通過利用先前學習的任務來加速復雜任務的學習過程一直是強化學習中最具挑戰性的問題之一,尤其是當源任務和目標任務之間的相似性較低時。本文針對深度強化學習中的知識遷移問題,提出了表示與實例遷移(REPAINT)算法。REPAINT 不僅在策略學習中轉移了預先訓練的教師策略的表示,而且還使用基于優勢的經驗選擇方法來轉移在非策略學習中按照教師策略收集的有用樣本。本文在幾個基準任務上的實驗結果表明,在任務相似的一般情況下,REPAINT 顯著減少了總訓練時間。尤其是當源任務與目標任務不同或子任務不同時,REPAINT 在訓練時間減少和返回分數的漸近表現方面都優于其他基線。
論文鏈接: //www.zhuanzhi.ai/paper/0439c2852ae341fff43de69e5c7062ff
持續學習是一種學習模式,在這種模式下,學習系統按照一系列任務進行訓練。這里的目標是在當前任務上執行得很好,而不會受到前面任務的性能下降的影響。在神經網絡持續學習的最新進展中,有兩個值得注意的方向: (1) 基于變分貝葉斯的正則化,通過學習先前任務的先驗信息,以及(2)學習深度網絡的結構以適應新的任務。到目前為止,這兩種方法在很大程度上是相互正交的。我們提出了一個新的貝葉斯框架,基于不斷學習深度神經網絡的結構,以統一這些不同但互補的方法。該框架通過學習任務所使用的權值來學習任務的深層結構,并通過不同任務學習的權值的不同稀疏子集的重疊來支持任務間的遷移。我們提出的持續學習框架的一個吸引人的方面是,它既適用于甄別(有監督的)設置,也適用于生成(無監督的)設置。在有監督和無監督基準上的實驗結果表明,我們的方法在持續學習方面的表現與最近的進展相當或更好。
手工設計深度神經網絡需要花費大量的時間和精力。這促使了神經結構搜索(NAS)技術的發展,以實現這種設計的自動化。然而,NAS算法往往是緩慢和昂貴的;他們需要訓練大量的候選網絡,為搜索過程提供信息。如果我們能從網絡的初始狀態部分預測其訓練的準確性,這就可以緩解。在這項工作中,我們檢查了未經過訓練的網絡中數據點之間的激活重疊,并激勵它如何能給出一個有用的衡量指標,以表明網絡的訓練性能。我們將這種方法整合到一個簡單的算法中,該算法允許我們無需任何訓練就能在單個GPU上搜索強大的網絡,并在NAS-Bench-101、NAS-Bench-201、NATS-Bench和Network Design Spaces上驗證其有效性。我們的方法可以很容易地與更昂貴的搜索方法相結合;我們研究了一種規則化進化搜索的簡單適應。復制我們實驗的代碼可以在//github.com/BayesWatch/nas-without-training上找到。
在現實世界中,存在許多難以用數學方法指定的約束條件。然而,對于強化學習(RL)的現實部署來說,RL agent意識到這些約束條件是至關重要的,這樣它們才能安全地行動。在這項工作中,我們考慮了學習約束的問題,從一個遵守約束的行為的示范。我們通過實驗驗證了我們的方法,并證明了我們的框架能夠成功地學習agent所尊重的最有可能的約束。我們進一步證明,這些習得的約束是可轉移到新個體的,這些新個體可能具有不同的形態和/或獎賞功能。在這方面,之前的工作要么主要局限于表格(離散)設置、特定類型的約束,要么假設環境的過渡動力學。相比之下,我們的框架能夠在完全無模型的環境中學習高維中的任意文本{馬爾可夫}約束。代碼可在:\url{//github.com/shehryar-malik/icrl}。
模仿學習試圖通過利用專家行為來規避為訓練主體設計適當的獎勵功能的困難。在以Markov Decision Processes (MDP)建模的環境中,大多數現有的模仿算法都取決于在同一MDP中是否有專家演示,而在該MDP中要學習新的模仿策略。在本文中,我們研究了當專家和代理MDP存在差異時如何模擬任務的問題。這些跨領域的差異可能包括不同的動力學、觀點或形態;我們提出了一個新的框架來學習這些領域的響應。重要的是,與之前的工作相比,我們使用只包含專家領域狀態的未配對和未對齊軌跡來學習這種對應關系。我們利用狀態空間和領域未知的潛在空間上的循環一致性約束來做到這一點。此外,我們通過一個歸一化的位置估計函數加強狀態的時間位置的一致性,以對齊兩個領域的軌跡。一旦找到了這種對應關系,我們就可以直接將一個領域的演示轉移到另一個領域,并將其用于模仿。在許多具有挑戰性的領域進行的實驗證明了我們的方法的有效性。
最近最優傳輸(OT)理論在機器學習中的幾個應用都依賴于正則化,尤其是熵和Sinkhorn算法。由于矩陣向量乘積在Sinkhorn算法中是普遍存在的,一些工作已經提出使用低秩因子來近似其迭代中出現的核矩陣。另一種方法是在OT問題中考慮的可行耦合集上施加低非負秩約束,不需要對代價或核矩陣進行逼近。這條路線首先由forrow2018探索,他提出了一種為平方歐氏地面成本量身定制的算法,使用了一個代理目標,可以通過正則化的Wasserstein重心機制來解決。在此基礎上,我們引入了一種通用方法,旨在完全通用性地解決具有任意代價的低非負秩約束下的OT問題。我們的算法依賴于低秩耦合的顯式分解,將其作為由公共邊際連接的子耦合因子的乘積; 與NMF方法類似,我們交替更新這些因素。證明了該算法的非漸近平穩收斂性,并通過基準實驗證明了該算法的有效性。
圖神經網絡(GNNs)被廣泛用于學習一種強大的圖結構數據表示。最近的研究表明,將知識從自監督任務遷移到下游任務可以進一步改善圖的表示。然而,自監督任務與下游任務在優化目標和訓練數據上存在內在的差距。傳統的預訓練方法可能對知識遷移不夠有效,因為它們不能適應下游任務。為了解決這一問題,我們提出了一種新的遷移學習范式,該范式可以有效地將自監督任務作為輔助任務來幫助目標任務。在微調階段,我們的方法將不同的輔助任務與目標任務進行自適應的選擇和組合。我們設計了一個自適應輔助損失加權模型,通過量化輔助任務與目標任務之間的一致性來學習輔助任務的權重。此外,我們通過元學習來學習權重模型。我們的方法可以運用于各種遷移學習方法,它不僅在多任務學習中有很好的表現,而且在預訓練和微調中也有很好的表現。在多個下游任務上的綜合實驗表明,所提出的方法能夠有效地將輔助任務與目標任務相結合,與現有的方法相比,顯著提高了性能。
雖然許多現有的圖神經網絡(gnn)已被證明可以執行基于?2的圖平滑,從而增強全局平滑,但在本工作中,我們旨在通過基于?1的圖平滑進一步增強GNN的局部平滑自適應。在此基礎上,提出了一種基于?1和?2圖平滑的彈性GNN。特別地,我們提出了一種新的、通用的消息傳遞方案。該消息傳遞算法不僅有利于反向傳播訓練,而且在保證理論收斂的前提下達到了預期的平滑特性。在半監督學習任務上的實驗表明,所提出的彈性GNN在基準數據集上具有較好的自適應能力,對圖對抗攻擊具有顯著的魯棒性。
圖神經網絡(GNN)已經成為圖表示學習的事實標準,它通過遞歸地聚集圖鄰域的信息來獲得有效的節點表示。盡管 GNN 可以從頭開始訓練,但近來一些研究表明:對 GNN 進行預訓練以學習可用于下游任務的可遷移知識能夠提升 SOTA 性能。但是,傳統的 GNN 預訓練方法遵循以下兩個步驟:
在大量未標注數據上進行預訓練; 在下游標注數據上進行模型微調。 由于這兩個步驟的優化目標不同,因此二者存在很大的差距。
在本文中,我們分析了預訓練和微調之間的差異,并為了緩解這種分歧,我們提出了一種用于GNNs的自監督預訓練策略L2P-GNN。方法的關鍵是L2P-GNN試圖以可轉移的先驗知識的形式學習如何在預訓練過程中進行微調。為了將局部信息和全局信息都編碼到先驗信息中,我們在節點級和圖級設計了一種雙重自適應機制。最后,我們對不同GNN模型的預訓練進行了系統的實證研究,使用了一個蛋白質數據集和一個文獻引用數據集進行了預訓練。實驗結果表明,L2P-GNN能夠學習有效且可轉移的先驗知識,為后續任務提供好的表示信息。我們在//github.com/rootlu/L2P-GNN公開了模型代碼,同時開源了一個大規模圖數據集,可用于GNN預訓練或圖分類等。
總體來說,本文的貢獻如下:
眾所周知,Q-learning算法會受到最大化偏差的影響,即對動作值的系統性高估,這是最近重新受到關注的一個重要問題。雙Q學習被提出作為一種有效的算法來緩解這種偏差。然而,這樣做的代價是動作值被低估,以及內存需求增加和收斂速度減慢。在本文中,我們提出了一種新的方法來解決最大化偏差問題,即采用“自校正算法”來逼近期望值的最大值。我們的方法平衡了傳統Q-learning中單估計量的高估和雙估計量的低估。將此策略應用到Q-learning中,就會產生自校正Q-learning。我們從理論上證明了該算法具有與Q-learning相同的收斂性保證,并且更加精確。從經驗上看,它在高方差獎勵領域優于雙Q-learning,甚至在零或低方差獎勵領域的收斂速度也比Q-learning快。這些優勢轉移到深度Q網絡實現,我們稱之為自校正DQN,它在Atari2600域的幾個任務上優于常規DQN和雙DQN。
摘要
本文綜述了遷移學習在強化學習問題設置中的應用。RL已經成為序列決策問題的關鍵的解決方案。隨著RL在各個領域的快速發展。包括機器人技術和游戲,遷移學習是通過利用和遷移外部專業知識來促進學習過程來幫助RL的一項重要技術。在這篇綜述中,我們回顧了在RL領域中遷移學習的中心問題,提供了一個最先進技術的系統分類。我們分析他們的目標,方法,應用,以及在RL框架下這些遷移學習技術將是可接近的。本文從RL的角度探討了遷移學習與其他相關話題的關系,并探討了RL遷移學習的潛在挑戰和未來發展方向。
關鍵詞:遷移學習,強化學習,綜述,機器學習
介紹
強化學習(RL)被認為是解決連續決策任務的一種有效方法,在這種方法中,學習主體通過與環境相互作用,通過[1]來提高其性能。源于控制論并在計算機科學領域蓬勃發展的RL已被廣泛應用于學術界和工業界,以解決以前難以解決的任務。此外,隨著深度學習的快速發展,應用深度學習服務于學習任務的集成框架在近年來得到了廣泛的研究和發展。DL和RL的組合結構稱為深度強化學習[2](Deep Reinforcement Learning, DRL)。
DRL在機器人控制[3]、[4]、玩[5]游戲等領域取得了巨大的成功。在醫療保健系統[6]、電網[7]、智能交通系統[8]、[9]等領域也具有廣闊的應用前景。
在這些快速發展的同時,DRL也面臨著挑戰。在許多強化學習應用中,環境模型通常是未知的,只有收集到足夠的交互經驗,agent才能利用其對環境的知識來改進其性能。由于環境反饋的部分可觀察性、稀疏性或延遲性以及高維觀察和/或行動空間等問題,學習主體在沒有利用任何先驗知識的情況下尋找好的策略是非常耗時的。因此,遷移學習作為一種利用外部專業知識來加速學習過程的技術,在強化學習中成為一個重要的課題。
在監督學習(SL)領域[10]中,TL得到了廣泛的研究。與SL場景相比,由于MDP環境中涉及的組件更多,RL中的TL(尤其是DRL中的TL)通常更復雜。MDP的組件(知識來自何處)可能與知識轉移到何處不同。此外,專家知識也可以采取不同的形式,以不同的方式轉移,特別是在深度神經網絡的幫助下。隨著DRL的快速發展,以前總結用于RL的TL方法的努力沒有包括DRL的最新發展。注意到所有這些不同的角度和可能性,我們全面總結了在深度強化學習(TL in DRL)領域遷移學習的最新進展。我們將把它們分成不同的子主題,回顧每個主題的理論和應用,并找出它們之間的聯系。
本綜述的其余部分組織如下:在第2節中,我們介紹了強化學習的背景,關鍵的DRL算法,并帶來了這篇綜述中使用的重要術語。我們還簡要介紹了與TL不同但又緊密相關的相關研究領域(第2.3節)。
在第3節中,我們采用多種視角來評價TL方法,提供了對這些方法進行分類的不同方法(第3.1節),討論了遷移源和目標之間的潛在差異(第3.2節),并總結了評價TL有效性的常用指標(第3.3節)。
第4節詳細說明了DRL領域中最新的TL方法。特別是,所討論的內容主要是按照遷移知識的形式組織的,如成型的獎勵(4.1節)、先前的演示(4.2節)、專家策略(4.3節),或者按照轉移發生的方式組織的,如任務間映射(4.4節)、學習可轉移表示(4.5節和4.6節)等。我們在第5節討論了TL在DRL中的應用,并在第6節提供了一些值得研究的未來展望。