亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

強化學習是人工智能中一個強大的工具,其中虛擬或物理代理學習優化他們的決策,以實現長期目標。在某些情況下,這種機器學習方法可以節省程序員的時間,超越現有的控制器,達到超人的性能,并不斷適應不斷變化的條件。這本書認為,這些成功表明強化學習可以成功地應用于許多不同的情況,包括機器人控制、股票交易、供應鏈優化和工廠控制。

然而,強化學習傳統上僅限于虛擬環境或模擬環境中的應用,在這些環境中已經提供了設置。此外,實驗可以完成幾乎無限次的嘗試無風險。在許多現實生活任務中,使用強化學習并不像(1)數據沒有正確的形式;(2)數據稀缺,(3)自動化在現實世界中有局限性。

因此,這本書是寫來幫助學者,領域專家,和數據愛好者一樣理解的基本原則,應用強化學習到現實世界的問題。這是通過將重點放在使用實際示例和將標準數據建模為所需的正確形式,然后應用基本智能體的過程來實現的。為了進一步幫助讀者獲得對這些方法的深入和接地氣的理解,本書展示了完整的手工計算示例,以及如何用代碼以更自動化的方式實現這一點。

對于對強化學習作為解決方案感興趣但不精通的決策者,本書在介紹和案例研究部分包括簡單的、非技術的例子。這些提供了強化學習的背景,以及在實踐中應用它的挑戰和風險。具體來說,這些部分闡述了強化學習和其他機器學習方法的區別,以及知名公司如何成功地使用這種方法解決他們的問題。

//www.morganclaypool.com/doi/abs/10.2200/S01170ED1V01Y202202AIM052

付費5元查看完整內容

相關內容

強化學習(RL)是機器學習的一個領域,與軟件代理應如何在環境中采取行動以最大化累積獎勵的概念有關。除了監督學習和非監督學習外,強化學習是三種基本的機器學習范式之一。 強化學習與監督學習的不同之處在于,不需要呈現帶標簽的輸入/輸出對,也不需要顯式糾正次優動作。相反,重點是在探索(未知領域)和利用(當前知識)之間找到平衡。 該環境通常以馬爾可夫決策過程(MDP)的形式陳述,因為針對這種情況的許多強化學習算法都使用動態編程技術。經典動態規劃方法和強化學習算法之間的主要區別在于,后者不假設MDP的確切數學模型,并且針對無法采用精確方法的大型MDP。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

這篇文章是關于實踐中的強化學習領域的溫和討論,關于機會和挑戰,涉及廣泛的主題,有觀點,沒有技術細節。本文基于歷史和最近的研究論文、調查、教程、談話、博客、書籍、(小組)討論和研討會/會議。不同的讀者群體,如研究人員、工程師、學生、經理、投資者、官員和想要更多地了解該領域的人,可能會發現這篇文章很有趣。在本文中,我們首先簡要介紹了強化學習(RL),以及它與深度學習、機器學習和人工智能的關系。然后,我們討論了RL的機會,特別是產品和服務、游戲、博弈、推薦系統、機器人、交通、金融和經濟、醫療保健、教育、組合優化、計算機系統和科學與工程。然后我們討論挑戰,特別是1)基礎 ,2)表示,3)獎勵,4)勘探、5)模型,模擬、規劃、和基準, 6)離線策略/離線學習,7)學會學習又名元學習,8)explainability和可解釋性,9)限制,10)軟件開發和部署,11)業務視角,還有更多的挑戰。我們以討論結束,試圖回答:“為什么RL還沒有在實踐中被廣泛采用?”和“在線學習什么時候有用?”

付費5元查看完整內容

機器學習中復雜的統計數據讓許多開發人員感到擔憂。了解統計學可以幫助你建立強大的機器學習模型,針對給定的問題陳述進行優化。這本書將教你所有需要執行復雜的統計計算所需的機器學習。您將獲得有關監督學習、非監督學習、強化學習等統計信息。了解真實世界的例子,討論機器學習的統計方面,并熟悉它。您還將設計用于執行諸如模型、參數擬合、回歸、分類、密度收集等任務的程序。

到本書結束時,你將掌握機器學習所需的統計數據,并能夠將你的新技能應用于任何類型的行業問題。

付費5元查看完整內容

我的目標是撰寫一本既可以作為教程又能夠參考的書。這本書最初是為我在Mount St. Mary大學的編程入門課上的學生準備的大約30頁筆記。這些學生中大多數沒有編程經驗,這促使我改進方法。我省略了很多技術細節,有時我過度簡化了事情。其中一些細節在書的后面被補充,盡管其他細節從未被補充。但是這本書并不打算涵蓋所有內容,我推薦閱讀其他書籍和Python文檔來填補這些空白。

這本書第一部分的大部分內容都是基礎。前四章非常重要。第五章是有用的,但不是所有的都是關鍵的。第6章(字符串)應該在第7章(列表)之前完成。第8章包含一些更高級的列表主題。雖然這些內容都很有趣,也很有用,但大部分內容都可以跳過。特別是,那一章涵蓋了列表理解,我在書中后面會大量使用。雖然您可以不使用列表理解,但它們提供了一種優雅而有效的做事方式。第9章(while循環)很重要。第10章包含了各種各樣的主題,它們都很有用,但是如果需要的話,可以跳過很多。第一部分的最后四章是關于字典、文本文件、函數和面向對象編程的。

第二部分是關于圖形的,主要是用Tkinter進行GUI編程。您可以很快地使用Tkinter編寫一些很好的程序。例如,第15.7節呈現了一款20行的井字游戲。第二部分的最后一章介紹了一些關于Python圖像庫的內容。

第三部分包含了許多您可以用Python做的有趣的事情。如果你要圍繞這本書組織一個學期的課程,你可能想在第三部分中選擇一些主題來復習。這本書的這一部分也可以作為一個參考或作為一個地方,有興趣和積極的學生學習更多。書中這一部分的所有主題都是我在某一點或另一點上發現有用的東西。雖然這本書是為入門編程課程而設計的,但是對于那些有編程經驗想要學習Python的人來說,這本書也很有用。如果你是這些人中的一員,你應該能夠輕松地讀完前幾章。您應該發現,第2部分對GUI編程進行了簡明而非膚淺的論述。第三部分包含了關于Python特性的信息,這些特性允許您用很少的代碼完成大任務。

付費5元查看完整內容

這本書提供了使“機器學習”系統更可解釋的最新概念和可用的技術的全面介紹。本文提出的方法幾乎可以應用于所有當前的“機器學習”模型: 線性和邏輯回歸、深度學習神經網絡、自然語言處理和圖像識別等。

機器學習(Machine Learning)的進展正在增加使用人工代理來執行以前由人類處理的關鍵任務(醫療、法律和金融等)。雖然指導這些代理設計的原則是可以理解的,但目前大多數深度學習模型對人類的理解是“不透明的”。《Python可解釋人工智能》通過從理論和實踐的角度,填補了目前關于這一新興主題的文獻空白,使讀者能夠快速使用可解釋人工智能的工具和代碼。

本書以可解釋AI (XAI)是什么以及為什么在該領域需要它為例開始,詳細介紹了根據特定背景和需要使用XAI的不同方法。然后介紹利用Python的具體示例對可解釋模型的實際操作,展示如何解釋內在的可解釋模型以及如何產生“人類可理解的”解釋。XAI的模型不可知方法可以在不依賴于“不透明”的ML模型內部的情況下產生解釋。使用計算機視覺的例子,作者然后著眼于可解釋的模型的深度學習和未來的展望方法。從實踐的角度,作者演示了如何在科學中有效地使用ML和XAI。最后一章解釋了對抗性機器學習以及如何使用對抗性例子來做XAI。

//www.springer.com/gp/book/9783030686390

付費5元查看完整內容

本書解釋了數據科學中至關重要的統計學概念,介紹如何將各種統計方法應用于數據科學。作者以易于理解、瀏覽和參考的方式,引出統計學中與數據科學相關的關鍵概念;解釋各統計學概念在數據科學中的重要性及有用程度,并給出原因。

統計方法是數據科學的關鍵部分,但很少有數據科學家有任何正式的統計培訓。關于基本統計的課程和書籍很少從數據科學的角度涵蓋這個主題。這本實用指南解釋了如何將各種統計方法應用到數據科學中,告訴你如何避免它們被誤用,并就什么是重要的、什么是不重要的給出建議。

許多數據科學資源包含了統計方法,但缺乏更深層次的統計視角。如果您熟悉R編程語言,并且對統計學有一定的了解,那么本文的快速引用將以一種可訪問、可讀的格式填補空白。

通過這本書,你會學到:

  • 為什么探索性數據分析是數據科學的一個關鍵的初步步驟
  • 隨機抽樣如何在大數據的情況下減少偏差并產生更高質量的數據集
  • 實驗設計的原則如何為問題提供明確的答案
  • 如何使用回歸估計結果和檢測異常
  • 用于預測記錄所屬類別的關鍵分類技術
  • 從數據中“學習”的統計機器學習方法
  • 從無標記數據中提取意義的無監督學習方法

//www.oreilly.com/library/view/practical-statistics-for/9781491952955/

付費5元查看完整內容

這是一本Python編程的教科書,有許多實際的例子和練習。您將學習基本編程的必要基礎,重點是Python。這本教科書是用Latex寫的,使用Overleaf.com。

您可以在下面找到源代碼和其他示例和參考資料。

Python已經成為一種流行的編程語言,也是當今使用最多的編程語言之一。

在過去的30年里,我們創建軟件的方式發生了巨大的變化,從80年代初的個人電腦時代到今天的智能手機、平板電腦和個人電腦等功能強大的設備。

互聯網也改變了我們使用設備和軟件的方式。我們仍然有傳統的桌面應用程序,但Web站點、Web應用程序和所謂的智能手機應用程序等主導著今天的軟件市場。

我們需要找到并學習適合這個編程新時代的編程語言。

我們現在有幾千種不同的編程語言,那么我們為什么要學Python呢?我猜您需要學習不止一種編程語言才能在今天的軟件市場中生存下來,但是Python很容易學,因此它對于新程序員和更有經驗的程序員都是一個很好的起點。

付費5元查看完整內容

如果您是用Python編程的新手,并且正在尋找可靠的介紹,那么這本書就是為您準備的。由計算機科學教師開發,在“為絕對初學者”系列叢書通過簡單的游戲創造教授編程的原則。您將獲得實際的Python編程應用程序所需的技能,并將了解如何在真實場景中使用這些技能。在整個章節中,你會發現一些代碼示例來說明所提出的概念。在每一章的結尾,你會發現一個完整的游戲,展示了這一章的關鍵思想,一章的總結,以及一系列的挑戰來測試你的新知識。當你讀完這本書的時候,你將非常精通Python,并且能夠將你所學到的基本編程原理應用到你要處理的下一種編程語言。

付費5元查看完整內容

本書建立在基本的Python教程的基礎上,解釋了許多沒有被常規覆蓋的Python語言特性:從通過利用入口點作為微服務扮演雙重角色的可重用控制臺腳本,到使用asyncio高效地整理大量來源的數據。通過這種方式,它涵蓋了基于類型提示的linting、低開銷測試和其他自動質量檢查,以演示一個健壯的實際開發過程。

Python的一些功能強大的方面通常用一些設計的示例來描述,這些示例僅作為一個獨立示例來解釋該特性。通過遵循從原型到生產質量的真實應用程序示例的設計和構建,您不僅將看到各種功能是如何工作的,而且還將看到它們如何作為更大的系統設計過程的一部分進行集成。此外,您還將受益于一些有用的附加說明和庫建議,它們是Python會議上問答會議的主要內容,也是討論現代Python最佳實踐和技術的主要內容,以便更好地生成易于維護的清晰代碼。

高級Python開發是為已經能用Python編寫簡單程序的開發人員準備的,這些開發人員希望了解什么時候使用新的和高級語言特性是合適的,并且能夠以一種自信的方式這樣做。它對于希望升級到更高級別的開發人員和迄今為止使用過較老版本Python的非常有經驗的開發人員特別有用。

你將學習

  • 理解異步編程
  • 檢查開發插件架構
  • 使用類型注釋
  • 回顧測試技術
  • 探索打包和依賴項管理

這本書是給誰的 -已經有Python經驗的中高級開發人員。

付費5元查看完整內容

題目:Applied Reinforcement Learning with Python With OpenAI Gym, Tensorflow, and Keras

深入研究強化學習算法,并通過Python將它們應用到不同的用例中。這本書涵蓋了重要的主題,如策略梯度和Q學習,并利用框架,如Tensorflow, Keras,和OpenAI Gym。

Python中的應用增強學習向您介紹了強化學習(RL)算法背后的理論和用于實現它們的代碼。您將在指導下了解OpenAI Gym的特性,從使用標準庫到創建自己的環境,然后了解如何構建強化學習問題,以便研究、開發和部署基于rl的解決方案。

你將學習:

  • 用Python實現強化學習
  • 使用AI框架,如OpenAI Gym、Tensorflow和Keras
  • 通過云資源部署和培訓基于增強學習的解決方案
  • 應用強化學習的實際應用

這本書是給誰看的: 數據科學家、機器學習工程師和軟件工程師熟悉機器學習和深度學習的概念。

地址:

//www.springerprofessional.de/en/applied-reinforcement-learning-with-python/17098944

目錄:

第1章 強化學習導論

在過去的一年里,深度學習技術的不斷擴散和發展給各個行業帶來了革命性的變化。毫無疑問,這個領域最令人興奮的部分之一是強化學習(RL)。這本身往往是許多通用人工智能應用程序的基礎,例如學習玩視頻游戲或下棋的軟件。強化學習的好處是,假設可以將問題建模為包含操作、環境和代理的框架,那么代理就可以熟悉大量的任務。假設,解決問題的范圍可以從簡單的游戲,更復雜的3d游戲,自動駕駛汽車教學如何挑選和減少乘客在各種不同的地方以及教一個機械手臂如何把握對象和地點在廚房柜臺上。

第二章 強化學習算法

讀者應該知道,我們將利用各種深度學習和強化學習的方法在這本書。然而,由于我們的重點將轉移到討論實現和這些算法如何在生產環境中工作,我們必須花一些時間來更詳細地介紹算法本身。因此,本章的重點將是引導讀者通過幾個強化學習算法的例子,通常應用和展示他們在使用Open AI gym 不同的問題。

第三章 強化學習算法:Q學習及其變體

隨著策略梯度和Actor-Critic模型的初步討論的結束,我們現在可以討論讀者可能會發現有用的替代深度學習算法。具體來說,我們將討論Q學習、深度Q學習以及深度確定性策略梯度。一旦我們了解了這些,我們就可以開始處理更抽象的問題,更具體的領域,這將教會用戶如何處理不同任務的強化學習。

第四章 通過強化學習做市場

除了在許多書中發現的強化學習中的一些標準問題之外,最好看看那些答案既不客觀也不完全解決的領域。在金融領域,尤其是強化學習領域,最好的例子之一就是做市。我們將討論學科本身,提出一些不基于機器學習的基線方法,然后測試幾種基于強化學習的方法。

第五章 自定義OpenAI強化學習環境

在我們的最后一章,我們將專注于Open AI Gym,但更重要的是嘗試理解我們如何創建我們自己的自定義環境,這樣我們可以處理更多的典型用例。本章的大部分內容將集中在我對開放人工智能的編程實踐的建議,以及我如何編寫這個軟件的建議。最后,在我們完成創建環境之后,我們將繼續集中精力解決問題。對于這個例子,我們將集中精力嘗試創建和解決一個新的視頻游戲。

付費5元查看完整內容
北京阿比特科技有限公司