亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

這本書提供了使“機器學習”系統更可解釋的最新概念和可用的技術的全面介紹。本文提出的方法幾乎可以應用于所有當前的“機器學習”模型: 線性和邏輯回歸、深度學習神經網絡、自然語言處理和圖像識別等。

機器學習(Machine Learning)的進展正在增加使用人工代理來執行以前由人類處理的關鍵任務(醫療、法律和金融等)。雖然指導這些代理設計的原則是可以理解的,但目前大多數深度學習模型對人類的理解是“不透明的”。《Python可解釋人工智能》通過從理論和實踐的角度,填補了目前關于這一新興主題的文獻空白,使讀者能夠快速使用可解釋人工智能的工具和代碼。

本書以可解釋AI (XAI)是什么以及為什么在該領域需要它為例開始,詳細介紹了根據特定背景和需要使用XAI的不同方法。然后介紹利用Python的具體示例對可解釋模型的實際操作,展示如何解釋內在的可解釋模型以及如何產生“人類可理解的”解釋。XAI的模型不可知方法可以在不依賴于“不透明”的ML模型內部的情況下產生解釋。使用計算機視覺的例子,作者然后著眼于可解釋的模型的深度學習和未來的展望方法。從實踐的角度,作者演示了如何在科學中有效地使用ML和XAI。最后一章解釋了對抗性機器學習以及如何使用對抗性例子來做XAI。

//www.springer.com/gp/book/9783030686390

付費5元查看完整內容

相關內容

 是一種面向對象的解釋型計算機程序設計語言,在設計中注重代碼的可讀性,同時也是一種功能強大的通用型語言。

《數據科學設計手冊》提供了實用的見解,突出了分析數據中真正重要的東西,并提供了如何使用這些核心概念的直觀理解。這本書沒有強調任何特定的編程語言或數據分析工具套件,而是專注于重要設計原則的高級討論。這個易于閱讀的文本理想地服務于本科生和早期研究生的需要,開始“數據科學入門”課程。它揭示了這門學科是如何以其獨特的分量和特點,處于統計學、計算機科學和機器學習的交叉領域。在這些和相關領域的從業者會發現這本書完美的自學以及。

《數據科學設計手冊》是數據科學的介紹,重點介紹建立收集、分析和解釋數據的系統所需的技能和原則。作為一門學科,數據科學位于統計學、計算機科學和機器學習的交匯處,但它正在構建自己獨特的分量和特征。

這本書涵蓋了足夠的材料在本科或早期研究生水平的“數據科學入門”課程。在這里可以找到教學這門課程的全套講課幻燈片,以及項目和作業的數據資源,以及在線視頻講座。

付費5元查看完整內容

這本書是為任何想學習如何開發機器學習系統的人準備的。我們將從理論和實踐兩方面涵蓋關于機器學習算法的最重要概念,并將使用Python編程語言中的Scikit-learn庫實現許多機器學習算法。在第一章中,您將學習機器學習最重要的概念,在下一章中,您將主要學習分類。在最后一章中,你將學習如何訓練你的模型。我假定你已經了解了編程的基礎知識。

付費5元查看完整內容

學習使用Python分析數據和預測結果的更簡單和更有效的方法

Python機器學習教程展示了通過關注兩個核心機器學習算法家族來成功分析數據,本書能夠提供工作機制的完整描述,以及使用特定的、可破解的代碼來說明機制的示例。算法用簡單的術語解釋,沒有復雜的數學,并使用Python應用,指導算法選擇,數據準備,并在實踐中使用訓練過的模型。您將學習一套核心的Python編程技術,各種構建預測模型的方法,以及如何測量每個模型的性能,以確保使用正確的模型。關于線性回歸和集成方法的章節深入研究了每種算法,你可以使用書中的示例代碼來開發你自己的數據分析解決方案。

機器學習算法是數據分析和可視化的核心。在過去,這些方法需要深厚的數學和統計學背景,通常需要結合專門的R編程語言。這本書演示了機器學習可以如何實現使用更廣泛的使用和可訪問的Python編程語言。

使用線性和集成算法族預測結果

建立可以解決一系列簡單和復雜問題的預測模型

使用Python應用核心機器學習算法

直接使用示例代碼構建自定義解決方案

機器學習不需要復雜和高度專業化。Python使用了更簡單、有效和經過良好測試的方法,使這項技術更容易為更廣泛的受眾所接受。Python中的機器學習將向您展示如何做到這一點,而不需要廣泛的數學或統計背景。

付費5元查看完整內容

《Python機器學習經典實例(影印版 英文版)》這本實用指南提供了近200則完整的攻略,可幫助你解決日常工作中可能遇到的機器學習難題。如果你熟悉Python以及包括pandas和scikit-learn在內的庫,那么解決一些特定問題將不在話下,比如數據加載、文本處理、數值數據、模型選擇、降維以及諸多其他主題。

  每則攻略中都包含代碼,你可以將其復制并粘貼到實驗數據集中,以確保代碼的確有效。你可以插入、組合、修改這些代碼,從而協助構建你自己的應用程序。攻略中還包括相關的討論,對解決方案給出了解釋并提供有意義的上下文。

  《Python機器學習經典實例(影印版 英文版)》在理論和概念之外提供了構造實用機器學習應用所需的具體細節。

//www.oreilly.com/library/view/machine-learning-with/9781491989371/

付費5元查看完整內容

通過人工神經網絡等獲得的預測具有很高的準確性,但人類經常將這些模型視為黑盒子。對于人類來說,關于決策制定的洞察大多是不透明的。在醫療保健或金融等高度敏感領域,對決策的理解至關重要。黑盒子背后的決策要求它對人類來說更加透明、可問責和可理解。這篇綜述論文提供了基本的定義,概述了可解釋監督機器學習(SML)的不同原理和方法。我們進行了最先進的綜述,回顧過去和最近可解釋的SML方法,并根據介紹的定義對它們進行分類。最后,我們通過一個解釋性的案例研究來說明原則,并討論未來的重要方向。

//www.zhuanzhi.ai/paper/d34a1111c1ab9ea312570ae8e011903c

目前人工智能(AI)模型的準確性是顯著的,但準確性并不是最重要的唯一方面。對于高風險的領域,對模型和輸出的詳細理解也很重要。底層的機器學習和深度學習算法構建的復雜模型對人類來說是不透明的。Holzinger等人(2019b)指出,醫學領域是人工智能面臨的最大挑戰之一。對于像醫療這樣的領域,深刻理解人工智能的應用是至關重要的,對可解釋人工智能(XAI)的需求是顯而易見的。

可解釋性在許多領域很重要,但不是在所有領域。我們已經提到了可解釋性很重要的領域,例如衛生保健。在其他領域,比如飛機碰撞避免,算法多年來一直在沒有人工交互的情況下運行,也沒有給出解釋。當存在某種程度的不完整時,需要可解釋性。可以肯定的是,不完整性不能與不確定性混淆。不確定性指的是可以通過數學模型形式化和處理的東西。另一方面,不完全性意味著關于問題的某些東西不能充分編碼到模型中(Doshi-Velez和Kim(2017))。例如,刑事風險評估工具應該是公正的,它也應該符合人類的公平和道德觀念。但倫理學是一個很寬泛的領域,它是主觀的,很難正式化。相比之下,飛機避免碰撞是一個很容易理解的問題,也可以被精確地描述。如果一個系統能夠很好地避免碰撞,就不用再擔心它了。不需要解釋。

本文詳細介紹了可解釋SML的定義,并為該領域中各種方法的分類奠定了基礎。我們區分了各種問題定義,將可解釋監督學習領域分為可解釋模型、代理模型擬合和解釋生成。可解釋模型的定義關注于自然實現的或通過使用設計原則強制實現的整個模型理解。代理模型擬合方法近似基于黑盒的局部或全局可解釋模型。解釋生成過程直接產生一種解釋,區分局部解釋和全局解釋。

綜上所述,本文的貢獻如下:

  • 對五種不同的解釋方法進行形式化,并對整個解釋鏈的相應文獻(分類和回歸)進行回顧。
  • 可解釋性的原因,審查重要領域和可解釋性的評估
  • 這一章僅僅強調了圍繞數據和可解釋性主題的各個方面,比如數據質量和本體
  • 支持理解不同解釋方法的連續用例
  • 回顧重要的未來方向和討論

付費5元查看完整內容

如果您是用Python編程的新手,并且正在尋找可靠的介紹,那么這本書就是為您準備的。由計算機科學教師開發,在“為絕對初學者”系列叢書通過簡單的游戲創造教授編程的原則。您將獲得實際的Python編程應用程序所需的技能,并將了解如何在真實場景中使用這些技能。在整個章節中,你會發現一些代碼示例來說明所提出的概念。在每一章的結尾,你會發現一個完整的游戲,展示了這一章的關鍵思想,一章的總結,以及一系列的挑戰來測試你的新知識。當你讀完這本書的時候,你將非常精通Python,并且能夠將你所學到的基本編程原理應用到你要處理的下一種編程語言。

付費5元查看完整內容
北京阿比特科技有限公司