美國能源部(DOE)近日發布《面向科學、能源和安全的人工智能》報告,該報告制定了一個全面利用其在世界領先的高性能計算系統和數據基礎設施方面的現有優勢,擴大其在人工智能科學應用方面工作的愿景。 在科學辦公室(SC)和國家核安全局(NNSA)的指導下,DOE國家實驗室在2022年組織了一系列研討會,收集關于科學人工智能新的和快速出現的機遇和挑戰的文章。這份《2023年報告》綜合了這些研討會。該報告顯示了DOE獨特的能力如何使社區能夠推動人工智能科學應用的進步,建立在DOE在計算、數據和通信基礎設施方面的優勢和投資之上。此外,能源部擁有獨特的能力,使社區能夠推動人工智能科學應用的進步,建立在DOE在計算、數據和通信基礎設施方面的長期優勢和投資基礎上,跨越能源科學網絡(ESnet)、百萬兆級級計算項目(ECP)和綜合計劃,如NNSA國防計劃辦公室高級模擬和計算(ASC)和SC通過高級計算的科學發現(SciDAC)程序。
現在,在人工智能進步的加速以及捕捉這些進步的強大國際活動和投資的推動下,在人工智能領域采取重大和轉型舉措的緊迫性正在增加。此外,在面向公眾的互聯網服務中引入強大的語言模型,如OpenAI、微軟、Meta和谷歌的語言模型,表明迫切需要從根本上理解這些模型的新能力和相關的社會風險。這份報告詳細說明了利用人工智能推動科學發展和解決能源和安全等國家要務的重要性,提出了一個同樣相關和迫切需要的研究議程,同時也解決了人工智能促進會(AAAI)2023年4月公開信中討論的挑戰,包括“人工智能系統出錯的可能性,提供有偏見的建議,威脅我們的隱私,為不良行為者提供新工具,以及對就業產生影響”。
美國仍然是世界上最突出的軍事和技術力量。在過去十年中,美國認識到人工智能作為力量倍增器的潛力,越來越多地將人工智能(AI)的熟練程度視為美國重要利益和保證美國軍事和經濟實力的機制。特別是,在過去十年中,人工智能已成為美國國防的一項關鍵能力,特別是考慮到2022年美國國防戰略對印度-太平洋地區的關注。
因此,美國國防部(DoD)(以及美國政府和國防機構總體上)對人工智能和相關新興技術表現出越來越大的熱情。然而,雖然美國目前在學術界和私營部門的人工智能研究和開發方面取得了巨大進展,但國防部尚未在廣泛范圍內成功地將商業人工智能的發展轉化為真正的軍事能力。
美國政府在利用國防人工智能和人工智能支持的系統方面通常處于有利地位。然而,在過去的幾年里,各種官僚主義、組織和程序上的障礙減緩了國防部在國防人工智能采用和基于技術的創新方面的進展。最關鍵的是,國防部遭受了復雜的收購過程和廣泛的數據、STEM和AI人才和培訓的短缺。從事人工智能和人工智能相關技術和項目的組織往往是孤立的,而且還存在必要的數據和其他資源相互分離。在美國防部內部存在一種傾向于可靠方法和系統的文化,有時趨向于勒德主義。所有這些因素都導致了人工智能采用的速度出奇的緩慢。美國家安全委員會2021年提交給國會的最終報告總結說,"盡管有令人興奮的實驗和一些小型的人工智能項目,但美國政府離人工智能就緒還有很長的路要走"。
因此,盡管人工智能有可能增強美國的國家安全并成為一個優勢領域,而且鑒于美國在軍事、創新和技術領導方面的長期傳統,人工智能有可能成為一個薄弱點,擴大 "美國已經進入的脆弱窗口"。 如果美國不加快創新步伐,達到負責任的速度,并奠定必要的制度基礎,以支持一支精通人工智能的軍隊,人工智能將繼續成為一個不安全點。
去年,美國防部在這些挑戰中的一些方面取得了進展,調整了國防人工智能的方法。2022年6月,美國防部發布了《負責任人工智能戰略和實施途徑》,將更有數據依據的、負責任的、可操作的人工智能工作列為優先事項,此后開始執行。最重要的是,美國防部已經啟動了對其人工智能組織結構的重大改革,創建了一個新的首席數字和人工智能辦公室(CDAO),以整合其不同的人工智能項目和利益相關者,并使其與該部門的數據流更好地協調。值得注意的是,美國國防部目前正在對其國防人工智能的整體方法進行重大變革和振興。然而,這些新的人工智能努力是否足以讓美國彌補失去的時間,還有待觀察。
美國國家人工智能(AI)研究資源(NAIRR)工作組近日發布題為《加強和民主化美國人工智能創新生態系統:國家AI研究資源實施計劃》最終報告。該報告是建立國家研究基礎設施的路線圖,該基礎設施將擴大對AI研發必不可少的資源的訪問。報告由引言,民主化和加速AI研發的國家網絡基礎設施,NAIRR組織、管理和治理,NAIRR架構和對資源要素的技術要求,NAIRR組織和資源的分階段擴建,以及結論六部分,另有12個附錄構成。主要內容如下:
人工智能(AI)是推動科學發現和經濟增長的創新引擎。它正日益成為解決方案不可或缺的一部分,這些解決方案將影響從日常工作到社會層面挑戰的方方面面,最終服務于公共利益。同時,也有人擔心AI會帶來負面的社會環境影響后果。為了實現AI的積極和變革潛力,當務之急是利用美國所有的聰明才智來推進這一領域的發展社會挑戰,為所有美國人工作,維護美國的民主價值觀。
然而,AI當前前沿的進展往往與獲取大量計算能力和數據有關。今天,這種機會往往僅限于資源豐富的組織。這一巨大且不斷擴大的資源鴻溝有可能限制和不利地扭曲AI研究生態系統。這種不平衡威脅到美國培養AI研究的能力社區和勞動力反映了美國豐富的多樣性和駕馭AI的能力推進公共利益。
一個廣泛可用的AI研究網絡基礎設施資源、數據、試驗臺、算法、軟件、服務、網絡和專業知識,如這份報告中所述,在美國將有助于為了所有人的利益去民主化AI研發態勢。這將有助于創造途徑來擴大從事AI的研究人員,致力于AI方法和應用的發展和多樣化。網絡基礎設施也有助于為所有科學領域和學科的進步,包括AI審計、測試和評估等關鍵領域,可信人工智能、偏差緩解和AI安全開辟新的機會和多樣化的視角,反過來可以導致新的想法,否則不會實現,并設置條件開發設計包容的AI系統。
作為2020年國家AI倡議法案的一部分,國會建立了國家AI研究資源(NAIRR)工作組研究發展“NAIRR”作為國家AI研究的可行性和可取性網絡基礎設施,并“提出一個路線圖,詳細說明應該如何建立NAIRR”持續有效。最近的2022年芯片和科學法案強調了通過投資實現國家人工智能研究網絡基礎設施的民主化,從下一代圖形處理器(GPU),加速高級計算的開發到高密度內存芯片——以及積極吸引廣泛多樣的美國人才的措施在前沿科學和工程領域,包括人工智能。
建立NAIRR時應考慮四個可衡量的目標,即(1)刺激創新,(2)增加人才的多樣性,(3)提高能力,以及(4)推進可信的AI。NAIRR應通過支持研究人員的需求來實現這些目標,并來自不同背景的學生,他們追求基礎、使用激勵和轉化AI研究。這些用戶應位于美國或隸屬于美國組織,包括學術機構、非營利組織以及創業公司或小企業。
NAIRR應該包括來自各種提供商資源的一組聯合的計算、數據、測試床和軟件,以及技術支持和培訓,以滿足需求這個目標用戶群。NAIRR的具體設計、實施和評估應以四個關鍵目標為中心,并應支持收集數據以評估實現這些目標過程中的系統性能和成功的關鍵指標。
NAIRR的管理和治理應遵循合作管理原則,作為NAIRR一個單一的聯邦機構行政總部運營和指導委員會,由來自聯邦機構的負責人組成AI研究實體推動著NAIRR的戰略方向。項目管理行政總部機構內的辦公室應為管理NAIRR日常運營的獨立運營實體。由國家AI倡議辦公室(NAIIO)共同主持的指導委員會將在全國AI倡議辦公室的治理中納入來自各聯邦機構的利益和觀點。這些機構還應該直接支持資源提供者,如果聯合起來,他們的資源將構成NAIRR。應挖掘不同的觀點和專業知識,為NAIRR的運營通過用戶委員會、科學顧問委員會、技術顧問委員會和道德咨詢委員會向運營實體提供建議。
NAIRR應該提供對計算和數據的聯合訪問資源、測試平臺、軟件和測試工具以及用戶支持服務門戶網站。計算資源應包括傳統服務器、計算集群、高性能計算和云計算,并應支持對邊緣計算的訪問AI研發的資源和測試平臺。開放和受保護的數據應在分層訪問協議并與計算資源共處一地。經營實體應當它本身并不操作構成NAIRR的全部計算機硬件;相反,計算以及數據、測試和培訓資源應通過聯邦機構或多機構資助機會選擇的合作資源提供商作為服務交付。當完全實施時,NAIRR應解決容量(支持大型用戶數量)和AI的能力(訓練資源密集型AI模型的能力)需求研究社區。
NAIRR必須能夠被廣泛的用戶訪問,并提供一個平臺可用于教育和社區建設活動,以降低參與AI研究生態系統的障礙,增加AI研究人員的多樣性。NAIRR訪問門戶和公共網站應提供目錄、搜索和發現 有助于訪問數據、測試平臺、教育和培訓資源的工具經驗水平。
NAIRR應該為負責任的AI研究制定標準實施其治理流程。NAIRR必須積極主動地通過集成適當的技術控制、政策和治理機制解決。運營實體應遵循其職業道德咨詢委員會制定評估擬議研究的標準和機制從隱私、公民權利和公民自由的角度看NAIRR中包含的資源。應要求定期培訓,以建立NAIRR用戶對權利、責任,以及AI研究中與隱私、公民權利和公民自由相關的最佳實踐.白宮科學與技術辦公室2022年10月公布了AI權利法案的藍圖技術政策。
來源:SDG中心 隨著全球范圍內數字化進程加快,數據的國際可比性和可用性有所改善,但可持續發展目標數據的地理覆蓋面與及時性在各個領域仍然存在差距,亟需創新方法來填補這些空白。集地球科學、信息科學和空間科技等交叉融合的地球大數據技術,具有宏觀、動態監測能力,能大大提高數據獲取能力,為SDGs實現提供重要支撐。 近日,“全球發展倡議之友小組”部長級會議在紐約舉行。會上,中方發布《地球大數據支撐可持續發展目標報告(2022)》。自2019年以來,《地球大數據支撐可持續發展目標報告》連續四年由中方發布,定量、系統解讀不同尺度和區域SDGs的實現進程和變化趨勢,以期為2030年議程和全球發展倡議的深入實施做出積極貢獻。
**地球大數據是大數據重要組成部分,其以對地觀測與地理空間數據為主體,**具有更易獲取、更新更及時、結果更客觀、分辨率更高等優勢,能夠突破統計數據行政區域的約束,涵蓋不同時空尺度與地理位置信息,更精準評估SDG指標進展并及時發現問題。地球大數據分析自然與人類社會系統間復雜的交互作用和協同演進發展過程,將有助于SDGs的整體理解和全面實現。
《報告》圍繞零饑餓、清潔飲水和衛生設施、經濟適用的清潔能源、可持續城市和社區、氣候行動、水下生物、陸地生物等7個可持續發展目標,以及多指標交叉與綜合,系統性剖析了42個典型研究案例,貢獻31套數據產品、21種方法模型和33項決策支持。 該報告由可持續發展大數據國際研究中心和中國科學院“地球大數據科學工程”先導專項撰寫,來自40多家科研院所、高校等共170余名科研人員參與。《報告》廣泛征求了各部門、智庫和相關機構的意見和建議,反映了可持續發展大數據領域的最新研究成果,是大數據支撐可持續發展目標(SDGs)落實的創新性實踐。
在全球尺度,研制了2020年全球30m分辨率耕地復種指數分布產品;在中國尺度,研制了中國農業耕層土壤碳密度時空變化和中國種植業縣域碳排放數據產品;在典型地區尺度,研發了鹽堿地識別算法與分級模型,實現了東北黑土鹽堿地集中區近 35 年土壤鹽漬化程度監測。 研究發現,2020 年全球約 85.2% 的耕地為單季種植模式,如能將實際復種水平提升到潛在水平有望增加2.3 億t 糧食產量,相當于當前全球糧食總產量的 6.4%。中國東北黑土區西部鹽堿地面積 2000 年以來減少了 63.3%,促進了糧食增產。2015 ~2020 年,中國農田耕層土壤有機碳增加了 3.4%;近 10 年中國單位農業產值碳排放強度呈下降趨勢,江淮地區、江漢平原和四川盆地單位面積碳排放量較高。
綜合站點觀測、統計調查和遙感監測等多源數據,開展了中國省級尺度SDG 6 目標進展監測與評估,研究發現,中國地下水環境改善顯著,農業用水效率顯著提高,總體用水緊張程度呈下降趨勢 ,水資源管理工具優化提升明顯,水庫水面積呈增加趨勢,地下水儲量減少速率呈下降趨勢。
但從省級行政區域的角度,受不同地區自然地理條件、資源稟賦、以及經濟發展水平的影響,各項指標的實現情況存在顯著的空間差異。經濟發達地區多面臨水環境和水生態方面的挑戰,經濟欠發達地區的用水效率則普遍偏低。
在全球尺度,研制了全球建筑通電狀況遙感監測數據產品;在中國尺度,研制了中國光伏電站遙感監測數據集、中國能源國際合作項目對發展中國家SDG 7 影響數據集和中國太陽能利用國際培訓統計數據集,調查了中國可再生能源發展現狀,評估了中國在可再生能源和國際能源合作等三個指標的進展。 研究發現,2020 年全球通電建筑面積較2014 年增加顯著,通電建筑面積占比提高近2 個百分點;中國綠色低碳能源轉型進展顯著,2021 年,中國可再生能源裝機和發電量分別是2015 年的2.12 倍和1.79 倍;中國能源國際合作幫助發展中國家實現SDG 7 目標,增加了80 個國家的人均用電量,中國太陽能國際培訓受培訓國家(地區)已達133 個。
在中國尺度,研制了地級市SDG 11.5 監測指標數據集、中國社區功能分類數據產品,實現SDG 11 四個指標的計算和評估;在全球尺度,研制了全球典型城市建成區數據集、世界遺產邊界矢量數據、全球極端天氣氣候災害損失數據集、全球綠度變化趨勢數據集。 研究發現,2000~2020 年全球城鎮化協調發展總體向好;2015~2020 年,世界文化遺產地土地覆蓋變化普遍小于1%,保護態勢總體良好;《仙臺框架》的實施在全球和中國均取得一定成效;中國以全球19% 的城市建成區面積貢獻了全球28% 的城市顯著變綠區域,中國城市增綠受益人口占全球受益總人口約47%;中國SDG 11.1、SDG 11.2、SDG 11.3 實現情況在社區尺度上總體向好。
在中國尺度,研制了土壤水分含量、防災減災政策數據產品,調查了氣候變化教育現狀,實現SDG 13 氣候行動四個指標的計算和評估;在全球尺度,研制了高溫熱浪分布、海洋熱量/ 鹽度數據集、全球陸地/ 大洋碳匯系列數據產品。 研究發現,中國耕地在2021 年夏秋季節遭受了較為嚴重的澇漬害,但通過科學田間管理并未影響糧食產量;中國及其省級政府通過頒布系列政策已經建立起較為完善的減災體系;中國氣候變化教育體系相對完善,仍需加強課程設計與實踐活動。 全球陸地不斷升溫,高溫熱浪頻率和強度增加,海洋熱含量也在不斷增加,鹽度差異、垂向層結有加劇分化的趨勢;全球陸地、大洋的碳匯近20 年來有明顯增加的趨勢。
在中國尺度,研制了1978~2019 年中國東部近海營養鹽濃度分布、2016年和2020 年中國濱海灘涂空間分布、2010~2020 年中國近海濕地臺風防護價值、2010~2020 年中國沿海退圍還海和退圍還濕動態監測等數據產品,提出了綠潮生物量多源遙感反演模型;在區域尺度,提出了三維珊瑚礁白化熱環境計算模型方法,研發了珊瑚礁白化熱環境預警系統。 研究發現,近十余年中國近海營養鹽濃度顯著降低,其中陸源氮、磷入海量的減少是中國近海溶解無機氮和溶解無機磷濃度降低的主要原因;中國的近海濕地在抵御臺風減少災害損失方面發揮了顯著作用,近海濕地所提供的臺風防護總價值在不斷上升;珊瑚礁白化熱環境預警系統可以為區域內國家及時了解珊瑚礁所面臨的白化環境、制定珊瑚礁保護措施提供有力科技支撐;2010~2020 年中國沿海退圍還海、退圍還濕的速度持續增加,圍填海管控和治理取得了顯著成效。
在中國尺度,開展了荒漠化治理碳匯效應評估、東北黑土退化現狀與風險評估、山地生物多樣性保護狀況評估及外來入侵物種風險評估;在全球尺度,研制了全球沙丘(地)空間分布產品,開發了大數據支持“非洲綠色長城”建設在線工具,提供了覆蓋11 個泛非綠色長城機構成員國高分辨率土地生產力動態產品和26 項荒漠化防治關鍵技術,為非洲綠色長城建設提供了重要支持。 研究發現,中國土地退化治理成效顯著,荒漠化治理碳匯效應明顯;中國山地生態系統受保護比例較高,空間布局正在進一步優化;主要外來入侵物種防控效果顯著,并形成了具有推廣價值的防控技術體系。
近年來,許多國家都推出了關于人工智能(AI)的國家戰略文件;僅在過去五年中,就有60多個國家這樣做了,此前加拿大在2017年率先發布了其文件。在歐洲,歐盟(EU)的20個成員國以及挪威,在2021年之前已經發布了他們的國家人工智能戰略。
這份報告《G20.AI:國家戰略,全球雄心》概述了G20國家的AI戰略。這是ORF關于人工智能的系列報告中的第二份,第一份報告于2018年發布,闡述了當時已發布國家戰略的12個國家的國家戰略。在印度準備于2022年12月擔任G20主席國之際,了解G20優化這一變革性技術利益的方法至關重要。
互聯網誕生50年后,公眾對監控技術的呼聲正迫使政府在數字、網絡時代重寫公共場所的規范。對經濟學的重新思考正在進行中。多少自動化在政治上和經濟上是可持續的?同時,算法正在玩弄社會斷層;那些能夠使用加密貨幣和5G智能手機的人正在挑戰中央銀行和銀行家;憤怒的賣空者在Reddit上聯合起來,威脅著對沖基金的影響力。一場偉大的轉型正在醞釀之中,而這場變革的核心是人工智能。
隨著國家和公司開展人工智能研究并在公共領域部署該技術,誰來監督它,如何監督?過去的一年暴露了數字民主的弱點和威脅。對科技公司確保算法的公平性、問責制、透明度和道德的要求變得更加響亮。以英國為中心的世界觀設計和固定的大型私有平臺推動了與大多數民主國家的法律相沖突的自由言論絕對主義。此外,這些公司長期以來一直扼制著人工智能的議程,它們必須受到審查。
這些公司的影響力覆蓋了大片土地。僅Facebook就有30億用戶;Twitter有3億用戶;許多個人 "影響者 "擁有數百萬的追隨者。隨著全球社交媒體用戶數量的急劇增長,監管機構正爭相追趕。事實上,一場規范的沖突正在向世界襲來。這與20世紀90年代的情況截然不同,當時互聯網剛從一個不起眼的研究網絡演變為數百萬人在日常生活中使用的東西。當時,公眾被告知,更多參與數字世界將加強民主。30年過去了,某些國家成功地利用互聯網作為干涉其他主權國家選舉的手段;國家支持的惡意網絡活動的發生率上升;科技公司開始儲存和出售數據,引發了對隱私的擔憂;社交媒體平臺已成為傳播錯誤信息和虛假信息的有力載體,使人們相互對立并分裂了社會。
德勤在2021年對500名政府領導人進行的全球調查發現,92%的聯邦級受訪者、95%的州級受訪者和84%的地方級受訪者認為,人工智能在未來五年內是 "關鍵任務"。至少有一半的受訪者將技能差距列為政府無法以最有效的方式利用人工智能應用的一個關鍵原因。
事實上,許多中低收入經濟體正在采取雄心勃勃的步驟進行人工智能創新。例如,像印度這樣的地區--社會問題的規模巨大,解決方案復雜--正見證著傳說中的雪球效應:不是任何一個細目使天平傾斜,而是同時進行的尖端發展。其結果是顯著的。Nasscom的一份報告5將印度列為創新技術的希望之國。在過去的十年里,印度已經提交了6000多份人工智能專利申請,其中超過94%是在過去的五年里。
可以肯定的是,這個過程的政治性是不可避免的,就像在早期的創新周期一樣。技術專長從傳說中的硅谷轉移到以前被殖民的全球南方的大片地區,正在結合起來,形成一種不可否認的力量。試圖制定人工智能戰略的民族國家之間有什么相似之處?其一,圍繞著 "公平 "的定義和模糊的人工智能倫理結構小心翼翼地跳舞。
這個故事的輪廓在國家和文化背景下不斷變化,但技術系統通常會保留現有的等級制度和權力結構的想法在更多方面仍然是真實的,而不是立即就能看到的。各國對人工智能的承諾和危險的立場是什么?他們是如何在政府議程中闡述這一問題的?觀察家研究基金會推出了全球快照的第二輪:《G20.AI:國家戰略,全球雄心》。
本報告的實質性框架僅限于G20國家的國家人工智能戰略。表1列出了截至2022年3月的國家戰略和方針文件的現狀。本報告結合文本分析和交叉引用共同的人工智能戰略報告,分析了每個國家在其全球優先事項背景下的國內議程和能力。在整個分析中,美中關系是一個背景。
下圖這個排行榜反映了每個G20國家的人工智能戰略的相對整體實力,這體現在其國家戰略文件的整體上。圓圈最外緣的國家出現的實力最強。美國和中國領先,緊隨其后的是內圈的國家。每個國家的位置是基于其在四個參數上的表現,這些參數將整個報告串聯起來:研究和開發、人工智能勞動力、ICT基礎設施和數據生態系統。
觀察家研究基金會(ORF)就安全、戰略、經濟、發展、能源和全球治理等問題向不同的決策者(政府、商界、學術界和民間社會)提供無黨派的獨立分析和意見。ORF的任務是進行深入研究,提供包容性的平臺,并在今天投資于未來的思想領袖。
美國觀察家研究基金會(ORF America)是一個位于華盛頓特區的獨立、無黨派的非營利組織,致力于解決美國、印度及其合作伙伴在快速變化的世界中面臨的政策挑戰。ORF America開展研究,策劃多樣化和包容性的平臺,并在共同價值觀和共同利益的基礎上發展發達國家和發展中國家之間的合作網絡。它的重點領域是國際事務、技術、氣候和能源,以及經濟。ORF美國成立于2020年,是印度首要的非政府智囊團觀察家研究基金會(ORF)的海外分支機構。
美國的許多國防專家認為,將人工智能(AI)的潛力發揮到極致,可能是保持美國軍事優勢的決定性因素。然而,盡管這項技術對美國國防部(DoD)具有潛在的重要性,但人工智能的軍事研究和開發資金只占這項技術總投資的一小部分。而且,與傳統的國防承包商不同,國防部即使不是主要客戶,也是重要客戶,國防部在大多數這些高科技軟件公司的整體客戶群中所占比例相對較小。由于這些公司雇用了一些領先的人工智能人才,并建立了一些最有能力的技術框架,利用這些專家的才能可以使國防部利用人工智能為其自身轉型的努力受益。
為了評估軟件工程師和私營部門技術人員對國防部人工智能應用的看法,研究小組進行了一項調查,提出了美國軍方如何使用人工智能的各種場景,并要求受訪者描述他們以這些方式應用人工智能的認同度。這些場景改變了幾個因素,包括戰場的距離,作戰破壞性,以及人類對人工智能算法的監督程度。調查結果發現,大多數美國人工智能專家并不反對國防部的基本任務或人工智能在軍事領域中的應用。
1.哪些因素會影響軟件工程師對人工智能在美國軍方應用感到舒服和不舒服?
2.軟件工程師對社會機構——特別是國防部的信任程度與他們對國防部構建人工智能應用的可接受性的看法之間有關聯嗎?
3.軟件工程師是否將國防部認定為戰略競爭對手的國家視為對美國的重大威脅?
4.軟件工程師依靠什么類型的新聞媒體和其他信息來源來知曉他們與國防部有關的事件?
1.硅谷和美國防部之間似乎不存在不可逾越的鴻溝
2.對于涉及使用致命武力的人工智能應用來說,認同度存在著差異
3.科技工作者對領導的信任度很低,甚至對他們自己的領導也是如此
軟件工程師和其他技術人員對擔任領導職位的個人信任度較低。
科技工作者對科技公司首席執行官的信任幾乎與他們對民選官員或聯邦機構負責人的信任一樣少。
4.科技工作者最擔心的是對美國的網絡威脅
5.科技工作者支持使用軍事力量來抵御外來侵略
6.硅谷的科技工作者與軍方沒有什么個人聯系
不到2%的硅谷受訪者曾在美國軍隊服役。
幾乎20%在國防承包商工作的軟件工程師以前曾在美國軍隊服役。
1.應該探索各種機制,擴大國防部和硅谷之間在網絡作戰方面的合作,網絡作戰是人工智能的潛在應用,硅谷工程師將其視為重要的全球威脅。
2.應該探索擴大軍事作戰人員、國防部技術專家和硅谷科技人員之間的協同,以評估在組織之間建立更大信任的途徑。
3.應該探索國防部讓硅谷工程師參與國防部人工智能應用。
4.應該調查國防部和硅谷雇員共建共享的價值。
5.另一個潛在的富有成效的調查領域是評估各種類型的參與的好處,以幫助最具創新和經驗的美國人工智能專家了解國防部如何完成其任務,并發現他們的才能和專業知識如何有助于解決國防部和國家的問題。
毫無疑問,今天圍繞人工智能(AI)的最復雜的治理挑戰涉及國防和安全。CIGI正在促進戰略制定:人工智能對軍事防御和安全的影響項目將這一領域的主要專家與來自國防部的40多名公務員和加拿大武裝部隊的人員聚集在一起,討論人工智能對國家安全和軍事領域的力量倍增效應。
這一努力依賴于一系列的四次研討會,以產生關于數據驅動技術如何引發巨大的技術重組的前瞻性思考,這將對加拿大的國防規劃產生深遠影響。具體來說,這些研討會集中在數據治理和政策(道德、云計算、數據準備和互操作性);決策(可信賴性、人機一體化、生物技術和問責制);模擬工具(培訓、兵棋推演、人機合作、機器人、自主和可信的人工智能);以及信息時代的加拿大情報(將人工智能用于情報)。CIGI還主辦了一個研究生研討會,以激勵整個加拿大在全球公共政策、計算機科學和安全等領域學習的新興學者。
本文探討了在人工智能(AI)和機器學習背景下的軍事特定能力的發展。在加拿大國防政策的基礎上,本文概述了人工智能的軍事應用和管理下一代軍事行動所需的資源,包括多邊參與和技術治理。
維持先進軍事能力的前景現在與人工智能的武器化直接聯系在一起。作為一項通用技術,人工智能代表著一種力量的倍增器,有能力重塑戰爭規則。事實上,在核彈頭仍然是一種單一的技術應用的情況下,人工智能有能力支持許多不同類型的武器和系統。正如北大西洋公約組織(NATO)的指導意見所指出的,人工智能和其他 "智能 "技術現在對加拿大及其盟國的未來安全至關重要。
新技術在改變戰爭的性質方面有著悠久的歷史。從馬匹和盔甲的使用到航空母艦和戰斗機的引進,人工智能和機器人只是代表了軍事技術發展的最新階段。常規武器與人工智能和機器學習的融合,必將重塑決策的性質和軍事戰略轉型中的武力應用。
即使當代人工智能系統的能力被限制在機器學習算法的狹窄范圍內,這種限制可能不會持續太久。與神經科學、量子計算和生物技術相重疊的發現領域正在迅速發展,代表了 "智能機器 "進化的未知領域。在這些新的研究領域中的科學和技術發現給加拿大的國防帶來了巨大的風險,但同時也代表著巨大的機遇。
顯而易見的是,新興技術已經成為高度緊張的地緣政治競爭的基礎,它與一系列商業產業和技術平臺相重疊。中國、俄羅斯、美國和其他國家和非國家行為者正在積極追求人工智能和其他前沿技術的軍事應用。競爭的領域包括云技術、高超音速和新導彈技術、空間應用、量子和生物技術以及人類增強。
盡管技術創新一直塑造著國家間沖突的性質,但新興和顛覆性技術(EDT)的規模和速度是前所未有的。加拿大的國防政策反映了這種擔憂,它呼吁使加拿大武裝部隊(CAF)適應不斷變化的地緣政治環境。加拿大國防規劃已著手擴大和發展加拿大武裝部隊,在新的軍事平臺整合中納入下一代偵察機、遙控系統和天基設施。
基于對不斷變化的技術環境的廣泛評估,加拿大國防部(DND)認識到,這個新時代的特點是全球力量平衡的變化。這包括在快速發展的創新經濟中大國競爭性質的變化。就像石油和鋼鐵為工業時代設定條件一樣,人工智能和機器學習現在也可能為數字時代設定條件。
這種規模的破壞是由技術和制度變化的融合所驅動的,這些變化可以以新的和不可預測的方式觸發復雜的反饋回路。在這個新的環境中,人工智能技術將迫使世界各國軍隊投射力量的能力倍增。確定軍事人工智能發展中的護欄對于避免未來危機至關重要。應用減少風險的措施來識別和減輕軍事人工智能可能帶來的一系列風險將是關鍵。事實上,在這些能力完全嵌入世界上目前和未來的軍隊之前,治理人工智能可能會更容易。
從整體上看,這種轉變預示著從初級機器到數據驅動技術和精密電子的巨大轉變。這種物理、數字和生物技術的加速融合代表了一場巨大技術革命的早期階段。在全球范圍內管理這些新興和顛覆性的技術,對于減少未來沖突的風險至關重要。
從人工智能和機器人到電池存儲、分布式賬本技術(DLT)和物聯網(IoT),新興和顛覆性技術(EDT)現在正在激起一個商業創新的新時代。這一巨大的技術變革景觀正在醞釀一場社會和經濟變革,對中央銀行的發展具有巨大影響。正如北約最近的一份報告所指出的(北約新興和顛覆性技術咨詢小組2020),這些技術包括:
→ 人工智能和機器學習。人工智能/機器學習的發展及其對創新的潛在影響。這包括神經形態計算、生成式對抗網絡,以及人工智能從已經收集或尚未收集的數據中揭示出意想不到的見解的能力。
→ 量子技術。正在進行的從量子過程研究中獲得的知識轉化為量子技術的應用,包括量子計算、量子傳感、量子密碼系統,以及在量子尺度上對材料的操縱和開發。
→ 數據安全。用于保障和損害通信、數據交易和數據存儲安全的算法和系統的設計,包括量子證明加密方法、區塊鏈和分布式賬本架構,以及更廣泛的網絡安全領域。
→ 計算功能的硬件。微型化、電力采集和能源儲存方面的進展,包括在全球范圍內提供數字化關鍵基礎設施所需的物理系統(物聯網)和機器人的廣泛使用及其對全球系統和流程的持續影響。
→ 生物和合成材料。從原子/分子層面的材料設計、合成和操作到中觀和宏觀尺度的創新,支持生物工程、化學工程、基因層面的操作、增材制造和AI介導的生成設計。
正如蒸汽機和印刷術激發了工業革命一樣,人工智能和機器人技術現在也在軍事技術的性質和全球力量平衡方面引發了巨大變革。人工智能的興起并非沒有歷史先例,但伴隨著人工智能的變化表明,需要對國防規劃進行更精確的調整,以適應一個數據驅動的時代。
在大國競爭和多極體系的背景下,人工智能已經成為競爭的一個特別焦點。中國、俄羅斯、美國和其他許多國家都在積極追求人工智能能力,并把重點放在國防和安全方面。例如,中國希望到2030年在人工智能方面領先世界,并期望通過利用大量的豐富數據,擴大其在人工智能產業化方面的領先優勢(Lucas和Feng,2017年)。
事實上,數據和數據驅動的技術現在占據了全球經濟的制高點。整個全球數據經濟的競爭已經與大國競爭密不可分(Mearsheimer 2021)。盡管美國和中國的經濟深深地相互依存,但中國在整個歐亞大陸不斷擴大的投資將很快使其成為世界貿易的中心。
技術優勢仍然是北約國家的關鍵支柱,但中國正在迅速趕超。即使美國在人工智能發現方面建立了強大的領先優勢,中國也越來越有可能在人工智能驅動的應用產業化方面占據主導地位。中國不僅有先進的商業能力,而且還有一個連貫的國家戰略。中國的技術部門正在達到專業知識、人才和資本的臨界質量,正在重新調整全球經濟的指揮高度(Lucas and Waters 2018)(見圖1)。
中國產業部署的大部分技術創新都是 "漸進式 "的,而不是 "顛覆式 "的,但現在這種情況正在改變。將新興市場聚集在其軌道上,中國前所未有的經濟擴張現在對世界經濟產生了引力(The Economist 2018)。標志性項目,價值數萬億美元的 "一帶一路 "倡議(世界銀行2018年)為圍繞電動汽車、電信、機器人、半導體、鐵路基礎設施、海洋工程以及最終的人工智能的廣泛戰略轉變提供了一個全球平臺(McBride和Chatzky 2019年)。
毫不奇怪,中國已經是國際專利申請的世界領導者(世界知識產權組織2020)。隨著自主機器(Etzioni和Etzioni 2017)、可再生能源基礎設施、量子通信(?iljak 2020)、增強型腦機接口(Putze等人2020)和天基武器(Etherington 2020)的出現,重新思考加拿大國家安全,特別是加拿大國防的性質的壓力正在增加。鑒于技術創新的步伐不斷加快,以及亞洲作為世界貿易中心的崛起(Huiyao 2019),來自國外的技術的影響可能是巨大的。
圖1:按購買力平價計算的國內生產總值預測(以萬億美元計)
人工智能的概念已被廣泛討論,但該術語的精確定義仍然是一個移動的目標。與其說人工智能是一項具體的技術或特定的創新,不如說它是一個材料的集合。事實上,即使人工智能技術已經成為廣泛的主流商業應用的基礎,包括網絡搜索、醫療診斷、算法交易、工廠自動化、共享汽車和自動駕駛汽車,人工智能仍然是一個理想的目標。
盡管人工智能領域的研究始于20世紀40年代,但隨著機器學習和計算機處理能力的改進,過去十年對人工智能興趣的爆炸性增長已經加速。人工智能的持續進步被比喻為在人腦中發現的多尺度學習和推理能力。當與大數據和云計算相結合時,預計人工智能將通過將 "智能 "人工智能和機器學習系統與第五代(5G)電信網絡(即物聯網)上的大量聯網設備連接起來,使數字技術 "認知化"。
作為人工智能的一個子集,機器學習代表了人工智能的最突出的應用(見圖2)。機器學習使用統計技術,使機器能夠在沒有明確指令的情況下 "學習",推動許多應用和服務,改善一系列分析和物理任務的自動化。通過使用數據自動提高性能,這個過程被稱為 "訓練 "一個 "模型"。使用一種算法來提高特定任務的性能,機器學習系統分析大量的訓練數據集,以便做人類自然而然的事情:通過實例學習。
今天,機器學習的最常見應用是深度學習。作為更廣泛的機器學習家族的一部分,深度學習利用人工神經網絡層來復制人類智能。深度學習架構,如深度神經網絡、遞歸神經網絡和卷積神經網絡,支持一系列廣泛的研究領域,包括計算機視覺、語音識別、機器翻譯、自然語言處理和藥物設計。
圖2:人工智能的層級
安全人工智能位于新興和顛覆性技術(EDT)星座的中心,包括機器人學、基因組學、電池存儲、區塊鏈、3D打印、量子計算和5G電信。在研究層面,美國仍然是人工智能的全球領導者。目前,國家科學基金會每年在人工智能研究方面的投資超過1億美元(國家科學基金會2018年)。國防高級研究計劃局(DARPA)最近宣布投資20億美元用于一項名為AI Next的計劃,其目標是推進上下文和適應性推理(DARPA 2018)。
與過去的原子武器或隱形飛機的技術發展不同,沒有國家會壟斷軍事人工智能。研究人員和領先的商業企業之間廣泛的全球合作意味著人工智能和機器學習的進步可能會在全球范圍內擴散。事實上,人工智能發展的大多數技術進步是由工業界而不是政府推動的。除了市場主導的技術公司,世界各地廣泛的網絡集群正在孵化新一代的商業創新(Li and Pauwels 2018)。因此,許多未來的軍事應用將可能是為商業產業開發的技術的改編。
幸運的是,加拿大一直是人工智能研究前沿的領導者,并繼續通過2017年推出的泛加拿大人工智能戰略下的幾個項目培育一個強大的人工智能生態系統。加拿大政府積極參與人工智能咨詢委員會和各種國際伙伴關系,包括2020年啟動的全球人工智能伙伴關系;人工智能國防伙伴關系,其第二次對話在2021年舉行;以及重疊人工智能驅動的安全和規劃的多邊協議(五眼,北約)。事實上,加拿大的國防政策,"強大、安全、參與"(SSE),反映了加拿大政府對增加年度國防開支的承諾,重點是技術。
目前的聯邦預算包括對人工智能發展的實質性承諾,承諾在10年內投入4.438億美元(Silcoff 2021)。在政府2021年的預算中,1.85億美元將支持人工智能研究的商業化;1.622億美元將用于在全國范圍內招聘頂尖的學術人才;4800萬美元將用于加拿大高級研究所;五年內4000萬美元將旨在加強埃德蒙頓、多倫多和蒙特利爾的國家人工智能研究所的研究人員的計算能力;五年內860萬美元將幫助推進人工智能相關標準的發展和采用(加拿大政府2021年,148)。
人工智能是一個影響廣泛的商業和軍事技術的模糊領域。像電力或化石燃料一樣,人工智能的廣泛應用意味著人工智能和其他通用技術有能力重新配置現代軍隊的步伐和組織(Bresnahan和Trajtenberg 1995)。從整體上看,人工智能代表了國家安全性質的結構性轉變。出于這個原因,SSE設想了一個未來的軍事態勢,更加注重開發、獲取和整合先進的變革性技術,包括網絡和自主系統。
即使加拿大在傳統聯盟(北美防空司令部、北約和五眼聯盟)中的持續作用仍然是國家安全的基礎,EDT正在從根本上改變沖突的性質。正如格雷格-菲夫(2021年)所觀察到的,人工智能作為戰爭工具的崛起與升級加拿大國家安全架構,特別是加拿大情報部門的日益增長的需求相重疊。技術變革和信息爆炸的復合周期,新的技能組合和新的數據分析戰略對國防規劃的演變變得至關重要。
在數字時代,戰爭正日益成為基于知識的戰爭。隨著沖突進入信息領域,軍事規劃開始重新聚焦于信息/虛假信息行動、網絡行動、情報行動和政治或經濟影響行動。事實上,這種混合戰爭作為一種戰爭工具由來已久,其目的是利用宣傳、破壞、欺騙和其他非動能軍事行動,從內部破壞對手(Bilal 2021)。
網絡仍然是潛在對手、國家代理人、犯罪組織和非國家行為者的一個關鍵目標。這包括對通信、情報和敏感信息的嵌入式監視和偵察。正如Amy Zegart(2021年)所解釋的那樣,技術正在通過極大地擴展數據和信息的獲取,使情報的性質民主化。事實上,今天驅動戰略情報的大部分信息實際上是開放源碼情報(OSINT)或在公共領域。
現代軍隊正變得嚴重依賴安全、及時和準確的數據。隨著數據的急劇膨脹,消化它變得不可能。這種數據爆炸正在推動對新的分析模式和新型網絡工具的需求。在數字時代,安全和情報人員需要新的平臺、新的工具和跨領域工作的新OSINT機構。在這方面,人工智能可能特別有幫助。
隨著數據的重要性增加,在廣闊的數字領域的對抗性競爭也在增加。人工智能和機器學習可以通過篩選巨大的數據庫來極大地提高加拿大的國家情報能力。人工智能不是銀彈。人工智能系統不能產生意義或提供因果分析。然而,人工智能和機器學習可以極大地增強人類在管理數據和數據驅動的分析方面的情報能力。
隨著決策者為數據驅動的世界調整其安全態勢,人工智能有望改變軍事沖突的既定模式。DND/CAF面臨的關鍵挑戰之一是數據驅動的網絡重塑指揮和控制系統的速度(Thatcher 2020)。集中式系統的優勢在于其協調人類活動的效率。在指揮系統中,人員和傳感器推動威脅檢測,將信息向決策堆棧上移,以便決策者可以做出適當的反應。數字技術深刻地加速了這個過程。
人工智能在軍事領域的應用可能被證明對傳統的指揮和控制系統具有挑戰性。例如,在美國,五角大樓的第一位首席軟件官最近辭職,以抗議技術轉型的緩慢步伐。在離開國防部職位后的一次采訪中,尼古拉-沙伊蘭告訴《金融時報》,美國未能對技術變革和其他威脅作出反應,使國家的未來面臨風險(Manson 2021)。
除了變化的速度緩慢,軍事指揮和控制系統的集中性意味著單點故障提供了脆弱的攻擊點。指揮機關和自動或人類控制者往往容易受到利用不良或欺騙性信息的對抗性技術的影響,甚至自上而下的決策在適應復雜的突發挑戰方面也會很緩慢。
神經形態計算、生成式對抗網絡(GANs)、人工智能決策支持、數據分析和情報分析方面的新創新在增強軍事行動的結構和進程方面可能會產生巨大影響。機器學習算法的快速發展已經在商業和軍事領域引發了一波投資熱潮。
超越對損耗和動能攻擊的傳統關注,轉向基于加速和適應的新方法,數據驅動的技術可能是促成國家安全性質徹底轉變的關鍵。人工智能不是一種單一的技術。相反,它是一類可以在一系列軍事和商業應用中整合的技術。這些技術不斷演變的基礎是數據。
數字技術現在由數據推動,并將繼續推動創造越來越多的數據驅動的技術--特別是人工智能。數據是訓練人工智能和先進機器學習算法的基礎。數據既是大規模運行的數字系統產生的 "操作廢氣",也是機器對數據輸入作出反應的過程,它現在推動了機器的 "自主性"。
數據驅動的技術支撐著現代社會的核心社會和經濟功能,涵蓋了基礎設施、能源、醫療保健、金融、貿易、運輸和國防。隨著5G網絡的全球推廣,預計在高度健全的全球信息網絡中創建、收集、處理和存儲的數據將出現爆炸性增長。根據市場研究公司IDC的數據,目前全球數據正以每年61%的速度增長(Patrizio 2018)。預計到2025年,數據將達到175 zettabytes(一萬億吉字節),改變數字經濟的性質和規模(同上)。
出于這個原因,DND/CAF將數據提升到國家資產的水平是明智的。這對經濟增長和加拿大國防都至關重要。將數據作為國家資產加以保護和利用,將意味著重新思考目前構成當代數據架構的大型集中式數字基礎設施。可以肯定的是,網絡時代的數據安全應該是分散的和聯合的,以避免集中式系統的脆弱性。
關于技術破壞的傳統預測往往會犯一個錯誤,即假設這種規模的系統變化只是以一對一的方式取代舊技術。在現實中,這種規模的顛覆往往會不成比例地取代舊的系統,使其具有巨大的新的架構、界限和能力(Arbib和Seba 2020)。
正在進行的人工智能武器化正在助長一場全球軍備競賽,有望重塑加拿大國防戰略的輪廓。事實上,世界上許多國家在人員系統自動化、設備維護、監視系統以及無人機和機器人的部署方面已經遠遠領先(斯坦利和平與安全中心、聯合國裁軍事務廳和史汀生中心2019)。從美國到俄羅斯到以色列再到中國,軍事研究人員正在將人工智能嵌入網絡安全舉措和支持遠程手術、戰斗模擬和數據處理的機器人系統。
以先進的物流、半自動車隊、智能供應鏈管理和預測性維護系統的形式將人工智能應用于軍事行動代表了人工智能的近期應用(Perry 2021)。然而,能夠在陸地、海洋、空中、太空和網絡領域針對個人(無論是否需要人類干預)的自主武器的演變代表了軍事沖突的可能未來(見圖3)。事實上,近100個國家的軍隊目前擁有某種程度的武裝或非武裝無人機能力(Gettinger 2019)。
圖3:全球無人機激增
商業無人機技術在采礦、農業和能源領域的縱橫捭闔,正在助長無人機技術的廣泛擴散。正如最近亞美尼亞和阿塞拜疆之間的沖突所表明的那樣,一群相對便宜的自主和半自主無人機可以被利用來壓倒傳統的軍事系統,使一系列當代平臺變得過時(Shaikh和Rumbaugh 2020)。輕型、可重復使用的武裝無人機,如土耳其的Songar(Uyan?k 2021)可以配備一系列有效載荷,包括迫擊炮、手榴彈和輕機槍。最近對沙特阿拉伯的Abqaiq石油加工設施(Rapier 2019)和俄羅斯的Khmeimim空軍基地(Hambling 2018)的攻擊反映了軍事無人機在不同戰場環境中的應用越來越多。
致命自主武器系統(LAWS)被定義為可以在沒有人類授權的情況下選擇和攻擊目標的武器,它被設計為在獨立識別目標之前在指定的行動區域內長期徘徊。多個無人機或機器人可以并行運作,以克服對手的防御或摧毀一個特定目標。開發人員傾向于將致命性武器系統分為三大類,即觀察、定位、決定和行動(OODA)循環(見圖4)。這些類別包括。"循環中的人"、"循環中的人 "和 "循環外的人"。這種區分也被框定為 "半自主"、"受監督的自主 "和 "完全自主 "的技術系統。不幸的是,受監督的致命性自主武器系統和完全自主的致命性自主武器系統之間的區別,可能只是一個軟件補丁或一個監管程序。
圖4:OODA環
隨著致命性自主武器系統和其他數據驅動的技術變得更便宜和更廣泛,它們可能會給廣泛的國家和非國家行為者提供平臺和工具,以新的和破壞性的方式利用人工智能和機器學習。除了收緊OODA循環外,軍事人員將需要了解人工智能在加速OODA循環方面的影響,以確定在特定情況下哪種模式最合適。
鑒于EDT的范圍和規模,認為我們可以簡單地保持從上個世紀繼承的系統和做法是錯誤的。正如英國查塔姆研究所2018年的一份報告所警告的那樣,美國、英國和其他核武器系統正變得越來越容易受到網絡攻擊(Unal and Lewis 2018)。這些擔憂是有根據的。人工智能和EDT的擴散一起,幾乎肯定會通過利用人工智能和自主系統的規模效應,為小國和非國家行為者帶來好處。
對于許多北約國家來說,網絡平臺已經成為多領域行動的關鍵--海、空、陸、網絡和空間。大規模的網絡使得在復雜環境中可視化和協調大量資源成為可能。在5G電信和云計算的基礎上,信息系統現在可以有效地收集、傳輸和處理大量的戰場數據,提供實時數據分析。
連接設備正在成為協調空襲、駕駛無人機、消化戰斗空間的實時視頻和管理高度復雜的供應鏈的關鍵。在英國,國防數據框架提供了一個結構,以解決軍事組織與數據驅動的企業需求相一致的挑戰(Ministry of Defence 2021)。從戰略到通信到后勤到情報,數字平臺現在是協調復雜軍事行動的基礎。數據現在是所有作戰領域的命脈。
在一個數字化的戰斗空間中,每個士兵、平臺和資源現在都是一個復雜軍事網絡中的節點。從20世紀90年代以網絡為中心的美國軍事行動開始,數字技術已經成為先進武器、戰術和戰略的基礎。從戰場態勢感知和自主無人機到精確制導彈藥和機器驅動的心理行動,網絡正在使戰爭進入網絡時代。
在集中式機構對工業時代至關重要的地方,平臺和網絡正在成為數字時代的關鍵。人工智能本質上是一種 "自下而上 "的技術,依靠不斷 "喂養 "大量的數據來支持機器學習作為 "學習引擎"。隨著數字生態系統的激增,網絡平臺和它們所依賴的數據管理系統成為管理不斷擴大的資源和人員的關鍵。
與金融部門一樣,DND應該尋求區塊鏈等DLT,以加速加拿大軍隊的數字化轉型。通過在分散的網絡中橫向分配數據,CAF區塊鏈可以幫助減少官僚化系統固有的限制和脆弱性。DLT提供了一個高度分散的驗證系統,可以確保所有的通信和數據傳輸免受對手的攻擊,同時消除集中式節點的潛在故障。
人工智能在軍事規劃中的應用正在迅速推進,許多國家在部署無人機和機器人方面已經取得了很大進展。事實上,無人機技術的全球擴散正在順利進行中。
世界各地的軍隊正在加速開發或采購攻擊型無人機(見圖5)。俄羅斯的 "閃電"(BulgarianMilitary.com 2021)、西班牙的Rapaz8以及英國、9美國10和以色列11的各種無人機項目共同代表了軍事技術新時代的早期階段。與工業時代的軍事技術不同,無人機可以以低成本獲得,并需要相對較少的技術技能。
無人機群技術涉及微型/迷你無人機/無人駕駛飛行器或無人機群,利用基于共享信息的自主決策。事實上,當代軍用無人機已經可以被設計成在沒有人參與的情況下定位、識別和攻擊目標。利用蜂群技術,數以百計的非武裝無人機可以從現場收集信息,同時用各種武器(即火器、火炮和/或彈藥)引導數以千計的無人機。
正如簡短的視頻 "Slaugherbots "所展示的那樣,完全自主的武器將使瞄準和殺死獨特的個人變得非常容易和便宜。在面部識別和決策算法的基礎上,國家和非國家行為者都可以廣泛使用致命性武器。數以千計的相對便宜的無人機配備了爆炸性的彈頭,有可能壓倒防空系統,攻擊基礎設施、城市、軍事基地等等。
圖5:無人機對比
無人機群壓倒加拿大軍事設施的威脅,以及對關鍵基礎設施的網絡攻擊或在衛星傳感器檢測到威脅時自動發射的高超音速導彈,代表了一個令人不安但越來越可能的未來。從復雜性科學和對昆蟲的研究中產生的,使用無人機來支持 "集群情報 "代表了一個加速戰爭節奏的新工具集。
為了應對這種不斷變化的環境,DARPA提出了 "馬賽克戰爭"的概念。馬賽克戰爭的中心思想是,模塊化系統可以成為應對高度網絡化環境的廉價、靈活和高度可擴展的工具。就像馬賽克中的瓷片一樣,單個作戰平臺可以被設計成高度可配置的。編隊利用分散的代理在 "殺戮網 "上進行重新配置。殺戮網的目標是避免 "單體系統 "的結構僵化。
與傳統戰爭中需要的復雜棋局不同,馬賽克戰爭利用數字網絡,利用模塊的靈活性和增強的決策(時間壓縮)加快動態響應時間。像自然界中的復雜系統一樣,殺傷性網絡使用算法來消除單點故障,通過模塊化設計加速反應時間。
從主導地位(預測)轉向加速反應(適應),"馬賽克戰爭 "旨在支持混合軍事單位,利用 "決策棧 "上下的橫向網絡。人工智能、無人機、傳感器、數據和人員結合在一起,為地面上的作戰指揮官提供支持,使小型編隊能以更快的速度獲得情報、資源和后勤資產。
像 "馬賽克戰爭 "這樣的模塊化系統表明,未來的戰爭將越來越多地利用現在驅動戰爭游戲和模擬的計算、數據分析和算法。推動高度流動、游戲化和不可預測的環境,未來的人工智能系統可以將戰爭加速到一個隨著結果范圍的擴大而變得極其密集的計算速度和節奏。
DARPA最近的AlphaDogfight(2019-2020年)為這一新現實提供了一個窗口。使用復雜的F-16飛行模擬器讓計算機與有經驗的人類飛行員對決,試驗的目的是為DARPA的空戰進化計劃推進人工智能開發者。毫不奇怪,F-16人工智能代理通過積極和精確的機動性擊敗了人類飛行員,而人類飛行員根本無法與之相提并論,五局為零。
人工智能的武器化也在激起對抗人工智能系統的新戰略和方法。正如網絡行動(無論是間諜活動還是攻擊)可以指示計算機網絡或機器以它們不打算的方式運行,對手也可以對人工智能系統使用同樣的策略。這個過程被稱為對抗性機器學習,旨在找出機器學習模型的弱點并加以利用。攻擊可能發生在開發或部署階段,包括通過提供欺騙性輸入(例如,"毒化"數據)或針對模型本身來誤導模型。
這些方法在國家安全環境中特別危險,因為在許多情況下,它們是微妙的,人類無法察覺。此外,具有挑戰性的是,對手不一定需要對目標模型的具體知識或直接訪問其訓練數據來影響它。隨著人工智能系統變得更加普遍,更多的人可以接觸到,對手的吸引力和攻擊機會將增加。
攻擊者可能試圖修改訓練數據或測試數據。這是通過創造對抗性樣本來實現的,這些樣本被故意 "擾亂 "或改變并提供給模型,從而導致錯誤。例如,通過改變洗衣機圖像的分辨率,研究人員能夠欺騙一個模型,將機器分類為 "安全 "或 "擴音器"(Kurakin, Goodfellow and Bengio 2017)。對人的眼睛來說,對抗性圖像看起來幾乎是一樣的。
在國家安全方面,對手可能會試圖使用同樣的技術來暗示武器系統實際上是一個社區中心。如果這是在孤立的情況下發生的,那么這個問題很可能被識別和解決。如果對手的樣本被長期大規模使用,這可能成為一個重大的挑戰,并影響對情報收集系統的信任。
此外,一些對手可能并不精確--或有技能--并可能試圖迫使一個模型對整個類別而不是特定類別進行錯誤分類。由于我們在國家安全環境中越來越依賴計算機圖像,并不總是能夠實時或在有爭議的空間進行驗證,因此在這種攻擊中出現誤判的風險是很大的。
高后果的人工智能系統并不是對抗性攻擊的唯一目標。受對抗性樣本影響的人工智能系統可以包括生物識別,其中假的生物特征可以被利用來冒充合法用戶,語音識別中攻擊者添加低量級的噪音來混淆系統(Zelasko等人,2021)和計算機安全(包括在網絡數據包中混淆惡意軟件代碼)。
由于DND/CAF尋求通過部署人工智能系統來提高效率--如軍艦上的語音助手(McLeod 2019)--必須在部署前評估對抗性使用的風險并制定對策。
除了改變輸入,另一種攻擊方法可用于逆向工程模型以獲取訓練數據(Heaven 2021)。由于機器學習模型對訓練數據的表現比新的輸入更好,對手可以識別目標模型預測的差異,并與包括個人身份信息在內的已知數據相匹配(Shokri等人,2017)。隨著機器學習即服務變得越來越多--而且在許多情況下,被用作開發更復雜的能力的基礎--DND將需要仔細審查國家安全系統的數據泄漏風險。這甚至適用于看似無害的系統,如語音助手。
人工智能系統的弱點的例子很多(Hadfield-Menell等人,2017)。這些例子包括吸塵器將收集到的灰塵彈回它剛打掃過的地方,以便它能收集更多的灰塵,或者數字游戲中的賽艇在原地循環以收集分數,而不是追求贏得比賽的主要目的。雖然這些例子沒有生命危險,但同樣的技術--被稱為獎勵黑客(當一個模型被指示使其目標函數最大化,但卻以非故意的方式進行)--可以被用于更嚴重的效果。
從旨在用固定的訓練數據解決 "單步決策問題 "的機器學習過渡到解決 "順序決策問題 "和更廣泛的數據集的深度機器學習,將使對抗性攻擊更難發現。這種威脅是如此之大,以至于美國情報高級研究項目活動正在資助一個項目,以檢測木馬人工智能對已完成系統的攻擊。令人擔憂的是,政府可能會在不知情的情況下操作一個產生 "正確 "行為的人工智能系統,直到出現 "觸發 "的情況。例如,在部署過程中,對手可能會攻擊一個系統,并在更晚的時候才導致災難性的故障發生。這些類型的攻擊可能會影響到圖像、文本、音頻和游戲的人工智能系統。
正如對抗性樣本可以用來愚弄人工智能系統一樣,它們可以被納入訓練過程中,以使它們對攻擊更加強大。通過對最重要的國家安全人工智能系統進行清潔和對抗性數據的訓練--要么給它們貼上這樣的標簽,要么指示一個模型將它們分離出來--更大的防御是可能的。但是,復雜的對手很可能會自行躲避這種防御方法,而使用額外的戰術進行深度防御將是必要的。
GANs有各種各樣的用例,從創建深度假說到癌癥預后(Kim, Oh and Ahn 2018)。它們也可用于防御對抗性攻擊(Short, Le Pay and Ghandi 2019),使用一個生成器來創建對抗性樣本,并使用一個判別器來確定它是真的還是假的。一個額外的好處是,使用GANs作為防御,實際上也可能通過規范數據和防止 "過度擬合 "來提高原始模型的性能(IBM云教育2021)。
對抗性攻擊和防御模型進行基準測試--如使用GANs--是一種全面的對策,可以對AI系統進行比較。這種方法為制定和滿足安全標準提供了一個量化的衡量標準,并允許評估人工智能系統的能力和限制。
作為這個測試和評估過程的一部分,博弈論可能有助于建立對手的行為模型,以確定可能的防御策略。由于人工智能系統無法在傳統的信息安全意義上進行 "修補",因此在部署前應仔細分析針對國家安全人工智能系統的對抗性攻擊的風險,并定期進行審查。此外,訓練有素的模型--特別是那些關于機密數據和最敏感應用的模型--應該得到仔細保護。
數據驅動的戰爭的速度和范圍表明,我們正在進入一個新的時代,其中致命性武器系統的潛力--無論是否有人類參與--都可能極大地改變全球力量平衡。從殺手級無人機和人機合作到增強的軍事決策(殺手2020),人工智能技術將使世界各國軍隊投射力量的能力大大增加。正在進行的人工智能武器化也與空間武器化相重疊(《經濟學人》2019年),因為低地球軌道(LEO)日益成為軍事監視、遙感、通信、數據處理(Turner 2021)和彈道武器(Sevastopulo和Hille 2021)的操作環境。
人工智能與低地軌道和致命性自主武器系統的興起,代表了全球安全性質的一個關鍵轉折點。為此,世界各地的學術研究人員、技術企業家和公民都對人工智能的軍事化所帶來的危險表示擔憂。正如他們正確地指出的那樣,在規范負責任地開發和使用人工智能的規范和法律方面缺乏國際共識,有可能造成未來的危機。
除了我們在科幻小說中經常看到的對人工智能的夸張描述,重要的是建立適當的制衡機制,以限制人工智能技術可能提供的權力集中。關于管理人工智能和其他數字技術的共同國際規則和條例將塑造未來幾十年的戰爭和沖突的輪廓。在軍事人工智能的發展中制定護欄,對于減少未來沖突的可能性至關重要。
加拿大和其他北約國家積極參與這一討論可能是未來全球和平與安全的關鍵。在發動戰爭的條件(jus ad bellum)和戰爭中的人工智能行為(jus in bello)方面,規范人工智能使用的戰爭法仍有待確定。鑒于美國和中國之間不斷擴大的競爭,需要制定關于致命性自主武器系統的使用及其擴散的條約是再及時不過了。
正如北約所觀察到的,加拿大及其盟國應尋求促進、參與和建立合作機會,以支持開發和應用人工智能和其他EDT的廣泛、全面的架構(北約新興和顛覆性技術咨詢小組2020)。盡管面臨著艱巨的挑戰,全球治理在規范軍事人工智能方面可以發揮重要作用。盡管對人工智能及其武器化有不同的看法,但過去的談判可以作為未來條約的基礎,特別是在定義戰爭規則方面。這包括關于常規武器、核軍備控制、生物和化學武器、地雷、外層空間和平民保護的條約(見圖6)。
到目前為止,《聯合國特定常規武器公約》(CCW)已經監督了一個討論應對自主武器帶來的人道主義和國際安全挑戰的進程。已經提出了一系列監管致命性自主武器系統的潛在方案,包括《特定常規武器公約》下的一項國際條約,一個不具約束力的行為準則,宣布各國承諾負責任地開發和使用致命性自主武器系統。在聯合國之外,2013年發起了 "停止殺手機器人 "運動,目標是完全禁止致命性自主武器系統。
聯合國秘書長安東尼奧-古特雷斯強調了人工智能和其他數字技術的風險和機遇(聯合國2020),并呼吁禁止致命性自主武器系統(古特雷斯2021)。不幸的是,聯合國成員國,特別是聯合國安理會的觀點存在分歧,一些國家認為監管是民族國家的專屬權限,而另一些國家則側重于更多部門的做法。除了人工智能的武器化,在圍繞人權、算法偏見、監控(公共和私人)以及國家支持的或國家支持的網絡攻擊等問題上也存在廣泛的分歧。
對于世界上的主要軍事大國來說,缺乏互信仍然是追求人工智能集體軍備控制協議的一個重大障礙。即使相當多的國家支持提供新的具有法律約束力的條約,禁止開發和使用致命性自主武器,但世界上大多數主要軍事大國都認為人工智能的武器化具有重大價值。鑒于這些分歧,致命性自主武器系統的多邊管理將需要建立信任措施,作為打開政治僵局的軍控進程的手段。
走向平凡的監管 也許制定管理人工智能的政策和監管制度的最具挑戰性的方面是難以準確地確定這些制度應該監管什么。與生物和化學武器不同,人工智能大多是軟件。事實上,人工智能是一個移動的目標:40年前被定義為人工智能的東西,今天只是傳統的軟件。
人工智能是一個模糊的技術領域,影響著廣泛的商業和軍事應用。例如,機器學習算法是搜索引擎(算法排名)、軍用無人機(機器人技術和決策)和網絡安全軟件(算法優化)的成分。但它們也支撐著平凡的行業,甚至兒童玩具(語義分析、視覺分析和機器人技術)、金融軟件和社交媒體網絡(趨勢分析和預測分析)。
與屬于這些平凡的監管領域的產品和流程一樣,人工智能技術不是被設計成最終實體,而是被設計成在廣泛的產品、服務和系統中使用的成分或組件。例如,一個 "殺手機器人 "不是一種特定技術的結果。相反,它是人工智能 "成分 "重新組合的結果,其中許多成分也被用來檢測癌癥或增加駕駛者的安全。
雖然人們傾向于使用一個專門的不擴散鏡頭來監管人工智能,但雙重用途的挑戰仍然存在。與核擴散或轉基因病原體不同,人工智能不是一種特定的技術。相反,它更類似于一個材料或軟件成分的集合。與大多數二元的核不擴散鏡頭相比,可以在食品監管中找到更相關(盡管不那么令人興奮)的監管模式的靈感,特別是食品安全和材料標準(Araya和Nieto-Gómez 2020)。
鑒于對人工智能進行全面監管存在重大的概念和政治障礙,治理仍然是一項艱巨的挑戰。一方面,如果我們把人工智能理解為一系列復制人類活動的技術實踐,那么就根本沒有一個單一的領域可以監管。相反,人工智能的治理幾乎重疊了每一種使用計算來執行任務的產品或服務。另一方面,如果我們將人工智能理解為大幅改變人民和國家之間權力平衡的基礎,那么我們就會面臨重大挑戰。
幸運的是,這并不是民族國家第一次面臨影響全球安全的新技術。在第二次世界大戰之后,世界上最強大的國家--美國、英國、蘇聯、中國、法國、德國和日本--對核武器、化學制劑和生物戰的全球治理進行監督。當時和現在一樣,世界必須采取集體行動來治理人工智能。
與冷戰時期一樣,包括定期對話、科學合作和分享學術成果在內的建立信任措施可以幫助減少地緣政治的緊張。為管理軍事人工智能帶來的風險制定一個共同的詞匯,可以為隨著時間的推移制定更有力的人工智能多邊條約提供基礎。
在這方面,經濟合作與發展組織(OECD)已經公布了其關于人工智能的建議,作為一套政府間標準,于2020年2月啟動了人工智能政策觀察站。加拿大和法國政府還與經合組織一起領導了一個全球人工智能伙伴關系(GPAI),旨在成為一個人工智能政策的國際論壇。GPAI的成員專注于以 "人權、包容、多樣性、創新和經濟增長原則 "為基礎的負責任的人工智能發展。
除了GPAI,一些歐洲國家已經呼吁歐盟成員開始一個關于負責任地使用新技術的戰略進程--特別是人工智能。美國已經邀請盟國討論人工智能的道德使用問題(JAIC公共事務2020)。北約已經啟動了一個進程,鼓勵成員國就一系列道德原則和具有軍事用途的電子技術關鍵領域的國際軍備控制議程達成一致(Christie 2020;NATO 2020)。認識到EDT對全球安全的深遠影響,北約于2019年12月推出了EDT路線圖(北約科技組織2020)。
從整體上看,二十一世紀需要進行正式監管。從長遠來看,這很可能包括尋求與禁止生物武器、化學武器和殺傷人員地雷一樣的人工智能條約。然而,鑒于人工智能的創新速度和世界超級大國之間日益擴大的分歧,就人工智能的全球治理進行談判的機會之窗可能正在關閉。
圖6:人工智能的全球治理
即使在工業時代即將結束的時候,技術創新也在加速進行(Araya 2020)。自從大約80年前誕生以來,人工智能已經從一個神秘的學術領域發展成為社會和經濟轉型的強大驅動力。人工智能在戰爭中的整合被一些軍事分析家描述為一個不斷發展的 "戰場奇點"(Kania 2017)。在 "技術奇點"(Schulze-Makuch 2020)的概念基礎上,人們越來越多地猜測,人工智能和機器人將超越人類的能力,有效地應對算法驅動的戰爭。
人工智能和其他EDT的演變正在將先進的數據、算法和計算能力匯集起來,以 "認知 "軍事技術。在這種新環境下,現代軍隊正變得嚴重依賴提供安全、及時和準確數據的網絡。數據已經成為數字系統的 "作戰用氣 "和驅動 "智能機器 "的原料。隨著數據重要性的增加,在廣闊的數字領域的對抗性競爭也在增加。事實上,數據的真正價值在于其推動創新的數量和質量。
正如北約關于EDT的年度報告(北約新興和顛覆性技術咨詢小組2020)明確指出,要想跟上技術變革的步伐,就必須在技術的開發、實驗和應用方面保持靈活性和快速迭代。整個CAF的創新能力必須是一個更廣泛的創新生態系統的一部分,該系統有效地整合了公共和私人生態系統的研究和實施。這包括與加拿大工業界合作利用雙重用途的GPT的明確目標,以便利用已經存在的技術。
這種多領域的合作在歷史上被定義為國家創新體系(NSI)(OECD 1997)。事實上,NSI政策和規劃可以采取多種形式,從松散的協調到高度整合的伙伴關系。在美國(Atkinson 2020)、中國(Song 2013)和歐洲(Wirkierman, Ciarli and Savona 2018)應用的各種NSI規劃模式表明,在最大化政府-產業-研究伙伴關系方面可以找到大量的經濟和社會回報。政府應通過稅收優惠、采購和研究資金以及戰略規劃,努力建設加拿大的技術能力。但它不能單獨行動。
國家創新必然取決于機構參與者在一個共享的生態系統中進行合作。出于這個原因,一個協調的加拿大國家統計局將需要在推動長期創新的過程中,人們和機構之間的技術和信息的相互流動。鑒于EDT的許多創新是由工業界主導的,推進公私伙伴關系對加拿大軍隊的發展至關重要。對于國防部/加拿大空軍來說,要推進適合數字時代的軍隊,政府、工業界和學術界將需要以更綜合的方式進行合作。
建立一個強大的加拿大創新生態系統將意味著更廣泛的公私合作和持續的知識和資源的再培訓、培訓和孵化。盡管開發尖端人工智能需要人力資本投資,但大多數人工智能應用現在可以通過開源許可獲得,即使核心學習算法可以在公共平臺和整個學術生態系統中獲得。這種 "開放一切 "環境的影響是對封閉的等級制度和深思熟慮的官方機構的實質性挑戰。
政府程序和規劃將需要適應加速的創新生命周期,以配合EDT積極的淘汰周期。除了與網絡技術相關的巨大的不對稱安全風險外,向數據驅動型軍隊的轉變將需要大量關注數據安全和數據治理。與進行傳統的國家間沖突所需的大量成本和規劃不同,網絡攻擊的破壞性影響可以由僅有一臺個人電腦的小團體對關鍵基礎設施發動。鑒于未來不斷增加的挑戰,大型官僚機構(公司、政府、學術和軍事)的設計變化是不可避免的。
除了對新的和不同的知識、資源和專長的需求,加拿大政府和加拿大軍方將需要平衡硬實力和不斷變化的地緣政治格局的需求。在美國占主導地位的時代之外,二十一世紀正被一個以技術民族主義和后布雷頓森林體系為特征的多極體系所塑造。面對一個快速發展的數字時代,國際合作將是確保和平與安全的關鍵。信息共享、專家會議和多邊對話可以幫助世界各民族國家及其軍隊更好地了解彼此的能力和意圖。作為一個全球中等國家,加拿大可以成為推動這一努力的主要伙伴。
國際治理創新中心(CIGI)是一個獨立的、無黨派的智囊團,其經同行評議的研究和可信的分析影響著政策制定者的創新。其全球多學科研究人員網絡和戰略伙伴關系為數字時代提供政策解決方案,目標只有一個:改善各地人民的生活。CIGI總部設在加拿大滑鐵盧,得到了加拿大政府、安大略省政府和創始人吉姆-巴爾西利的支持。
人工智能作為新一輪科技革命和產業變革的戰略性技術,正在對經濟發展、社會進步、全球治理等方面產生重大而深遠影響,加快人工智能基礎設施布局已成全球主要國家戰略重點。
人工智能基礎設施作為“新基建”的重要部分,我國重視并積極支持人工智能基礎設施建設發展,在公共數據集、行業資源庫、計算平臺、AI 芯片、算法學習框架、開放 AI 平臺、網絡基礎設施等人工智能基礎設施方面重點布局。報告認為人工智能基礎設施是以算力要素能力、數據要素能力、算法要素能力構成的基礎能力平臺為底座,以應用開放平臺等為主要載體,以賦能制造、醫療、交通等重點行業和領域智能化轉型為目標,為實現壯大智能經濟、構建智能社會的專有服務設施能力體系。當前,我國人工智能基礎設施尚處于初期,發展迅猛,其發揮的效力及釋放的價值還有很大的想象空間。
近日,聯合國教科文組織在法國巴黎發布了《人工智能倫理建議書》,這是全球首個針對人工智能倫理制定的規范框架。
《人工智能倫理建議書》明確了規范人工智能技術的10大原則和11個行動領域,是迄今為止全世界在政府層面達成的最廣泛的共識,是全球人工智能發展的共同綱領,并將為進一步形成人工智能有關的國際標準、國際法等提供強有力的參考。
據悉,《人工智能倫理建議書》于2018年春季立項,由全球遴選的24人專家團撰寫,經歷了193個成員國之間超過100小時的多邊談判修訂完成,于今年在聯合國教科文組織第41屆大會上獲得通過。
建議書給出了一個人工智能的定義:
“將人工智能系統視為有能力以類似于智能行為的方式處理數據和信息的系統,通常包括推理、學習、感知、預測、規劃或控制等方面。”
宗旨和目的
該建議書旨在讓人工智能系統可以造福人類、個人、社會、環境和生態系統,同時防止危害。它還旨在促進和平利用人工智能系統。
目的是在全球現有人工智能倫理框架之外,再提供一部全球公認的規范性文書,不僅注重闡明價值觀和原則,而且著力于通過具體的政策建議切實落實這些價值觀和原則,同時著重強調包容、性別平等以及環境和生態系統保護等問題。
并強調人工智能有關的倫理問題復雜性,需要多方合作、共同承擔責任。
歐盟委員會在2020年2月19日發布《人工智能白皮書》,提出一系列政策措施,旨在大力促進歐洲人工智能研發,同時有效應對其可能帶來的風險。
人工智能戰略是歐盟數字戰略的核心支柱之一。歐盟提出要建立一個“可信賴的人工智能框架”,重點聚焦三大目標:研發以人為本的技術;打造公平且具有競爭力的經濟;建設開放、民主和可持續的社會。并提出了一項雄心勃勃的投資計劃,將在今后10年內每年投入高達200億歐元的技術研發和應用資金。歐盟在保護公民隱私和數據安全方面制定了一系列措施。例如,人工智能企業必須通過相關部門的安全測試和資質審核才能進入歐盟市場。
《人工智能白皮書》將在未來三個月內接受各界人士的公開咨詢,再根據反饋結果進行相應修訂。根據計劃,歐盟將于今年年底制定出臺《歐盟數字服務法》等具有法律約束力的數字規則,從而對規范市場準入、強化企業責任和保護基本權利等問題作出明確規定。
分析人士指出,歐盟此舉不僅是要補足前沿科技短板,更是要搶抓數字時代的全球規則主導權。
白皮書指出,人工智能 (AI) 是一項戰略性技術,有益于社會、公司和個人。AI以人為本,基于道德,可持續發展,尊重最基本的權利和價值。AI帶來的效率和生產率不僅能夠提升歐洲的產業競爭力,提升人們的生活福祉,還能夠有效應對氣候變化、環境退化、人口變化、民主權益、社會犯罪等一些急迫解決的社會問題。
在激烈的全球競爭大背景下,歐盟需要在2018年4月發布的《歐盟AI戰略》基礎上找到一條堅實可靠的歐洲路徑。面對AI帶來的機遇與挑戰,歐盟需要秉持歐洲價值觀,以自己獨有的方式行動起來,推動AI的發展和部署。歐盟委員會致力于推動AI科技創新,保持歐盟AI科技的領先地位,確保新技術為全歐洲服務,在提升人們生活質量的同時尊重相關權益。為了抓牢本次AI帶來的機遇,歐洲必須加強產業和技術能力建設。與歐洲AI戰略相呼應的《歐洲數據戰略》中指出,仍需要采取措施使得歐洲成為全球數據中心。《歐洲數據戰略》旨在讓歐洲成為世界上最具吸引力、最安全、最動態的數據經濟體。
歐盟委員會支持的這項投資導向的監管路徑有著雙重目標:一是推動AI進步;二是應對在使用AI過程中產生的相關風險。歐洲AI路徑旨在提升歐洲在AI領域的創新能力,同時提升貫穿歐盟經濟的道德性和可靠性。AI應該服務于人類生活福祉的提升和社會更好的發展。
白皮書分六個章節。一是引言,包含問題界定、可能需要修訂的現存與AI相關的歐盟立法框架、未來歐盟監管框架范圍、要求類型。二是“利用產業和專業市場的優勢”。三是“抓住面前的機遇—下一個數據浪潮”。四是“卓越生態系統”。五是“信任生態系統—AI監管框架”。六是結束語。
白皮書主要圍繞“卓越生態系統”(ecosystemof excellence)和“信任生態系統”(ecosystem of trust)兩個方面的建設展開:
一、“卓越生態系統”。是要建設一個歐洲、國家和地區三個不同層面措施協同的政策框架。公共部門和私營部門共同合作,調動資源,沿著整體價值鏈建設“卓越生態系統”,從研發創新開始,建設正確的激勵機制來加快AI解決方案的在包括中小企業在內的應用。
二、“信任生態系統”。它是歐洲AI未來監管框架的關鍵要素。要做到這一點,必須確保體系遵守歐盟的規則,包括保護基本權利和消費者權利,尤其是那些在歐盟運行的、風險較高的AI系統。這個政策為市民使用AI應用增添了信心,為企業和公共組織的AI創新提供了法律保障。歐洲委員會強烈贊同“以人為本”。
白皮書指出,歐盟資金項目(EU fundingprogramme)在集中力量辦大事上具有重要貢獻,能夠避免重復建設,并撬動歐盟成員國公共部門和私營部門的投資。在過去的三年中,歐盟資金用于AI研究和創新的費用15億歐元,與之前相比增長了70%。
然而,歐洲的AI投入在世界也僅占一小部分。2016年,歐洲用于AI的投入為32億歐元。北美為121億歐元。亞洲為65億歐元。作為回應,歐洲需要大幅度提高AI研究和創新領域投資水平。目標是在未來10年,歐盟資金每年在成員國范圍內吸引200億歐元的AI技術研發和應用資金。
//ec.europa.eu/info/sites/info/files/commission-white-paper-artificial-intelligence-feb2020_en.pdf
11月30日下午,2019中國人工智能產業年會重磅發布《2019人工智能發展報告》(Report of Artificial Intelligence Development 2019)。清華大學計算機系副主任、唐杰教授主持了報告發布儀式,九三中央科技委副主任、中國傳感器與物聯網產業聯盟副理事長郭源生教授,日本工程院院士、中國人工智能學會名譽副理事長、日本德島大學任副繼教授及與會嘉賓共同為報告揭幕。
該報告力圖綜合展現中國乃至全球人工智能重點領域發展現狀與趨勢,助力產業健康發展,服務國家戰略決策。報告內容涵蓋了人工智能13個子領域,包括:機器學習、知識工程、計算機視覺、自然語言處理、語音識別、計算機圖形學、多媒體技術、人機交互、機器人、數據庫技術、可視化、數據挖掘、信息檢索與推薦。