亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

《Python機器學習經典實例(影印版 英文版)》這本實用指南提供了近200則完整的攻略,可幫助你解決日常工作中可能遇到的機器學習難題。如果你熟悉Python以及包括pandas和scikit-learn在內的庫,那么解決一些特定問題將不在話下,比如數據加載、文本處理、數值數據、模型選擇、降維以及諸多其他主題。

  每則攻略中都包含代碼,你可以將其復制并粘貼到實驗數據集中,以確保代碼的確有效。你可以插入、組合、修改這些代碼,從而協助構建你自己的應用程序。攻略中還包括相關的討論,對解決方案給出了解釋并提供有意義的上下文。

  《Python機器學習經典實例(影印版 英文版)》在理論和概念之外提供了構造實用機器學習應用所需的具體細節。

//www.oreilly.com/library/view/machine-learning-with/9781491989371/

付費5元查看完整內容

相關內容

 是一種面向對象的解釋型計算機程序設計語言,在設計中注重代碼的可讀性,同時也是一種功能強大的通用型語言。

這本書的書名聽起來有點神秘。如果這本書以一種錯誤的方式呈現了這個主題,人們為什么要讀它呢?書中哪些地方做得特別“不對”?

在回答這些問題之前,讓我先描述一下本文的目標受眾。這本書是“榮譽線性代數”課程的課堂講稿。這應該是高等數學學生的第一門線性代數課程。它的目標是一個學生,雖然還不是非常熟悉抽象推理,但愿意學習更嚴格的數學,在“烹飪書風格”的微積分類型課程。除了作為線性代數的第一門課程,它也應該是第一門向學生介紹嚴格證明、形式定義——簡而言之,現代理論(抽象)數學風格的課程。

目標讀者解釋了基本概念和具體實例的非常具體的混合,它們通常出現在介紹性的線性代數文本中,具有更抽象的定義和高級書籍的典型構造。

//www.math.brown.edu/streil/papers/LADW/LADW_2017-09-04.pdf

付費5元查看完整內容

鏈接:

//greenteapress.com/wp/think-bayes/

作者:Allen B. Downey

Think Bayes是介紹如何通過編程方法進行貝葉斯統計的書籍。

這本書和其他Think X系列書籍的想法一樣,他們認為只要你知道如何編程,那么你就可以通過這項技能來學習其他的課題。

大多數的貝葉斯統計書籍會使用數學符號并且通過微積分一類的數學概念來展現其統計思想。這本書則使用Python代碼、離散逼近而非數學、連續數學來解釋貝葉斯統計。通過這樣的方式,在數學書里的積分,將會轉變為求和。許多在概率分布上的操作將會通過簡單的循環而實現。

付費5元查看完整內容

如果您是用Python編程的新手,并且正在尋找可靠的介紹,那么這本書就是為您準備的。由計算機科學教師開發,在“為絕對初學者”系列叢書通過簡單的游戲創造教授編程的原則。您將獲得實際的Python編程應用程序所需的技能,并將了解如何在真實場景中使用這些技能。在整個章節中,你會發現一些代碼示例來說明所提出的概念。在每一章的結尾,你會發現一個完整的游戲,展示了這一章的關鍵思想,一章的總結,以及一系列的挑戰來測試你的新知識。當你讀完這本書的時候,你將非常精通Python,并且能夠將你所學到的基本編程原理應用到你要處理的下一種編程語言。

付費5元查看完整內容

有興趣的數據科學專業人士可以通過本書學習Scikit-Learn圖書館以及機器學習的基本知識。本書結合了Anaconda Python發行版和流行的Scikit-Learn庫,演示了廣泛的有監督和無監督機器學習算法。通過用Python編寫的清晰示例,您可以在家里自己的機器上試用和試驗機器學習的原理。

所有的應用數學和編程技能需要掌握的內容,在這本書中涵蓋。不需要深入的面向對象編程知識,因為工作和完整的例子被提供和解釋。必要時,編碼示例是深入和復雜的。它們也簡潔、準確、完整,補充了介紹的機器學習概念。使用示例有助于建立必要的技能,以理解和應用復雜的機器學習算法。

對于那些在機器學習方面追求職業生涯的人來說,Scikit-Learn機器學習應用手冊是一個很好的起點。學習這本書的學生將學習基本知識,這是勝任工作的先決條件。讀者將接觸到專門為數據科學專業人員設計的蟒蛇分布,并將在流行的Scikit-Learn庫中構建技能,該庫是Python世界中許多機器學習應用程序的基礎。

你將學習

  • 使用Scikit-Learn中常見的簡單和復雜數據集
  • 將數據操作為向量和矩陣,以進行算法處理
  • 熟悉數據科學中使用的蟒蛇分布
  • 應用帶有分類器、回歸器和降維的機器學習
  • 優化算法并為每個數據集找到最佳算法
  • 從CSV、JSON、Numpy和panda格式加載數據并保存為這些格式

這本書是給誰的

  • 有抱負的數據科學家渴望通過掌握底層的基礎知識進入機器學習領域,而這些基礎知識有時在急于提高生產力的過程中被忽略了。一些面向對象編程的知識和非常基本的線性代數應用將使學習更容易,盡管任何人都可以從這本書獲益。
付費5元查看完整內容

本書涵蓋了這些領域中使用Python模塊演示的概率、統計和機器學習的關鍵思想。整本書包括所有的圖形和數值結果,都可以使用Python代碼及其相關的Jupyter/IPython Notebooks。作者通過使用多種分析方法和Python代碼的有意義的示例,開發了機器學習中的關鍵直覺,從而將理論概念與具體實現聯系起來。現代Python模塊(如panda、y和Scikit-learn)用于模擬和可視化重要的機器學習概念,如偏差/方差權衡、交叉驗證和正則化。許多抽象的數學思想,如概率論中的收斂性,都得到了發展,并用數值例子加以說明。本書適合任何具有概率、統計或機器學習的本科生,以及具有Python編程的基本知識的人。

付費5元查看完整內容

數據科學庫、框架、模塊和工具包非常適合進行數據科學研究,但它們也是深入研究這一學科的好方法,不需要真正理解數據科學。在本書中,您將了解到許多最基本的數據科學工具和算法都是通過從頭實現來實現的。

如果你有數學天賦和一些編程技能,作者Joel Grus將幫助你熟悉作為數據科學核心的數學和統計,以及作為數據科學家的入門技能。如今,這些雜亂的、充斥著海量數據的數據,為一些甚至沒人想過要問的問題提供了答案。這本書為你提供了挖掘這些答案的訣竅。

參加Python速成班

  • 學習線性代數、統計和概率的基礎知識,并了解如何以及何時在數據科學中使用它們
  • 收集、探索、清理、分析和操作數據
  • 深入了解機器學習的基本原理
  • 實現諸如k近鄰、樸素貝葉斯、線性和邏輯回歸、決策樹、神經網絡和聚類等模型
  • 探索推薦系統、自然語言處理、網絡分析、MapReduce和數據庫
付費5元查看完整內容

在Python中獲得操作、處理、清理和處理數據集的完整說明。本實用指南的第二版針對Python 3.6進行了更新,其中包含了大量的實際案例研究,向您展示了如何有效地解決廣泛的數據分析問題。在這個過程中,您將學習最新版本的panda、NumPy、IPython和Jupyter。

本書由Python panda項目的創建者Wes McKinney編寫,是對Python中的數據科學工具的實用的、現代的介紹。對于剛接觸Python的分析人員和剛接觸數據科學和科學計算的Python程序員來說,它是理想的。數據文件和相關材料可以在GitHub上找到。

  • 使用IPython外殼和Jupyter筆記本進行探索性計算
  • 學習NumPy (Numerical Python)中的基本和高級特性
  • 開始使用pandas庫的數據分析工具
  • 使用靈活的工具來加載、清理、轉換、合并和重塑數據
  • 使用matplotlib創建信息可視化
  • 應用panda groupby工具對數據集進行切片、切割和匯總
  • 分析和處理有規律和不規則的時間序列數據
  • 學習如何解決現實世界的數據分析問題與徹底的,詳細的例子
付費5元查看完整內容

Python是世界上最流行的編程語言之一,人們從不同的背景成為Python程序員。有些人受過正規的計算機科學教育。其他人則將Python學習作為一種愛好。還有一些人在專業環境中使用Python,但他們的主要工作不是做軟件開發人員。這本中級書中的問題將幫助經驗豐富的程序員在學習語言的某些高級功能的同時,從他們的CS教育中重新了解自己的想法。自學成才的程序員將通過學習所選語言(例如Python)中的經典問題來加速CS教育。本書涵蓋了各種各樣的問題解決技術,以至于每個人都有真正的收獲。

這本書不是對Python的介紹。相反,這本書假設您已經是一名中級或高級的Python程序員。盡管這本書需要Python3.7,但我們并不認為它能夠精通最新版本的Python的每一個方面。事實上,這本書的內容是建立在這樣一個假設上的:它將作為學習材料,幫助讀者達到這樣的掌握。另一方面,這本書不適合完全不熟悉Python的讀者。

目錄

介紹

  1. 小問題

    • 斐波那契序列

    • 簡單的壓縮

    • 牢不可破的加密

    • 計算圓周率

    • 漢諾塔

    • 實際應用

    • 練習

  2. 搜索問題

    • DNA搜索

    • 迷宮求解

    • 傳教士和野人問題

    • 實際應用

    • 練習

  3. 約束滿足問題

    • 構建約束-滿足問題框架

    • 澳大利亞的地圖著色問題

    • 八皇后問題

    • 單詞搜索

    • SEND+MORE=MONEY

    • 電路板布局

    • 實際應用

    • 練習

  4. 圖論問題

    • 地圖作為圖

    • 構建圖框架

    • 最短路徑查找

    • 最小化網絡建設成本

    • 求加權圖中的最短路徑

    • 實際應用

    • 練習

  5. 遺傳算法

    • 生物背景

    • 一種通用遺傳算法

    • 一個天真的測試

    • SEND+MORE=MONEY revisited

    • 優化列表壓縮

    • 遺傳算法的挑戰

    • 實際應用

    • 練習

  6. k-means聚類

    • 預備工作

    • k-means聚類算法

    • 按年齡和經度對州長進行聚類

    • 按長度聚集邁克爾·杰克遜的專輯

    • K-means聚類的問題和擴展

    • 實際應用

    • 練習

  7. 相當簡單的神經網絡

    • 生物學基礎?

    • 人工神經網絡

    • 預備工作

    • 構建網絡

    • 分類問題

    • 加速神經網絡

    • 神經網絡問題和擴展

    • 實際應用

    • 練習

  8. 對抗搜索

    • 基本棋盤游戲組件
      
    • 井字游戲

    • 四子棋

    • 除了α-β剪枝之外的極大極小改進

    • 實際應用

    • 練習

  9. 其他問題

    • 背包問題

    • 旅行推銷員問題

    • 電話號碼助記符

    • 練習

附錄A 詞匯表

附錄B 更多資源

附錄C 類型提示簡介

付費5元查看完整內容

簡介:

科學專業人員可以通過本書學習Scikit-Learn庫以及機器學習的基礎知識。該書將Anaconda Python發行版與流行的Scikit-Learn庫結合在一起,展示了各種有監督和無監督的機器學習算法。通過Python編寫的清晰示例向讀者介紹機器學習的原理,以及相關代碼。

本書涵蓋了掌握這些內容所需的所有應用數學和編程技能。不需要深入的面向對象編程知識,因為可以提供并說明完整的示例。必要時,編碼示例很深入且很復雜。它們也簡潔,準確,完整,是對引入的機器學習概念的補充。處理示例有助于建立理解和應用復雜機器學習算法所需的技能。

本書的學生將學習作為勝任力前提的基礎知識。讀者將了解專門為數據科學專業人員設計的Python Anaconda發行版,并將在流行的Scikit-Learn庫中構建技能,該庫是Python領域許多機器學習應用程序的基礎。

本書內容包括:

  • 使用Scikit-Learn通用的簡單和復雜數據集
  • 將數據處理為向量和矩陣以進行算法處理
  • 熟悉數據科學中使用的Anaconda發行版
  • 通過分類器,回歸器和降維應用機器學習
  • 調整算法并為每個數據集找到最佳算法
  • 從CSV,JSON,Numpy和Pandas格式加載數據并保存

內容介紹:

這本書分為八章。 第1章介紹了機器學習,Anaconda和Scikit-Learn的主題。 第2章和第3章介紹算法分類。 第2章對簡單數據集進行分類,第3章對復雜數據集進行分類。 第4章介紹了回歸預測模型。 第5章和第6章介紹分類調整。 第5章調整簡單數據集,第6章調整復雜數據集。 第7章介紹了預測模型回歸調整。 第8章將所有知識匯總在一起,以整體方式審查和提出發現。

作者介紹:

David Paper博士是猶他州立大學管理信息系統系的教授。他寫了兩本書-商業網絡編程:Oracle的PHP面向對象編程和Python和MongoDB的數據科學基礎。他在諸如組織研究方法,ACM通訊,信息與管理,信息資源管理期刊,AIS通訊,信息技術案例與應用研究期刊以及遠程計劃等參考期刊上發表了70余篇論文。他還曾在多個編輯委員會擔任過各種職務,包括副編輯。Paper博士還曾在德州儀器(TI),DLS,Inc.和鳳凰城小型企業管理局工作。他曾為IBM,AT&T,Octel,猶他州交通運輸部和空間動力實驗室執行過IS咨詢工作。 Paper博士的教學和研究興趣包括數據科學,機器學習,面向對象的程序設計和變更管理。

目錄:

付費5元查看完整內容
北京阿比特科技有限公司