亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

最近機器學習(ML),或“人工智能(AI)的第三波”的成功,是建立在優化和統計領域的計算方法,大規模訓練數據和計算能力的可用性,以及部分模仿人類認知功能(如卷積網絡)的基礎上的。然而,目前的機器學習技術在實際應用中可能非常低效,并且容易出現不完美的數據,例如,當數據有噪聲、無標記、不平衡或包含冗余、偏差、協變量偏移等時。另一方面,人類學習在規劃和選擇不同學習階段的訓練內容時更具戰略性和適應性。與在所有階段對相同數據的隨機小批次重復訓練的機器學習技術相比,人類學習在解決這些實際挑戰時,在效率和魯棒性方面表現出巨大優勢。因此,如何制定機器學習的戰略性“課程”成為彌合人類智能與機器智能之間鴻溝的重要挑戰。課程學習是一種基于人類學習策略的、適用于不同學習階段的數據選擇方法,即先選擇較容易的樣本,再逐步增加較難的樣本。然而,人類用于設計課程的培訓材料的特性不僅限于難度,還可以包括多樣性、一致性、代表性、激勵、對未來培訓的影響或效用等。在機器學習中,開發高效準確的得分函數來衡量這些屬性及其對最終/以后學習目標的貢獻是具有挑戰性的。此外,鑒于分數函數,課程策略如何規劃多個訓練階段并根據每個階段自適應地調整選擇標準仍然是一個公開的挑戰。課程學習的另一個主要挑戰是缺乏模型參數和課程聯合優化的原理和理論激勵公式。如果沒有這樣的公式,就很難將選擇標準和分數函數與課程學習的潛在目標聯系起來,例如,訓練進度,泛化表現等。因此,很難解釋一個課程何時以及為什么可以提高ML。而且,在開發課程學習算法時,需要針對不同的ML應用,專門設計不同學習階段的選擇標準的規劃和調度,例如半監督學習、集成學習等。為了實現一個實際有效的算法,研究是否以及如何將為特定應用開發的現有技術與課程結合起來也很重要。本文旨在解決上述關鍵挑戰。它由四部分組成。在第一部分中,我們介紹了幾個新的課程學習公式。例如,我們可以將人類的學習策略轉換為離散-連續優化,并在訓練過程中聯合優化模型和課程,如第2章和第5章所示。我們還可以從一個新的課程學習目標中推導出權重或分數的解析形式,如第3章和第4章所示。此外,我們在第6章討論了幾個潛在的公式,以供未來的研究。在第二部分中,我們將深入探討在課程學習中起著重要作用的分數函數設計。例如,所選數據的多樣性在減少冗余和鼓勵早期探索方面發揮著至關重要的作用。除了多樣性,我們主要關注第8章中一類新的得分函數,它基于樣本在整個歷史上的訓練動態,而不是其在特定步驟的瞬時反饋。與廣泛應用的瞬時分數相比,它們顯著減少了分數評估所需的額外計算,并且由于其可區分的動態模式,它們在分配信息量最大的訓練樣本方面更準確。在第三部分中,我們基于所開發的公式和分數函數構建了實用的課程學習算法。這些算法涵蓋了幾個重要的機器學習問題,包括監督學習、半監督學習、噪聲標簽學習、集成學習等。在每個問題的算法中,研究和比較了不同的規劃或調度策略,這些策略決定了選擇標準如何在不同的學習階段發生變化。通過詳細的實證分析和比較,驗證了所提出調度策略的有效性。為在每個問題上實現最先進的性能,研究了每個問題的課程和現有技術之間的相互作用,然后在算法設計中結合它們的優勢。在第四部分中,在每個應用問題的基準數據集上,評估了所提出的方法,并與各種強大的基線進行了廣泛的實驗比較。與設計的課程相結合的方法在所有應用中都持續提高了訓練效率和最終測試的準確性。值得注意的是,課程在不完美數據的更具有挑戰性的應用上表現出更顯著的優勢,如半監督學習和噪聲標簽學習。第18章總結了本文的主要貢獻。除了提出的公式、分數函數和課程學習的算法外,還強調了在工作中彌合差距并結合人類啟發式方法、理論公式和經驗算法的優勢的努力。此外,還列舉了未來工作中幾個潛在的研究方向,這些方向可以顯著拓展課程學習的現有方案和應用領域,并深入理解機器學習中的訓練動力學及其與人類教育和認知的聯系。

付費5元查看完整內容

相關內容

具有從過去的經驗中學習并根據環境或背景調整行為以實現特定目標的能力,是真正智能實體的特征。為了實現這一目標,開發高效、穩健和可靠的學習算法是研究的活躍領域,也是實現人工通用智能的重要步驟。在本論文中,我們研究了在兩種不同背景下進行最優決策的學習算法,第一部分是強化學習,第二部分是拍賣設計。

強化學習(RL)是機器學習的一個領域,關注的是智能體應該如何在環境中行動以最大化其隨時間累積的獎勵。在第二章中,受統計物理學的啟發,我們開發了一種新穎的強化學習方法,這種方法不僅學習具有增強期望屬性的最優策略,而且為最大熵強化學習帶來了新的見解。在第三章中,我們使用貝葉斯觀點來解決強化學習中的泛化問題。我們展示了環境動態的不完美知識實際上將一個完全觀察到的馬爾可夫決策過程(MDP)轉變為一個部分觀察到的馬爾可夫決策過程(POMDP),我們稱之為認知POMDP。根據這個觀察,我們開發了一種新的策略學習算法LEEP,它具有改進的泛化屬性。

拍賣是組織購買和銷售產品與服務的過程,具有很大的實際意義。設計一個激勵兼容、個體理性的拍賣以最大化收入是一個具有挑戰性且難以解決的問題。最近,有人提出了一種基于深度學習的方法,從數據中學習最優拍賣。盡管取得了成功,但這種方法存在一些局限性,包括樣本效率低、難以泛化到新的拍賣以及訓練困難。在第四章中,我們構建了一種保持對稱性的神經網絡結構,稱為EquivariantNet,適用于匿名拍賣。EquivariantNet不僅樣本效率更高,而且能夠學習到在其他設置中泛化性能良好的拍賣規則。在第五章中,我們將拍賣學習問題提出為一個雙人博弈的新穎表述。由此產生的學習算法ALGNet更容易訓練,更可靠,更適合非平穩設置。

付費5元查看完整內容

貝葉斯不確定性的量化是許多機器學習應用的關鍵元素。為此,開發了近似推理算法[176],以相對較低的成本執行推理。盡管最近將近似推理擴展到"大模型×大數據"機制取得了進展,但仍存在許多公開挑戰。例如,如何正確地量化復雜、不可識別的模型(如神經網絡)的參數不確定性?如何正確處理由缺失數據引起的不確定性,并以可擴展的方式進行學習/推理?此外,如何優化地收集新信息,使缺失數據的不確定性進一步減少,從而做出更好的決策?本文對這些研究問題提出了新的研究方向和新的技術貢獻。本文分為兩個部分(主題A和主題B)。在主題A中,我們考慮在監督學習設置下量化模型的不確定性。為了克服參數空間推理的一些困難,本文提出了一個新的研究方向,稱為函數空間近似推理。也就是說,通過將監督概率模型視為隨機過程(對函數的度量),我們現在可以通過另一類(更簡單的)隨機過程來近似預測函數的真實后驗。為函數空間推理提供了兩種不同的方法,并證明它們返回更好的不確定性估計,以及在復雜模型上改進的經驗性能。在主題B中,我們考慮了無監督學習環境下缺失數據不確定性的量化。本文提出一種基于深度生成模型的缺失數據不確定性量化新方法。它允許我們擺脫傳統方法的計算負擔,并執行準確和可擴展的缺失數據填補。此外,利用生成模型返回的不確定性估計,提出了一個信息論框架,用于高效、可擴展和個性化的主動信息獲取。這使我們能夠最大限度地減少缺失數據的不確定性,并根據新信息做出改進的決策。

付費5元查看完整內容

機器學習在過去十年取得了重大進展。其最成功的范式是深度神經網絡,由連續表示層組成,其參數通過梯度下降在大規模數據集上進行優化。

深度神經網絡在許多任務上取得了卓越的性能,如物體識別、語言理解和自動駕駛。然而,他們仍然在推理任務中掙扎,這些任務通常需要操作符號并將多個步驟組合起來,例如,求解數學方程或編寫計算機程序。在這篇論文中,我們的目標是彌合這一差距,并教機器以精確、系統、可解釋和魯棒的方式進行推理,以應對現實環境中的模糊性。**本文采用神經符號方法,結合機器學習和符號推理的互補優勢。符號推理具有精確性和系統性。**但它已被限制在可嚴格形式化的領域。相比之下,主要的機器學習方法很靈活,但眾所周知難以解釋,需要大量數據,并且無法在訓練分布之外進行泛化。集成兩種方法的優勢對于構建具有精確和系統泛化能力的靈活推理機至關重要。具體而言,本文從兩個角度研究了神經符號推理。首先,將機器學習應用于與符號推理相關的任務,如自動定理證明(第2章)。其次,將符號推理啟發的歸納偏差引入機器學習模型,以提高其可解釋性、泛化性和數據效率(第3章和第4章)。結果強調了(1)神經符號模型架構,(2)在適當的抽象水平上進行推理,以及(3)明確的、推理的組合表示,如符號證明。 //dataspace.princeton.edu/handle/88435/dsp015q47rr958

付費5元查看完整內容

深度神經網絡與強化學習(RL)的結合在解決其他棘手的學習任務方面顯示出巨大的前景。**然而,深度強化學習的實際演示仍然很少。將深度強化學習用于給定任務的挑戰可以分為兩類,大致上是“從經驗中學習什么?”和“從什么經驗中學習?”在本文中,我描述了解決第二類問題的工作。**具體來說,采樣包含與學習任務相關信息的動作、狀態和軌跡的問題。我從算法設計和任務復雜性的三個層次來研究這個挑戰,從算法組件到打破常見RL慣例的混合組合算法。在第一章中,我描述了穩定高效的動作采樣工作,以優化連續值動作的Q函數。通過將基于樣本的優化器與神經網絡近似相結合,可以獲得訓練、計算效率和精確推理的穩定性。在第二章中,我描述了在獎勵感知探索方面的工作,即發現常見采樣方法不足的理想行為。教師"探索"智能體發現狀態和軌跡,使學生"利用"智能體從這些經驗中學習到的數量最大化,并能使學生智能體解決其他不可能的困難任務。在第三章中,我描述了將強化學習與啟發式搜索相結合的工作,用于遷移模型已知的任務領域,但狀態空間的組合數學對于傳統搜索來說是難以解決的。通過將深度Q學習與最佳優先樹搜索算法相結合,可以用比普通搜索算法或僅使用強化學習更少的樣本來找到程序合成問題的解決方案。最后,總結了這項工作的主要收獲,并討論了強化學習中高效采樣的擴展和未來方向。

//dataspace.princeton.edu/handle/88435/dsp01x346d733f

付費5元查看完整內容

現代強化學習(RL)方法在各種應用中取得了巨大的成功。然而,由于過度的樣本復雜性負擔,具有大狀態空間和長規劃時界的強化學習問題仍然具有挑戰性,而我們目前對這類問題的理解相當有限。此外,RL中還有一些經典框架無法解決的重要問題。本文研究了上述問題,以建立對現代RL方法的更好理解。本文主要分為以下三個部分:

**第一部分:具有長期規劃時界的RL。**學習為長期時界做計劃是強化學習的一個核心挑戰,而一個基本問題是了解強化學習的難度如何隨著時界的增加而增加。在本文的第一部分中,我們證明了表格式強化學習是可能的,其樣本復雜度完全獨立于規劃周期,因此,長周期強化學習并不比短周期強化學習更難,至少在極大極小意義上是這樣。

**第二部分:具有大狀態空間的RL。**在現代RL方法中,函數逼近方案被部署來處理大型狀態空間。根據經驗,將RL算法與神經網絡相結合進行特征提取,在各種任務上取得了巨大的成功。然而,這些方法通常需要大量的樣本來學習一個好的策略,并且不清楚此類方法是否有基本的統計限制。在本文的第二部分,通過理論分析和實驗,研究了允許樣本有效強化學習的特征表示能力的充要條件。

**第三部分:其他環境下的強化學習。**經典的強化學習范式旨在最大化智能體獲得獎勵值時的累積獎勵。盡管能夠形式化一個龐大的序列決策問題族,但仍有一些重要的應用無法歸入經典框架。在本文的第三部分,我們研究了兩種新的設置,即無獎勵探索設置和具有一般目標函數的規劃,它們泛化了經典的框架。

付費5元查看完整內容

引言

機器學習 (ML) 是人工智能 (AI) 的一個分支,它從數據中學習以識別模式、做出預測或做出決策,而人工干預最少。所有的機器學習技術都以數據為輸入,針對不同的任務,即分類、回歸、聚類、降維和排序等。

受益于海量數據和高計算資源,機器學習應用在我們的日常生活中變得無處不在。這些應用程序將人們從重復和復雜的工作中解放出來,并允許他們輕松獲取有用的信息。例如,人臉識別系統可以幫助人類進行識別和授權。搜索引擎通過索引、搜索和匹配來收集和組織與給定查詢相關的信息。導航應用程序為自動駕駛汽車推薦到達目的地的最佳路徑。

計算機視覺 (CV) 研究計算機如何獲取、處理、分析和理解數字圖像。 ML 的進步促進了 CV 的發展,尤其是圖像分類任務。深度學習(DL)是一種強大的機器學習技術。它允許設計可以自動識別圖像視覺內容的深度神經網絡(DNN)。從數千張動物、地點、人、植物等圖像中學習,DNN 能夠以高可信度檢測未知圖像包含的內容。

1.1 深度學習與深度神經網絡

在過去的幾十年中,DNN 在圖像分類領域迅速發展。卷積神經網絡 (CNN) [LBBH98] 獲得有用的語義視覺特征。典型的深度 CNN 具有許多層和復雜的架構,例如 AlexNet [KSH12]、Inception [SVI+16]、ResNet [HZRS16a]、DenseNet [HLVDMW17] 等。這些是少數著名的 DL 或 DNN 示例。這些網絡從圖像的高維表示空間計算梯度,以找到如何分離類別。最近的 DNN 模型以高置信度實現了分類、檢測和分割任務。 DNN 模型在 ImageNet [RDS+15](一個具有挑戰性和現實性的數據集)上的性能接近于人類。

DNN 的性能通常與其深度有關:網絡越深,性能越好。然而,由于大量層的深度堆疊以獲得語義視覺特征,DNN 的高復雜性導致訓練困難。這可能是由于反向傳播期間梯度消失,稱為梯度消失問題。存在許多 DNN 原始架構的變體,試圖規避此類問題。這包括來自 ResNet [HZRS16a] 和Transformer [VSP+17] 的剩余單元。在訓練過程中跳過層的剩余單元有效地簡化了網絡,加快了訓練過程并提供了探索更大的特征空間。然而,它也使 ResNet 更容易受到擾動。 Transformer [VSP+17] 使用自我注意的概念,幫助網絡專注于重要特征。總體而言,DNN 的所有這些進步都增強了分類等任務的性能。 DL 不僅成功地處理了大量圖像數據,而且還設法處理包含噪聲、遮擋或其他視覺偽影的圖像。

1.2 對抗樣本

2013 年,研究人員發現,對圖像進行輕微修改會導致分類器做出錯誤的預測 [SZS+13]。令人驚訝的是,這些修改幅度很小,人眼幾乎察覺不到。這一發現揭示了 DNN 的脆弱性

對抗性現象廣泛影響 ML。這會影響不同的媒體,例如圖像[SZS+13、GSS14、TPG+17]、音頻[CW18、YS18、YLCS18]和文本[RDHC19、ZSAL20、ASE+18]。此外,攻擊者不僅會生成保存為數字數據的對抗性樣本,例如圖像,在計算機中,但也可以在物理世界中創建對抗性樣本,例如對抗性補丁 [TVRG19]。這些是打印的圖片和 3D 對象 [KGB16, SBBR16],由相機等視覺傳感器捕獲,并影響使用它們的 ML 應用程序。

對抗性擾動是一種無形的擾動,它會誤導 DNN 將擾動的輸入分類為不正確的類別。例如,通過對抗性擾動,可以使分類器將貓分類為狗,如圖 1.1 所示。此外,對抗性現象在分類器之間轉移。利用 DNN 的某個漏洞的攻擊可能會欺騙其他 DNN,無論他們使用什么架構或訓練集。

圖 1.1 – 此圖片來自 Nicholas Carlini 的攻擊機器學習演講:關于神經網絡的安全性和隱私。它通過對抗性擾動顯示貓的圖像被歸類為狗。

將一個視覺內容修改為另一個是一個大問題 [EEF+18, TVRG19, TRC19a, YLDT18, GSS14]。攻擊者的目標是欺騙分類器做出不適當決策,可以方便地進行對抗性擾動。這是令人不安和危險的,尤其是當網絡決策危及生命時。例如,將特定形狀和顏色的小紙片放在一些路標上會阻止它們被識別 [BMR+17]。穿著具有特定紋理的徽章裝飾的布會使人對旨在檢測行人存在的算法不可見 [XZL+20]。考慮到所有這些潛在風險,了解對抗樣本的基本問題以確保算法公平、正確地處理內容至關重要。對抗性機器學習的典型研究任務包括攻擊和防御。研究人員研究這兩項任務是為了 i) 做出實際貢獻和 ii) 理解這一現象。

1.2.1 攻擊

攻擊旨在對目標 DNN 產生對抗性擾動。他們將不可見性和錯誤分類形式化為優化問題。攻擊的難度取決于攻擊者是否知道網絡的架構。基本情況是攻擊者可以訪問網絡的架構和參數,即白盒環境。他們受益于這些信息來制造對抗性擾動。

在不知道架構和參數的情況下攻擊網絡,即黑盒設置,是一個更復雜的情況。可遷移性意味著對抗樣本在不同的網絡和不同的機器學習模型[GSS14,TPG+17]中泛化得非常好。這表明為欺騙局部分類器而生成的對抗樣本也有一定的概率欺騙未知分類器。它提供了一種在黑盒環境中攻擊 DNN 的工具。

即使約束很嚴格,現有的攻擊也會成功地產生對抗性擾動。這些非同尋常的對抗性擾動表現出對抗性現象的不同特性和 DNN 的脆弱性。令人驚訝的是,例如,單像素攻擊 [SVS19] 通過僅修改輸入圖像的一個像素來改變網絡的預測。通用擾動 [MFFF17, HD18] 表明,一個特定的擾動足以導致給定數據集中的每張圖像都被錯誤分類。

1.2.2 防御

防御旨在提高 DNN 針對對抗性攻擊的魯棒性。他們要么添加一個額外的組件來幫助網絡抵御對抗性攻擊,要么提高網絡的內在魯棒性。

引入額外組件的防御保持網絡不變。對圖像應用預處理是該類別中的一種特殊防御方法。他們將對抗性擾動視為一種特殊類型的噪聲,并嘗試通過轉換 [MC17, GRCvdM17, STL+19] 將其去除。將對抗樣本視為惡意數據的人使用檢測器來識別對抗樣本并拒絕或糾正它們 [XEQ17, LLS+18]。這些防御很簡單的,很容易適應給定的網絡,但是,在白盒環境下通常很容易受到攻擊 [ACW18]。

提高內在魯棒性的防御嘗試改進訓練方法 [GSS14, MMS+17]、增強架構 [PMW+16] 或高級損失函數 [HXSS15, MMS+17, TKP+17]。對抗性訓練 [GSS14, MMS+17] 作為該類別的典型防御,通過將對抗性樣本作為訓練數據的一部分來改進訓練方法。這種防御背后的假設是,DNN 的脆弱性是由于訓練數據的不足造成的。這些防御措施在魯棒性和準確性方面都表現不錯,但是通常很復雜,因為它們需要從頭開始訓練網絡。

1.2 本論文貢獻

在本論文中,我們試圖理解對抗性現象。我們探討了如何生成對抗樣本以及如何保護它們。通過對對抗性 ML 的多個方面的分析,我們發現要研究的關鍵要素包括:

速度。速度對于對抗性攻擊和防御都很重要。盡管耗時的過程(例如優化創建對抗性擾動和訓練 DNN 模型)會產生高質量的結果,但如果需要很長時間來生成對抗性樣本、驗證輸入或構建魯棒的模型是不可行的。

不可見性。失真的大小被廣泛用于估計擾動的不可見性,但它并不等同于不可見性。不可見性表明從神經學和心理學的角度來看,人類無法察覺這種擾動。在計算機科學中衡量不可見性仍然是一個懸而未決的問題。

失真。作為衡量不可見性質量的替代計劃,許多攻擊估計了失真的程度。當幅度很小時,人類幾乎不會感知到擾動。失真的大小對防御也很重要。通常,對具有較大失真的對抗性擾動的防御對對抗性影響更為穩健。它是對抗性攻擊和防御的重要指標。

可轉移性。可轉移性描述了為欺騙目標網絡而生成的對抗性樣本成功欺騙其他網絡的可能性。可轉移性對于黑盒環境下的攻擊至關重要,即攻擊者只能獲取網絡的輸入輸出。

我們的工作受到速度、失真和不可見性的概念的啟發。我們測試了對抗性擾動的可轉移性。為了提高對抗性擾動的質量,我們在兩個方向上工作,即產生不可見的對抗性擾動和有效地創建低幅度的對抗性擾動。為了防御攻擊,我們提出了一種輕量級算法,該算法在魯棒性和準確性方面都取得了不錯的表現。我們強調速度和性能。

為了讓讀者更好地理解,我們首先在第 2 章中概述了 DL 中的對抗性上下文。這包括 1)理解我們的工作所需的 ML 和 DNN 的最低知識,2)對抗性問題的基本定義和3) 對現有相關工作的高級審查,包括產生對抗性擾動和增強對抗攻擊的魯棒性。

成功攻擊率和失真幅度是衡量對抗性擾動質量的兩個標準。在第 3 章中,我們介紹了對抗性擾動的標準評估,包括數據集、網絡和評估指標。此外,在第 3.3 節中,我們提出了我們的評估指標,允許在有針對性的失真攻擊和有針對性的成功攻擊之間進行公平比較。

我們研究了兩種執行攻擊的算法,以便了解不可見性(見第 4 章)和創造速度(見第 5 章)。

平滑的對抗性擾動。在第 4 章中,我們研究了不可見性的定義,并將其表述為一個約束函數,以便可以直接將其添加到現有攻擊中。我們推測,當擾動像素與其相鄰像素之間的相似性類似于其原始圖像的相似性圖時,對抗性擾動是不可見的。我們成功地產生了平滑的對抗性擾動,并且令人驚訝地產生了少量的失真。這些平滑的對抗性擾動是肉眼看不到的,即使對抗性樣本被人為放大。

快速、低失真的對抗樣本。為了在不降低對抗樣本質量的情況下加速攻擊,我們利用對抗擾動的具體知識改進了優化算法。在第 5 章中,我們提出了邊界投影(BP)攻擊,它根據當前的解決方案改變搜索方向。當當前解決方案不是對抗性的時,BP 攻擊會沿著梯度方向長搜索,以引導當前解決方案跨越網絡邊界。當當前解決方案是對抗性的時,BP 攻擊沿著邊界搜索以引導當前解決方案以減少失真的幅度。與最先進的攻擊相比,BP 攻擊避免了對僅跟隨梯度引起的振蕩計算的浪費。這為 BP 攻擊贏得了速度。實驗表明,BP攻擊成功地產生了幅度很小但攻擊成功率很高的對抗性擾動。

為了更全面地了解對抗性 ML 問題,我們研究了防御策略。第 6 章介紹了補丁替換防御。

補丁更換。與對抗性擾動相比,DNN 對隨機噪聲的魯棒性更強。為了理解它,我們研究了通過 DNN 的失真幅度(隨機噪聲/對抗性擾動)的轉變。受 DNN 內部隨機噪聲和對抗性擾動的不同行為啟發,我們在第 6 章提出了一種名為補丁更換的反應性防御。補丁替換試圖通過用合法訓練數據中最相似的鄰居替換可疑輸入(圖像/特征)的補丁,來消除推理中的對抗性影響。即使攻擊者知道補丁替換防御,訓練數據的使用也會增加攻擊的復雜性。由于我們不僅考慮圖像,還考慮網絡的中間特征,因此補丁替換比其他基于輸入轉換的防御更為穩健。一個缺點是在訓練時毒化數據集會給補丁替換策略帶來麻煩。這連接到對抗性后門。

最后,我們給出了結論,并在第 7 章提出了一些觀點。簡而言之,我們在理解對抗性 ML 問題方面的貢獻是 i)在另一個視圖中定義不可見性,并提出一種在我們的定義下產生平滑對抗性擾動的方法; ii) 提出一種算法,以高成功率和低失真快速生成對抗樣本; iii),我們成功地提出了一種不復雜的反應式防御,并在不嚴重降低網絡準確性的情況下提高了對攻擊的魯棒性。

圖 5.8 – ImageNet 上針對 InceptionV3 的原始(左)、對抗(頂行)和縮放擾動(下)圖像。這五幅圖像是需要最強失真的 BP 最差的 5 幅圖像,但這些圖像小于所有其他方法所需的失真(紅色表示偽造的圖像不是對抗性的)。擾動被反轉(低為白色;高為彩色,每個通道)并以相同的方式縮放以進行公平比較。

付費5元查看完整內容

盡管最近在深度學習方面取得了進展,但大多數方法仍然采用豎井式的解決方案,即為每個單獨的任務訓練一個單獨的神經網絡。然而,許多現實世界的問題需要同時解決許多任務。例如,一輛自動駕駛汽車應該能夠檢測場景中的所有物體,對其進行定位,估計其距離和軌跡等,以便在其周圍環境中安全導航。類似地,用于商業應用的圖像識別系統應該能夠標記產品、檢索類似的商品、提出個性化的建議等,以便為客戶提供盡可能好的服務。這類問題促使研究人員建立多任務學習模型。多任務學習的核心思想是并行學習多個任務,同時共享學習到的表示。與單任務情況相比,多任務網絡具有許多實際的優點,單任務情況下,每個單獨的任務由自己的網絡單獨解決。首先,由于層的共享,產生的內存占用大大減少。其次,由于它們避免在共享層中重復計算特征,每個任務一次,它們顯示出提高的推理速度。第三,如果相關的任務共享互補信息,或者作為一個正則化器,它們有可能提高性能。

在構建多任務學習模型時,我們面臨著兩個重要的挑戰。首先,我們需要想出能夠處理多個任務的神經網絡架構。其次,我們需要為共同學習任務制定新的訓練方案。特別是,由于我們并行地優化多個目標,一個或多個任務可能會開始主導權重更新過程,從而阻礙模型學習其他任務。在這份手稿中,我們在視覺場景理解的背景下鉆研了這兩個問題。我們提出了兩種新的模型類型來解決體系結構問題。首先,我們探索了分支多任務網絡,其中神經網絡的更深層次逐漸成長為更具體的任務。我們介紹了一種有原則的方法來自動構建這樣的分支多任務網絡。構造過程將可以用一組相似特征來解決的任務組合在一起,同時在任務相似性和網絡復雜性之間進行權衡。通過這種方式,我們的方法生成的模型可以在性能和計算資源量之間做出更好的權衡。

其次,我們提出了一種新的神經網絡結構,用于聯合處理多個密集的預測任務。其關鍵思想是從多個尺度上對其他任務的預測中提取有用信息,從而提高對每個任務的預測。包含多個尺度的動機是基于這樣的觀察:在某個尺度上具有高相似性的任務不能保證在其他尺度上保持這種行為,反之亦然。在密集標記的兩個流行基準上進行的廣泛實驗表明,與之前的工作不同,我們的模型提供了多任務學習的全部潛力,即更小的內存占用,減少的計算數量,以及更好的性能w.r.t.單任務學習。此外,我們還考慮了多任務學習優化問題。我們首先分析幾種平衡任務學習的現有技術。令人驚訝的是,我們發現了這些工作之間的一些差異。我們假設,這可能是由于多任務學習缺乏標準化的基準,不同的基準受益于特定的策略。基于這個結果,我們然后分離最有希望的元素,并提出一組啟發式方法來平衡任務。啟發式具有實際性質,并在不同的基準測試中產生更魯棒的性能。

在最后一章中,我們從另一個角度來考慮場景理解的問題。文獻中描述的許多模型都受益于有監督的預訓練。在這種情況下,在轉移到感興趣的任務之前,模型首先在一個更大的帶注釋的數據集(如ImageNet)上進行預訓練。這使得模型能夠很好地執行,即使是在只有少量標記示例的數據集上。不幸的是,有監督的預訓練依賴于帶注釋的數據集本身,這限制了它的適用性。為了解決這個問題,研究人員開始探索自監督學習方法。我們以對比學習為基礎來回顧最近流行的作品。首先,我們展示了現有的方法,如MoCo可以在不同的數據集上獲得穩健的結果,包括以場景為中心的數據、長尾數據和特定領域的數據。其次,我們通過增加額外的不變性來改進學習的表示。這一結果直接有利于許多下游任務,如語義分割、檢測等。最后,我們證明了通過自監督學習所獲得的改進也可以轉化為多任務學習網絡。綜上所述,本文提出了幾個重要的貢獻,以改進多任務學習模型的視覺場景理解。創新集中在改進神經網絡結構、優化過程和訓練前方面。所有方法都經過了各種基準測試。該代碼公開發布://github.com/SimonVandenhende。

付費5元查看完整內容

在一個特定的數據集上訓練一個強大的神經預測器執行一項任務的主流NLP范式取得了在各種應用上的成功(如:情感分類、基于廣度預測的問答或機器翻譯)。然而,它建立在數據分布是平穩的假設之上,即。在訓練和測試時,數據都是從一個固定的分布中取樣的。這種訓練方式與我們人類在不斷變化的信息流中學習和操作的方式不一致。此外,它不適合于真實世界的用例,在這些用例中,數據分布預計會在模型的生命周期中發生變化。

本文的第一個目標是描述這種偏移在自然語言處理環境中可能采取的不同形式,并提出基準和評價指標來衡量它對當前深度學習體系結構的影響。然后,我們繼續采取步驟,以減輕分布轉移對NLP模型的影響。為此,我們開發了基于分布魯棒優化框架的參數化重構方法。從經驗上講,我們證明了這些方法產生了更魯棒的模型,正如在選擇的現實問題上所證明的那樣。在本文的第三部分和最后一部分,我們探索了有效地適應現有模型的新領域或任務的方法。我們對這個主題的貢獻來自于信息幾何學的靈感,獲得了一個新的梯度更新規則,緩解了適應過程中災難性的遺忘問題。

我們從評估開始,因為分布轉移特別難以描述和測量,特別是在自然語言方面。這部分是由于數據缺乏規范的度量結構。換句話說,如何有效地衡量兩個句子之間的語義相似度還不清楚,因此沒有直接的方法來衡量兩個樣本之間的差異,更不用說兩種分布了。因此,作為解決分布偏移的第一步,我們提出了一個新的基準(第3章)和評估指標(第4章),分別評估域偏移和對抗擾動的魯棒性。有了這些工具在手,我們開始構建魯棒的模型,這些模型經過訓練,即使在沒有關于轉移本質的明確信息的情況下,對分布轉移也不那么敏感。這是通過利用訓練分布中的數據多樣性來實現的,以確保在訓練數據(子群體)中存在的各種領域上的統一性能。具體來說,我們制定了一個分布魯棒優化框架的參數化版本,該框架允許訓練模型對子群體轉移更為穩健(第5章和第6章)。最后,在靜態環境中學習從根本上是次優的:我們不能期望我們的模型在每一個可能的未來環境中都表現良好,我們必須能夠使它們適應我們遇到的任何新情況。因此,我們研究了一種機制,通過這種機制,我們能夠根據新的證據微調訓練模型,而不會忘記之前獲得的知識(第7章)。

//www.zhuanzhi.ai/paper/c5e7a9742d6a6313d63c5976499166dc

付費5元查看完整內容

摘要

多任務學習(Multi-Task Learning, MTL)是機器學習中的一種學習范式,其目的是利用多個相關任務中包含的有用信息來幫助提高所有任務的泛化性能。

本文從算法建模、應用和理論分析三個方面對MTL進行了綜述。在算法建模方面,給出了MTL的定義,并將不同的MTL算法分為特征學習、低秩、任務聚類、任務關系學習和分解五類,并討論了每種方法的特點。

為了進一步提高學習任務的性能,MTL可以與半監督學習、主動學習、無監督學習、強化學習、多視圖學習和圖形模型等學習范式相結合。當任務數量較大或數據維數較高時,我們回顧了在線、并行和分布式的MTL模型,以及維數降維和特征哈希,揭示了它們在計算和存儲方面的優勢。

許多現實世界的應用程序使用MTL來提高它們的性能,我們在本文中回顧了代表性的工作。最后,我們對MTL進行了理論分析,并討論了MTL的未來發展方向。

引言

人類可以同時學習多個任務,在這個學習過程中,人類可以使用在一個任務中學習到的知識來幫助學習另一個任務。例如,根據我們學習打網球和壁球的經驗,我們發現打網球的技巧可以幫助學習打壁球,反之亦然。多任務學習(Multi-Task learning, MTL)[1]是機器學習的一種學習范式,受人類這種學習能力的啟發,它的目標是共同學習多個相關的任務,使一個任務中包含的知識能夠被其他任務利用,從而提高手頭所有任務的泛化性能。

在其早期階段,MTL的一個重要動機是緩解數據稀疏問題,即每個任務都有有限數量的標記數據。在數據稀疏性問題中,每個任務中標記數據的數量不足以訓練出一個準確的學習器,而MTL則以數據增強的方式將所有任務中的標記數據進行聚合,從而為每個任務獲得更準確的學習器。從這個角度來看,MTL可以幫助重用已有的知識,降低學習任務的手工標注成本。當“大數據”時代在計算機視覺和自然語言處理(NLP)等領域到來時,人們發現,深度MTL模型比單任務模型具有更好的性能。MTL有效的一個原因是與單任務學習相比,它利用了更多來自不同學習任務的數據。有了更多的數據,MTL可以為多個任務學習到更健壯、更通用的表示形式和更強大的模型,從而更好地實現任務間的知識共享,提高每個任務的性能,降低每個任務的過擬合風險。

MTL與機器學習中的其他學習范式有關,包括遷移學習[2]、多標簽學習[3]和多輸出回歸。MTL的設置與遷移學習相似,但存在顯著差異。在MTL中,不同任務之間沒有區別,目標是提高所有任務的性能。而遷移學習是借助源任務來提高目標任務的性能,因此目標任務比源任務起著更重要的作用。總之,MTL對所有的任務一視同仁,但在遷移學習中目標任務最受關注。從知識流的角度來看,遷移學習中的知識轉移流是從源任務到目標任務,而在多任務學習中,任何一對任務之間都存在知識共享流,如圖1(a)所示。持續學習[4]是一個一個地學習任務,任務是有順序的,而MTL是將多個任務一起學習。在多標簽學習和多輸出回歸中,每個數據點都與多個標簽相關聯,這些標簽可以是分類的或數字的。如果我們把所有可能的標簽都當作一個任務,那么多標簽學習和多輸出回歸在某種意義上可以看作是多任務學習的一種特殊情況,不同的任務在訓練和測試階段總是共享相同的數據。一方面,這種多標簽學習和多輸出回歸的特點導致了與MTL不同的研究問題。例如,排名損失使得與數據點相關的標簽的分數(例如分類概率)大于沒有標簽的分數,可以用于多標簽學習,但它不適合MTL,因為不同的任務擁有不同的數據。另一方面,這種在多標簽學習和多輸出回歸中的特性在MTL問題中是無效的。例如,在2.7節中討論的一個MTL問題中,每個任務都是根據19個生物醫學特征預測患者帕金森病的癥狀評分,不同的患者/任務不應該共享生物醫學數據。總之,多標簽學習和多輸出回歸與圖1(b)所示的多任務學習是不同的,因此我們不會對多標簽學習和多輸出回歸的文獻進行綜述。此外,多視圖學習是機器學習的另一種學習范式,每個數據點與多個視圖相關聯,每個視圖由一組特征組成。雖然不同的視圖有不同的特征集,但是所有的視圖是一起學習同一個任務的,因此多視圖學習屬于具有多組特征的單任務學習,這與圖1(c)所示的MTL是不同的。

在過去的幾十年里,MTL在人工智能和機器學習領域引起了廣泛的關注。許多MTL模型已經被設計出來,并在其他領域得到了廣泛的應用。此外,對MTL的理論問題也進行了大量的分析。本文從算法建模、應用和理論分析三個方面對MTL進行了綜述。在算法建模方面,首先給出了MTL的定義,然后將不同的MTL算法分為5類: 特征學習方法,又可分為特征轉換與特征選擇方法、低秩方法、任務聚類方法、任務關系學習方法和分解方法。然后,我們討論了MTL與其他學習范式的結合,包括半監督學習、主動學習、無監督學習、強化學習、多視圖學習和圖形模型。為了處理大量的任務,我們回顧了在線、并行和分布式的MTL模型。對于高維空間中的數據,引入特征選擇、降維和特征哈希作為處理這些數據的重要工具。MTL作為一種很有前途的學習范式,在計算機視覺、生物信息學、健康信息學、語音、自然語言處理、web等領域有著廣泛的應用。從理論分析的角度,對MTL的相關工作進行回顧。最后,討論了MTL的未來發展方向。

付費5元查看完整內容

強化學習(RL)是一種流行的處理順序決策任務的范式,其中agent只有有限的環境反饋。盡管在過去的三十年里取得了許多進步,但是在許多領域的學習仍然需要大量的與環境的交互,這在現實的場景中是非常昂貴的。為了解決這個問題,遷移學習被應用于強化學習,這樣在一個任務中獲得的經驗可以在開始學習下一個更困難的任務時得到利用。最近,有幾項研究探索了如何將任務(或數據樣本本身)排序到課程中,以便學習一個可能很難從頭學起的問題。在本文中,我們提出了一個課程學習的強化學習框架,并利用它來調查和分類現有的課程學習方法的假設、能力和目標。最后,我們使用我們的框架來發現開放的問題,并為未來的RL課程學習研究提出方向。

付費5元查看完整內容
北京阿比特科技有限公司