我們建議的方法是避開明確的概率分配,而是 "尋找問題"或 "尋找成功"。也就是說,當探索性分析產生的大量數據時,人們可能會尋求找到結果非常好、非常壞或其他的條件。這在關于穩健決策(RDM)和DMDU的文獻中被稱為情景發現。
更進一步,我們敦促人工智能以 "聚合片段"的形式得到提示,其動機來自理論、簡單模型和主題領域的專業知識。一個例子可能是 "沖突開始時的準備狀態"。對于戰略預警時間、戰術預警時間、領導層特征、先前的軍事準備狀態和動員率的巨大不同組合,其數值可能是相同的。也就是說,這個變量是許多微觀初始狀態的集合。另一個例子(假設有合適的智能體)可能是危機發生時的心理狀態,其值包括偏執狂、冷靜和理性以及自信的攻擊性。
鑒于足夠豐富的模擬和理論為人工智能在探索性分析中提供了提示,我們懷疑人工智能可以在識別 "完美風暴 "的情況等活動中完成大量工作--不是為了預測它們,而是為了注意要避免的條件,就像在簡單的兵棋推演中以低技術方式完成的那樣。
另一個ML應用可以從關于對手行動的大規模情報收集中為兵棋推演和M&S創建算法,例如那些潛艇或地面移動導彈。曾經需要幾個月或幾年的時間來收集和分析的東西,現在可能在很短的時間內就能得到,產生可用于兵棋推演或M&S的操作程序的算法。作為一個類比,考慮獲得關于駕駛安全的洞察力。今天最深刻的洞察力來自保險公司(Progressive, GEICO),它基于可下載的軟件,跟蹤個人操作者:他們的速度,左轉的數量,加速模式,等等。這些數據可以與信用評分和其他數據整合。其結果可以是個性化的保險費率。這樣的數據分析已經是今天的現實。應該有類似的軍事和MSG影響。當然,有一些必然是分類的,對于本文的政治軍事重點來說,其意義不如MSG的其他應用。
上面的討論集中在ML式的人工智能上,但所需要的豐富的模擬必須有智能體以更像人類的方式進行推理,這種東西可以被描述為認知型人工智能。在這一點上,決策邏輯使用的因素和推理與人類喜歡相信的東西相似,是他們實際行為的基礎。
1980年代RSAS的紅方和藍方智能體是早期的例子。他們利用廣泛接受的升級階梯結構來描述核危機和沖突中的情況、選擇和決策選擇。
今天,我們需要新一代的更高層次的決策模型,但不存在升級階梯的替代品。也許也不會找到替代品。當從兩方博弈到甚至三方博弈時,復雜性大大增加。一個替代的概念必然會更加復雜--更像是一個n維網格而不是一個階梯--因為升級可能不僅涉及核武器及其目標的數量,還涉及與網絡戰爭、太空戰爭和精確射擊的戰略使用有關的數量、強度和目標。
圖6簡單說明了這一概念,結合了幾個維度,以便人為地顯示只有三個維度的結果。它顯示了一個說明性的情景,開始是一場溫和的常規戰爭(第1項),但隨后依次過渡到嚴重的網絡攻擊(第2項),更廣泛地使用精確制導導彈(PGMs)(第3項),有限的核使用(如箭頭所示的核升級)(第4項),甚至更具破壞性的使用PGMs(如針對大壩和發電廠)。 例如,針對水壩和電網)(第5項),也許大規模殺傷性武器的水平略有提高(也許只是為了以牙還牙),以及全面核戰爭(第6項)。然而,今天,對于某種特定的攻擊會出現在某一軸線上,以及行為者是否會有相同的評估,并沒有共同的理解。不僅"客觀"的答案充其量是短暫的,認知很可能取決于路徑,取決于國家,并受到隨機影響。規劃的一個核心問題是核武近鄰國家之間的長期非核戰爭是否可信。由于常規戰爭和核戰爭的指揮和控制系統的糾纏,這些問題變得更加麻煩。似乎預測模型,無論是否基于人工智能,都不在考慮之列,盡管產生值得擔心的合理情況的模型應該在考慮之列。
對于那些尋求建立認知型人工智能模型以代表危機中的國家決策者的人來說,可能還會列出更多的挑戰,但我們希望我們的例子能吸引眼球。
本文的主要建議是推薦一個研究議程,將建模、模擬、游戲和分析視為相關的和相互交織的。在這樣一個綜合的觀點中,兵棋推演的人工智能將通過使用模型的分析來了解,這些模型包括包含了部分由兵棋推演提供的人工智能智能體。例如,這將導致具有類似于兵棋推演決策助手的人工智能智能體,以及更復雜的算法。它將導致基于兵棋推演的決策輔助工具,它將類似于將有理論依據的ML應用于由探索性分析產生的 "數據",這些探索性分析來自于利用決策智能體形式的AI的M&S。
關于人工智能本身,我們對今天的ML中常見的一些做法提出警告。我們注意到缺乏關于未來危機和沖突的可靠的信息性經驗數據。此外,我們強調,在決策輔助工具和模型中使用的智能體中,都需要解釋。這表明我們更傾向于由認知模型構成的人工智能,即使ML被用來填充和調整該結構。
最后,我們敦促對兵棋推演(包括小規模的活動,如事后演習)和模型所提出的問題要非常謹慎。模型、模擬、游戲和分析仍然是不完美的,有時甚至是明顯不完美的,但我們有可能很好地利用它們來解決許多問題,也就是說,提高決策的質量。預測可能性有很大的潛力;可靠的預測則沒有。
現代戰場比以往任何時候都要復雜,武器的技術進步也在不斷加快。為了贏得下一場戰斗,對對手的行動作出更快的反應時間是至關重要的。人工智能(AI)有可能使作戰人員超過敵人的決策周期,減少信息過載,從而克服 "戰爭迷霧"。在開發作戰系統時,可靠性可能是生與死的區別。因此,最重要的是,這些武器系統(尤其是像人工智能這樣的新型系統)在被引入戰斗空間并被委托保護作戰人員之前,就已經以最高標準的可靠性和安全性進行開發。該項目利用系統工程方法來確定與人工智能及其在戰斗空間中的作用有關的潛在危險和風險。使用一個既定的風險管理框架(RMF),該團隊提供了一些緩解策略,開發人員在培養這項技術以用于未來的美國武器系統和程序時必須考慮。
現代戰場比以往任何時候都更加復雜,武器的技術進步也在加速。為了贏得下一場戰斗,對對手的行動有更快的反應時間至關重要。人工智能(AI)有可能使作戰人員超越敵人的決策周期,減少信息過載,從而克服 "戰爭迷霧"。人工智能可能的用途的一些例子包括幫助操作者決策的綜合戰斗管理輔助工具(BMAs),預測未來交戰結果的算法,以及識別朋友或敵人。
為了有效地運用人工智能,開發者必須了解與創造能夠像人類一樣 "思考 "的戰爭機器相關的好處和風險。這種風險并不局限于技術,還可能包括人類層面,例如當作戰人員不信任計算機為他們做決定時。另一個潛在風險的例子是,"訓練 "人工智能的數據可能是錯誤的,陳舊的,或沒有意義的,使其無效。此外,人工智能可能會 "失敗",在面臨另一個人工智能實體或BMA不同意的情況下,錯誤地選擇行動,導致威脅影響到友好目標。
在開發作戰系統時,可靠性可能是生與死的區別。因此,最重要的是,這些武器系統(特別是像人工智能這樣的新型系統)在被引入戰斗空間并被委托保護作戰人員之前,就已經以最高標準的可靠性和安全性進行開發。該項目利用系統工程方法來確定與人工智能及其在戰斗空間中的作用有關的潛在危險和風險。使用一個既定的風險管理框架(RMF),該團隊提供了一些緩解策略,開發人員在培育這項技術以用于未來的美國武器系統和流程時必須考慮。
該團隊還采用了系統工程來進行項目分析。首先,他們以問題為導向,確定需求。為了實現這一目標,團隊通過對該主題的前期工作進行廣泛的文獻回顧,了解了人工智能和機器學習(ML)到底是什么。這使該團隊能夠開發系統架構圖,以了解潛在的系統結構和層次。然后,該小組利用其成員的個人知識(如兩名在導彈防御局工作的成員和一名現役海軍陸戰隊軍官),為人工智能在戰斗空間的潛在應用開發用例場景。使用Innoslate開發人工制品,該團隊然后從這些用例中進行安全分析,以確定危險和故障模式。使用美國國家標準和技術研究所特別出版物800-37修訂版中的RMF對這些危險和失效模式進行了分析。這使團隊能夠為確定的危險制定緩解策略。
如上所述,團隊開發了三個用例:(1)彈道導彈防御場景;(2)一艘受到無人駕駛飛行器群攻擊的船只;(3)戰區級和戰略級人工智能系統產生相互矛盾的建議的場景。該團隊選擇這些情景的依據是它們可能對國家造成的影響程度(如配備核彈頭的彈道導彈)、它們的可能性(如大型海軍艦艇這樣的高回報目標),以及未來戰爭轉向遠征性質(如前沿作戰基地(FOB)和遠征先進基地)。每種情況下都有廣泛的故障模式和緩解策略(以及計算機資產的常見系統危險)。通過確定這些故障模式和緩解策略,該小組為未來針對其他可能性和情景的規劃提供了一個基線。
情景1的彈道導彈防御情況突出了作戰人員的不信任。在這種情況下,作戰人員根據自己的作戰概念,而不是人工智能的建議,對來襲的彈道導彈作出反應。與這種不信任相關的危害包括無效的反應時間、無效的反制措施、不正確的致命物體選擇以及反制措施將影響的不正確位置/時間。情景2的艦艇自衛情況側重于人工智能發展的訓練數據。該小組確定了諸如錯誤識別和無效反應等危險,以及與之相關的故障模式。情景3的主要危害來自于敵方成功攻擊友方FOB的主要事故。導致這種意外發生的危險是敵方的威脅沒有被解除,以及是否根本沒有參與。
該小組為每一種情況制定了緩解策略。情景1的首要策略是建立人工智能在決策過程中要遵守的時間標準,以及用戶的行動概念(CONOPS)要定期更新,并在部署前階段進行。對于情景2,在部署前采用適當的編程技術,定期(每月)更新訓練數據,并利用備份數據,可以防止誤認和無效的反應。情景3的危險可以通過在部署前階段的適當編程和聯合部隊的投入來減輕。
最后,小組建議進一步研究如何在戰術和行動層面實施AI/ML,AI/ML被用來收集新的或現有威脅的性能數據,國防部指導如何管理將使用AI/ML的系統的驗證和確認,并對AI/ML BMA進行服務水平和國防部水平的可靠性研究。在本報告結束時,讀者應該更好地了解AI/ML如何使作戰人員受益,以及必須采取哪些預防措施以確保其盡可能安全地發展。
自動化和人工智能的概念已經存在很多年了。Gregory Allen (2020)說,"盡管許多人工智能技術是舊的,但在過去的十年里,有一些合法的技術突破,大大增加了人工智能實用、強大和有用的應用的多樣性。" 機器學習(ML)是人工智能領域的一個子集,是最近許多研究工作的重點。圖3說明了自動化、人工智能和ML之間的聯系。
圖3. 自動化、AI和ML的維恩圖。
人工智能/機器學習有可能提高作戰人員對戰斗空間的態勢感知,改善時間緊迫和復雜威脅情況下的戰術決策過程和速度。在實施人工智能和ML的過程中,這些好處不會沒有潛在的安全風險。圖4描述了與在戰斗管理輔助工具中使用人工智能和ML有關的一些安全風險。自動系統容易受到網絡攻擊,操作人員可能會遇到信任或互動問題,特別是ML系統,很容易提供歪曲或有偏見的結果。
圖4. AI/ML系統的失敗模式實例。
人工智能作為一種具有廣泛用途的能力,對美國防部的吸引力越來越大。根據2018年國防部關于人工智能的戰略,"不實施這一戰略的代價是明確的。不采用人工智能將導致與我們的人民的防御無關的遺留系統,侵蝕盟友和合作伙伴之間的凝聚力,減少進入市場的機會,這將導致我們的繁榮和生活水平下降,以及對建立在個人自由基礎上的社會的日益挑戰"(國防部2018年)。特別是,鑒于彈道導彈防御、巡航導彈防御、高超音速導彈防御和防空的復雜性,空中和導彈防御(AAMD)任務領域特別值得關注。存在多種防御系統,以擊敗由人類作戰人員控制的各個飛行階段的威脅。在某些情況下,當決策空間因時間限制、信息挑戰(太多、太少或太差)或威脅挑戰(多種和/或不同的AAMD威脅)而變得復雜時,這些人類作戰人員變得不知所措。包括一個自動決策輔助工具來協助作戰人員,甚至承擔決策者的角色,是國防部許多地方正在探索的領域空間(國防部2018)。
以下兩個作戰視圖(OVs)描述了在戰略層面(圖5)和區域層面(圖6)使用帶有AI/ML的作戰管理輔助工具,以及嵌入的風險圖表,確定一些需要調查的安全風險。
圖5. 戰略層面OV-1-自動作戰管理輔助工具的安全性
圖6. 區域級OV-1-自動作戰管理輔助工具的安全性
鑒于人工智能和ML很有可能被整合到指揮和控制、作戰管理輔助工具和武器系統本身,這個頂點項目探討了為AAMD任務引入人工智能和ML能力作為自動戰斗管理輔助工具(BMA)的潛在危險。
技術的進步提高了戰爭的速度,需要更快的反應時間和人類決策。美國防部(2017)已經承認有必要獲得戰術決策輔助工具,以減輕指揮官和作戰人員的戰場決策壓力。在BMAs中使用自動化方法,包括AI和ML,可以幫助滿足多樣化的任務需求,以及協助從計劃到執行的過渡(美國防部2017)。然而,由于人工智能系統的非確定性和不斷發展的性質、復雜的人機互動以及與學習系統的開發和運行有關的挑戰,在未來的BMA中使用人工智能和ML會引入安全風險和新的故障模式。
該頂點項目的目標是研究與未來利用人工智能和ML為AAMD任務開發和實施BMAs有關的安全風險。具體來說,這項研究涉及以下問題。
與支持未來自動戰術決策和任務規劃輔助工具的人工智能系統的部署有關的安全風險是什么?
在戰術決策中使用的人工智能系統的安全相關問題可能會產生什么后果?
該小組確定了關鍵的利益相關者,并評估了他們的需求,如表1所示。利益相關者包括將從這項研究中受益的組織和終端用戶。特別是終端用戶(作戰人員),將從利用人工智能和ML能力的成功和安全的BMA的實施中受益。項目經理和工程師可以將本研究的結果納入為AAMD任務提供的安全AI/ML BMA的系統要求和設計中。
表1. 關鍵利益相關者
頂點團隊由以下NPS系統工程學生組成。Angela Hoopes, Luis Cruz, Ryane Pappa, Savanna Shilt, 和Samuel Wuornos。表2介紹了該團隊的角色和他們各自的組織。
表2. 項目團隊成員
團隊成員 | 角色 | 組織機構 |
---|---|---|
安吉拉-胡普 | 團隊負責人 | 系統評估小組首席工程師NH-04 0801,導彈防御局-宙斯盾BMD項目辦公室-工程局 |
路易斯-克魯茲 | 開發和集成負責人 | 導彈防御局以色列合作項目辦公室測試主任 |
瑞恩-帕帕 | 工程負責人 | 美國陸軍作戰能力和發展指揮部軍備中心(DEVCOM-AC)系統工程局DB-03 0801總工程師團隊負責人 |
薩瓦娜-希爾特 | 首席分析師 | 美國陸軍信息系統工程指揮部(USAISEC),計算機科學家NH-03 1550 |
塞繆爾-烏爾諾斯少校 | 首席編輯 | 美國海軍陸戰隊第3航空聯隊海軍陸戰隊重型直升機466中隊飛機維修員和飛行員 |
圖7中的團隊組織結構圖描述了A.ctual I.ntelligence團隊的高層組織結構,包括頂點顧問、團隊領導、第二讀者、建模領導、工程領導、首席編輯和首席分析師等角色。
圖7. 團隊組織
組織結構圖中每個角色的職責是根據整個頂點項目過程中要完成的關鍵研究和活動來確定的。表3列出了每個團隊成員以及他們的角色和責任。
表3. 項目團隊成員
該團隊利用系統工程的方法來進行本項目的分析。首先,他們以問題為導向,確定需求。為了實現這一目標,團隊專注于學習人工智能和ML到底是什么,對該主題的先前工作進行廣泛的文獻回顧。這使團隊能夠開發系統架構圖,以幫助他們了解潛在的系統結構和層次。然后,該團隊利用其成員的個人知識(如兩名在導彈防御局工作的成員和一名現役海軍陸戰隊軍官),為人工智能在戰斗空間的潛在應用開發用例場景。使用Innoslate開發人工制品,該團隊然后從這些用例中進行安全分析,以確定危險和故障模式。然后使用國家標準和技術研究所特別出版物800-37修訂版中的風險管理框架(RMF)對這些危險和失敗模式進行分析。這使該小組能夠為所確定的危險制定緩解策略。
第一章提供了項目的介紹和背景。它介紹了問題陳述、項目目標、利益相關者描述、團隊組織和項目方法。
第二章提供了團隊研究的以往作品的回顧。這些作品提供了關于機器學習、人工智能和作戰人員決策的關鍵背景信息。本章介紹了為什么這些作品與本項目有關。
第三章涵蓋了對導彈防御中涉及人工智能/ML的三個用例場景的關鍵分析。這些用例包括彈道導彈防御、海軍軍艦自我防御和戰略與戰區偏見。該章詳細討論了已確定的故障模式和危害,為風險評估提供了一個基線。
第四章以第三章的分析為基礎,對每個用例已確定的故障模式和危害進行了深入的風險分析。團隊利用這一風險分析,提供緩解策略,供未來的開發者考慮。
第五章討論了前幾章得出的結論,并討論了在導彈防御和未來作戰系統和進程方面,人工智能/ML的發展/采購的潛在途徑。
美國海軍陸戰隊正在探索使用人機協作來控制前線部署環境中的無人駕駛航空系統(UAS),其任務范圍廣泛,包括情報、監視和偵察(ISR)、電子戰(EW)、通信中繼和動能殺傷。美國海軍陸戰隊設想使用未來的垂直起降平臺(VTOL)來支持混合戰爭任務并實現軍事優勢。對于美國海軍陸戰隊的混合戰爭應用,以實現任務優勢和戰爭主導權,美國海軍陸戰隊需要了解VTOL機組和無人機系統之間錯綜復雜的人機互動和關系,以獲得戰斗空間態勢感知,并有效地計劃和執行針對常規和不對稱威脅的旋轉翼行動。這項研究的重點是美國海軍陸戰隊在海洋環境中的打擊協調和偵察(SCAR)任務,以促進遠征基地先進作戰(EABO)在沿岸地區。有多種復雜的功能必須加以考慮和評估,以支持人機協作互動,提高任務的有效性:任務規劃、移動和滲透、區域偵察、偵察戰斗交接和過渡。
這份頂點報告探討了SCAR任務期間三個系統之間的人機協作:UAS、VTOL和地面控制站(GCS)。該研究從VTOL項目的文獻回顧開始,研究了美國海軍陸戰隊SCAR任務戰術和用于促進EABO的理論概念。此外,它還包括對自主性和自動化、人工智能和機器學習的研究。通過使用合作設計模型來探索這三個系統的人機協作互動和過程,文獻回顧探討了如何使用基于三個因素的相互依賴性分析(IA)框架來確定人類執行者和機器團隊成員之間的相互依賴性:可觀察性、可預測性和可指導性。
通過基于模型的系統工程(MBSE)工具,將SCAR任務的高級功能分解為分層次的任務和子任務,系統分析被用來支持聯合設計方法。根據Johnson(2014)的說法,合作設計方法研究了相互依賴的概念,并使用IA框架作為設計工具。IA框架捕捉了主要執行者和支持團隊成員之間的互動,以發展支持每個主要任務和分層子任務的所需能力,從而產生HMT要求。這份頂點報告分析了兩種選擇。第一個方案認為UAS是主要執行者,VTOL和GCS是輔助團隊成員。第二種方案認為VTOL是主要執行者,UAS和GCS是輔助團隊成員。基于這兩種選擇,IA框架評估了17個主要任務、33個分層子任務和85個執行SCAR任務的所需能力。
此外,研究發現需要一個強大的數字任務規劃系統,如升級后的海軍陸戰隊規劃和行動后系統(MPAAS),通過存儲以前的任務和經驗教訓的數據來促進機器學習。美國海軍陸戰隊將面臨無人機系統的處理能力和信息存儲方面的挑戰。應盡一切努力增加UAS的處理能力。必須實施一個有效的主要、備用、應急和緊急(PACE)通信計劃,以確保UAS、VTOL和GCS之間所有通信平臺的冗余。美國海軍陸戰隊必須實施支持信任、提供快速反饋和簡單操作的接口。
最后,為了準確評估VTOL、UAS和GCS之間的HMT要求,頂點報告促成了一個探索性實驗的發展,該實驗將在海軍研究生院(NPS)建模虛擬環境和模擬(MOVES)實驗室使用,以促進未來的研究。制定了操作要求和測量方法,以確定HMT要求的有效性。
這項頂點研究為在SCAR任務中執行VTOL/UAS混合行動的人機互動復雜性提供了明確的證據。該頂點研究確定了使用系統分析和協同設計作為一種有效的方法,通過IA框架促進人機協作需求的發展。此外,該研究確定了對復雜的自主性和技術準備程度的需求,這可能是目前還沒有的。頂點建議美國海軍陸戰隊繼續研究人機協作,并利用SCAR任務探索性實驗來進一步完善和研究VTOL/UAS的高級系統要求,以支持具有前沿部署的UAS的混合行動,重點是實現4級自主權。
現代戰術戰爭需要迅速而有效的決策和行動,以便在經常是高度動態和復雜的戰區保持競爭優勢。需要考慮的因素的數量因不確定性、事件的快速發展和人為錯誤的風險而放大。自動化、人工智能和博弈論方法的潛在應用可以為作戰人員提供認知支持。這項研究以自動兵棋推演輔助決策的形式探索了這些應用。該團隊為這個未來的系統開發了一個概念設計,并將其稱為兵棋推演實時人工智能輔助決策(WRAID)能力。
頂點項目的目標是探索自動化、人工智能和博弈論的應用,作為支持未來WRAID能力的方法。該團隊為WRAID能力開發了需求、概念設計和操作概念。該小組確定并探索了可能對未來實施WRAID能力構成障礙的挑戰性領域。該小組調查了與使用人工智能來支持戰爭決策有關的倫理挑戰和影響。
本報告首先對與WRAID能力相關的主題進行文獻回顧。文獻回顧從人工智能的回顧開始,提供了一個關于人工智能如何工作以及它能夠完成什么類型任務的概述。文獻綜述探討了人機協作的方法,以支持未來指揮官和人類用戶與WRAID系統之間的互動。需要翻譯指揮官的意圖,并讓WRAID將有意義的輸出傳達給指揮官,這需要一個強大的界面。審查包括傳統的兵棋推演,以研究目前的模擬兵棋推演是如何進行的,以便深入了解,未來的WRAID能力如何能夠實時復制兵棋推演的各個方面,并認為以前的兵棋推演可以為人工智能和機器學習(ML)算法的發展提供訓練數據。ML算法的訓練需要大量的代表性數據。文獻回顧研究了人類的認知負荷,以深入了解人類大腦的認知技能和上限;并確定人類思維的極限,以顯示人工智能可能提供的支持。文獻綜述中涉及的最后一個主題是,傳統的計劃和決策,以了解目前在軍事上如何制定戰術行動方案。
該小組進行了需求分析和利益相關者分析,探索WRAID能力如何支持作戰人員。該小組在需求分析的基礎上為WRAID系統開發了一套需求。這些要求被歸類為:硬件/軟件,人機界面,和道德規范。第一階段的分析結果包括 (1)戰爭的復雜性需要發展一種未來的WRAID能力,這種能力利用自動化方法,包括人工智能、ML和博弈論,(2)WRAID能力需要大量的計算能力和復雜的軟件算法,(3)實現未來WRAID系統的挑戰將是技術和道德的。
未來WRAID系統的概念設計是基于需求分析的。概念設計被記錄在一套系統模型中,包括背景圖、系統視圖、功能工作流程圖和操作視圖。該團隊開發了一個作戰場景,以支持對WRAID能力如何在作戰中使用。
在開發WRAID的過程中,預計會有一些路障。開發WRAID系統的技術是存在的,然而,研究小組發現數據挑戰、人工智能訓練、程序限制和當前系統工程的局限性將是需要解決的障礙。數據挑戰指的是獲得足夠的數據集的能力,這些數據集代表了訓練ML算法所需的真實世界的戰術行動和兵棋推演分析。程序性挑戰包括國防部實施網絡安全、機密數據、數據庫訪問和信息分配協議的能力。系統工程方面的障礙是需要新的方法來設計安全和可靠的人工智能系統,如WRAID能力。將需要SE方法來處理不可預見的故障模式,并在系統生命周期的早期確定根本原因。
對像WRAID能力這樣的人工智能系統的倫理考慮是系統發展的一個重要因素。開發系統以取代倫理學,將使系統更有可能被部署。有幾個有道德問題的自主武器系統被拉出來作為WRAID能力的道德對話的基礎。通過一個示例場景,對道德狀況進行定性分析,以了解在部署WRAID能力時可能出現的道德問題。倫理學在未來的技術中發揮著巨大的作用;從一開始就考慮到倫理學,建立技術是很重要的。
未來的重點需要放在繼續對想象中的WRAID系統采取正規的系統工程方法。WRAID系統需要一個強大的數據集,需要收集和注釋;收集的定性兵棋推演數據越多,WRAID系統的可行性和準確性就越高。與軍事部門的合作對于最大化WRAID的利益至關重要,例如情報和偵察組織。WRAID的模擬將是完善系統要求和創建現實模型的關鍵。關于如何使用WRAID的培訓和文檔應該同時開發,所以利益相關者,特別是指揮官已經準備好,知道如何使用這個新工具。未來的研究領域包括認知工程、基于正式模型的系統工程和人機協作。
隨著目前技術進步的速度和外國的目標,人工智能將在未來的沖突和戰爭中發揮作用。自上而下的指令將需要設計和實施WRAID能力:提供大量的資源,解決操作和文化變化,重組系統工程,并確保網絡安全和收購變化。實現未來的WRAID能力并不是一個微不足道的任務。然而,它對確保現在和未來的戰斗空間優勢至關重要。
今天介紹的是美國蘭德公司、耶魯大學聯合發表于The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology(國防建模與仿真學報:應用、方法、技術)期刊的論文“Artificial intelligence for wargaming and modeling”。
摘要:
在本文中,討論了如何將人工智能 (AI) 用于與擁有大規模殺傷性武器和其他涉及太空、網絡空間和遠程精確度的高端能力的國家發生沖突的政治軍事建模、模擬和兵棋推演武器。人工智能應該幫助兵棋推演的參與者和模擬中的代理人了解在不確定性和錯誤印象下作戰的對手的可能觀點、看法和計算。人工智能的內容應該認識到升級的風險,導致沒有贏家的災難,但也有可能產生有意義的贏家和輸家的結果。我們討論了對設計和發展的影響使用多種類型的 AI 功能的模型、模擬和兵棋推演。我們還討論了使用模擬、歷史和早期兵棋推演的理論和探索性工作為兵棋推演決策輔助工具,無論有無人工智能。
關鍵詞:
人工智能,兵棋推演,建模與仿真,認知建模,決策,深度不確定性下的決策,海量場景生成,探索性分析與建模