這篇文章是關于實踐中的強化學習領域的溫和討論,關于機會和挑戰,涉及廣泛的主題,有觀點,沒有技術細節。本文基于歷史和最近的研究論文、調查、教程、談話、博客、書籍、(小組)討論和研討會/會議。不同的讀者群體,如研究人員、工程師、學生、經理、投資者、官員和想要更多地了解該領域的人,可能會發現這篇文章很有趣。在本文中,我們首先簡要介紹了強化學習(RL),以及它與深度學習、機器學習和人工智能的關系。然后,我們討論了RL的機會,特別是產品和服務、游戲、博弈、推薦系統、機器人、交通、金融和經濟、醫療保健、教育、組合優化、計算機系統和科學與工程。然后我們討論挑戰,特別是1)基礎 ,2)表示,3)獎勵,4)勘探、5)模型,模擬、規劃、和基準, 6)離線策略/離線學習,7)學會學習又名元學習,8)explainability和可解釋性,9)限制,10)軟件開發和部署,11)業務視角,還有更多的挑戰。我們以討論結束,試圖回答:“為什么RL還沒有在實踐中被廣泛采用?”和“在線學習什么時候有用?”
強化學習是人工智能中一個強大的工具,其中虛擬或物理代理學習優化他們的決策,以實現長期目標。在某些情況下,這種機器學習方法可以節省程序員的時間,超越現有的控制器,達到超人的性能,并不斷適應不斷變化的條件。這本書認為,這些成功表明強化學習可以成功地應用于許多不同的情況,包括機器人控制、股票交易、供應鏈優化和工廠控制。
然而,強化學習傳統上僅限于虛擬環境或模擬環境中的應用,在這些環境中已經提供了設置。此外,實驗可以完成幾乎無限次的嘗試無風險。在許多現實生活任務中,使用強化學習并不像(1)數據沒有正確的形式;(2)數據稀缺,(3)自動化在現實世界中有局限性。
因此,這本書是寫來幫助學者,領域專家,和數據愛好者一樣理解的基本原則,應用強化學習到現實世界的問題。這是通過將重點放在使用實際示例和將標準數據建模為所需的正確形式,然后應用基本智能體的過程來實現的。為了進一步幫助讀者獲得對這些方法的深入和接地氣的理解,本書展示了完整的手工計算示例,以及如何用代碼以更自動化的方式實現這一點。
對于對強化學習作為解決方案感興趣但不精通的決策者,本書在介紹和案例研究部分包括簡單的、非技術的例子。這些提供了強化學習的背景,以及在實踐中應用它的挑戰和風險。具體來說,這些部分闡述了強化學習和其他機器學習方法的區別,以及知名公司如何成功地使用這種方法解決他們的問題。
//www.morganclaypool.com/doi/abs/10.2200/S01170ED1V01Y202202AIM052
人工智能(AI)已經成為我們日常對話和生活的一部分。它被認為是改變世界的新型電力。人工智能在工業和學術界都有大量投資。然而,在當前的人工智能周期論中,也有很多炒作。基于所謂深度學習的人工智能在許多問題上都取得了令人印象深刻的成果,但其局限性已經顯而易見。自20世紀40年代以來,人工智能一直處于研究階段,由于過高的期望和隨之而來的失望,該行業經歷了許多起起伏伏。
//www.zhuanzhi.ai/paper/1d9d85c3196d033542a7e815757c49a8
這本書的目的是給人工智能的現實圖景,它的歷史,它的潛力和局限性。我們相信人工智能是人類的助手,而不是統治者。我們首先描述什么是人工智能,以及它在過去幾十年里是如何發展的。在基本原理之后,我們解釋了海量數據對于當前主流人工智能的重要性。本文涵蓋了人工智能、方法和機器學習的最常見表示。此外,還介紹了主要的應用領域。計算機視覺一直是人工智能發展的核心。這本書提供了計算機視覺的一般介紹,并包括對我們自己的研究的結果和應用的展示。情感是人類智能的核心,但在人工智能中卻鮮有應用。我們將介紹情商的基礎知識以及我們自己在這一主題上的研究。我們將討論超越人類理解的超級智能,解釋為什么在現有知識的基礎上,這種成就似乎是不可能的,以及如何改進人工智能。最后,總結了人工智能的現狀和未來要做的事情。在附錄中,我們回顧了人工智能教育的發展,特別是從我們自己大學的內容的角度。
視頻中的異常檢測是一個研究了十多年的問題。這一領域因其廣泛的適用性而引起了研究者的興趣。正因為如此,多年來出現了一系列廣泛的方法,這些方法從基于統計的方法到基于機器學習的方法。在這一領域已經進行了大量的綜述,但本文著重介紹了使用深度學習進行異常檢測領域的最新進展。深度學習已成功應用于人工智能的許多領域,如計算機視覺、自然語言處理等。然而,這項調查關注的是深度學習是如何改進的,并為視頻異常檢測領域提供了更多的見解。本文針對不同的深度學習方法提供了一個分類。此外,還討論了常用的數據集以及常用的評價指標。然后,對最近的研究方法進行了綜合討論,以提供未來研究的方向和可能的領域。
摘要
本文綜述了遷移學習在強化學習問題設置中的應用。RL已經成為序列決策問題的關鍵的解決方案。隨著RL在各個領域的快速發展。包括機器人技術和游戲,遷移學習是通過利用和遷移外部專業知識來促進學習過程來幫助RL的一項重要技術。在這篇綜述中,我們回顧了在RL領域中遷移學習的中心問題,提供了一個最先進技術的系統分類。我們分析他們的目標,方法,應用,以及在RL框架下這些遷移學習技術將是可接近的。本文從RL的角度探討了遷移學習與其他相關話題的關系,并探討了RL遷移學習的潛在挑戰和未來發展方向。
關鍵詞:遷移學習,強化學習,綜述,機器學習
介紹
強化學習(RL)被認為是解決連續決策任務的一種有效方法,在這種方法中,學習主體通過與環境相互作用,通過[1]來提高其性能。源于控制論并在計算機科學領域蓬勃發展的RL已被廣泛應用于學術界和工業界,以解決以前難以解決的任務。此外,隨著深度學習的快速發展,應用深度學習服務于學習任務的集成框架在近年來得到了廣泛的研究和發展。DL和RL的組合結構稱為深度強化學習[2](Deep Reinforcement Learning, DRL)。
DRL在機器人控制[3]、[4]、玩[5]游戲等領域取得了巨大的成功。在醫療保健系統[6]、電網[7]、智能交通系統[8]、[9]等領域也具有廣闊的應用前景。
在這些快速發展的同時,DRL也面臨著挑戰。在許多強化學習應用中,環境模型通常是未知的,只有收集到足夠的交互經驗,agent才能利用其對環境的知識來改進其性能。由于環境反饋的部分可觀察性、稀疏性或延遲性以及高維觀察和/或行動空間等問題,學習主體在沒有利用任何先驗知識的情況下尋找好的策略是非常耗時的。因此,遷移學習作為一種利用外部專業知識來加速學習過程的技術,在強化學習中成為一個重要的課題。
在監督學習(SL)領域[10]中,TL得到了廣泛的研究。與SL場景相比,由于MDP環境中涉及的組件更多,RL中的TL(尤其是DRL中的TL)通常更復雜。MDP的組件(知識來自何處)可能與知識轉移到何處不同。此外,專家知識也可以采取不同的形式,以不同的方式轉移,特別是在深度神經網絡的幫助下。隨著DRL的快速發展,以前總結用于RL的TL方法的努力沒有包括DRL的最新發展。注意到所有這些不同的角度和可能性,我們全面總結了在深度強化學習(TL in DRL)領域遷移學習的最新進展。我們將把它們分成不同的子主題,回顧每個主題的理論和應用,并找出它們之間的聯系。
本綜述的其余部分組織如下:在第2節中,我們介紹了強化學習的背景,關鍵的DRL算法,并帶來了這篇綜述中使用的重要術語。我們還簡要介紹了與TL不同但又緊密相關的相關研究領域(第2.3節)。
在第3節中,我們采用多種視角來評價TL方法,提供了對這些方法進行分類的不同方法(第3.1節),討論了遷移源和目標之間的潛在差異(第3.2節),并總結了評價TL有效性的常用指標(第3.3節)。
第4節詳細說明了DRL領域中最新的TL方法。特別是,所討論的內容主要是按照遷移知識的形式組織的,如成型的獎勵(4.1節)、先前的演示(4.2節)、專家策略(4.3節),或者按照轉移發生的方式組織的,如任務間映射(4.4節)、學習可轉移表示(4.5節和4.6節)等。我們在第5節討論了TL在DRL中的應用,并在第6節提供了一些值得研究的未來展望。
基于協同過濾(CF)的潛在因素模型(LFM),如矩陣分解(MF)和深度CF方法,由于其良好的性能和推薦精度,在現代推薦系統(RS)中得到了廣泛的應用。盡管近年來取得了巨大的成功,但事實表明,這些方法易受對抗性例子的影響,即,這是一種微妙但非隨機的擾動,旨在迫使推薦模型產生錯誤的輸出。這種行為的主要原因是,用于LFM訓練的用戶交互數據可能會受到惡意活動或用戶誤操作的污染,從而導致不可預測的自然噪聲和危害推薦結果。另一方面,研究表明,這些最初設想用于攻擊機器學習應用程序的系統可以成功地用于增強它們對攻擊的魯棒性,以及訓練更精確的推薦引擎。在這方面,本調查的目標有兩方面:(i)介紹關于AML-RS的最新進展,以保障AML-RS的安全性。(ii)展示了AML在生成對抗網絡(GANs)中的另一個成功應用,生成對抗網絡(GANs)使用了AML學習的核心概念(即用于生成應用程序。在這項綜述中,我們提供了一個詳盡的文獻回顧60篇文章發表在主要的RS和ML雜志和會議。這篇綜述為RS社區提供了參考,研究RS和推薦模型的安全性,利用生成模型來提高它們的質量。
【導讀】國際萬維網大會(The Web Conference,簡稱WWW會議)是由國際萬維網會議委員會發起主辦的國際頂級學術會議,創辦于1994年,每年舉辦一屆,是CCF-A類會議。WWW 2020將于2020年4月20日至4月24日在中國臺灣臺北舉行。本屆會議共收到了1129篇長文投稿,錄用217篇長文,錄用率為19.2%。這周會議已經召開。來自美國Linkedin、AWS等幾位學者共同給了關于在工業界中可解釋人工智能的報告,講述了XAI概念、方法以及面臨的挑戰和經驗教訓。
人工智能在我們的日常生活中扮演著越來越重要的角色。此外,隨著基于人工智能的解決方案在招聘、貸款、刑事司法、醫療和教育等領域的普及,人工智能對個人和職業的影響將是深遠的。人工智能模型在這些領域所起的主導作用已經導致人們越來越關注這些模型中的潛在偏見,以及對模型透明性和可解釋性的需求。此外,模型可解釋性是在需要可靠性和安全性的高風險領域(如醫療和自動化交通)以及具有重大經濟意義的關鍵工業應用(如預測維護、自然資源勘探和氣候變化建模)中建立信任和采用人工智能系統的先決條件。
因此,人工智能的研究人員和實踐者將他們的注意力集中在可解釋的人工智能上,以幫助他們更好地信任和理解大規模的模型。研究界面臨的挑戰包括 (i) 定義模型可解釋性,(ii) 為理解模型行為制定可解釋性任務,并為這些任務開發解決方案,最后 (iii)設計評估模型在可解釋性任務中的性能的措施。
在本教程中,我們將概述AI中的模型解譯性和可解釋性、關鍵規則/法律以及作為AI/ML系統的一部分提供可解釋性的技術/工具。然后,我們將關注可解釋性技術在工業中的應用,在此我們提出了有效使用可解釋性技術的實踐挑戰/指導方針,以及在幾個網絡規模的機器學習和數據挖掘應用中部署可解釋模型的經驗教訓。我們將介紹不同公司的案例研究,涉及的應用領域包括搜索和推薦系統、銷售、貸款和欺詐檢測。最后,根據我們在工業界的經驗,我們將確定數據挖掘/機器學習社區的開放問題和研究方向。
題目:Applied Reinforcement Learning with Python With OpenAI Gym, Tensorflow, and Keras
深入研究強化學習算法,并通過Python將它們應用到不同的用例中。這本書涵蓋了重要的主題,如策略梯度和Q學習,并利用框架,如Tensorflow, Keras,和OpenAI Gym。
Python中的應用增強學習向您介紹了強化學習(RL)算法背后的理論和用于實現它們的代碼。您將在指導下了解OpenAI Gym的特性,從使用標準庫到創建自己的環境,然后了解如何構建強化學習問題,以便研究、開發和部署基于rl的解決方案。
你將學習:
這本書是給誰看的: 數據科學家、機器學習工程師和軟件工程師熟悉機器學習和深度學習的概念。
地址:
//www.springerprofessional.de/en/applied-reinforcement-learning-with-python/17098944
目錄:
第1章 強化學習導論
在過去的一年里,深度學習技術的不斷擴散和發展給各個行業帶來了革命性的變化。毫無疑問,這個領域最令人興奮的部分之一是強化學習(RL)。這本身往往是許多通用人工智能應用程序的基礎,例如學習玩視頻游戲或下棋的軟件。強化學習的好處是,假設可以將問題建模為包含操作、環境和代理的框架,那么代理就可以熟悉大量的任務。假設,解決問題的范圍可以從簡單的游戲,更復雜的3d游戲,自動駕駛汽車教學如何挑選和減少乘客在各種不同的地方以及教一個機械手臂如何把握對象和地點在廚房柜臺上。
第二章 強化學習算法
讀者應該知道,我們將利用各種深度學習和強化學習的方法在這本書。然而,由于我們的重點將轉移到討論實現和這些算法如何在生產環境中工作,我們必須花一些時間來更詳細地介紹算法本身。因此,本章的重點將是引導讀者通過幾個強化學習算法的例子,通常應用和展示他們在使用Open AI gym 不同的問題。
第三章 強化學習算法:Q學習及其變體
隨著策略梯度和Actor-Critic模型的初步討論的結束,我們現在可以討論讀者可能會發現有用的替代深度學習算法。具體來說,我們將討論Q學習、深度Q學習以及深度確定性策略梯度。一旦我們了解了這些,我們就可以開始處理更抽象的問題,更具體的領域,這將教會用戶如何處理不同任務的強化學習。
第四章 通過強化學習做市場
除了在許多書中發現的強化學習中的一些標準問題之外,最好看看那些答案既不客觀也不完全解決的領域。在金融領域,尤其是強化學習領域,最好的例子之一就是做市。我們將討論學科本身,提出一些不基于機器學習的基線方法,然后測試幾種基于強化學習的方法。
第五章 自定義OpenAI強化學習環境
在我們的最后一章,我們將專注于Open AI Gym,但更重要的是嘗試理解我們如何創建我們自己的自定義環境,這樣我們可以處理更多的典型用例。本章的大部分內容將集中在我對開放人工智能的編程實踐的建議,以及我如何編寫這個軟件的建議。最后,在我們完成創建環境之后,我們將繼續集中精力解決問題。對于這個例子,我們將集中精力嘗試創建和解決一個新的視頻游戲。
題目: A Survey and Critique of Multiagent Deep Reinforcement Learning
簡介: 近年來,深度強化學習(RL)取得了出色的成績。這使得應用程序和方法的數量急劇增加。最近的工作探索了單智能體深度強化之外的學習,并考慮了多智能體深度強化學習的場景。初步結果顯示在復雜的多智能體領域中的成功,盡管有許多挑戰需要解決。本文的主要目的是提供有關當前多智能體深度強化學習(MDRL)文獻的概述。此外,我們通過更廣泛的分析對概述進行補充:(i)我們回顧了以前RL中介紹的基礎內容,并強調了它們如何適應多智能深度強化學習設置。 (ii)我們為該領域的新開業者提供一般指導:描述從MDRL工作中汲取的經驗教訓,指出最新的基準并概述研究途徑。 (iii)我們提出了MDRL的實際挑戰(例如,實施和計算需求)。
作者介紹: Pablo Hernandez-Leal,Borealis AI的研究員,在此之前,曾與Michael Kaisers一起參與過阿姆斯特丹CWI的智能和自治系統。研究方向:單智能體環境開發的算法以及多智能體。計劃開發一種算法,該算法使用博弈論,貝葉斯推理和強化學習中的模型和概念在戰略交互中得到使用。