在視距(WVR)內進行空戰需要執行復雜的空中機動和快速的順序決策。如果加入額外的武器能力,這些決策的復雜性還會進一步增加。無人自主飛行器技術和武器能力的發展有助于克服人為限制帶來的障礙。事實證明,自主無人作戰飛行器(AUCAV)和定向能武器(DEW)等先進武器能力在 WVR 空戰中至關重要。這就引出了一個問題--AUCAV 能否擁有適當的人工智能和武器能力,以改進高質量的空戰演習和戰術?為了研究這個問題,我們提出并解決了廣義空戰機動問題(ACMP),在這個問題中,我們建立了一個模型,以控制正在尋求與攻擊敵機交戰的防御型 AUCAV。該模型利用每架飛機的 5 自由度點質量來跟蹤其狀態轉換,同時還跟蹤內部攜帶的火炮和 DEW 能力。由于該問題的維度較高,我們提出了一種近似動態編程(ADP)方法,其中我們開發了一種近似策略迭代算法。這種 ADP 算法通過神經網絡回歸來實現高質量的戰斗機戰術和機動。我們的計算實驗結果表明,在 3 個問題實例中,有 2 個實例的 ADP 策略優于所有 3 個基準策略。ADP 策略學會了同時使用內部攜帶的火炮和 DEW,這促進了 ACMP 中任一武器平臺的態勢效益理念。在 WVR-ACMP 中加入 DEW 功能可以體現前所未有的空戰戰術。
無人機系統(UAS)的發展及其在作戰行動中的應用代表著戰爭模式的轉變。自 20 世紀末以來,無人機系統一直被用于情報搜集和精確打擊,但傳統武裝部隊一直認為無人機系統不適合大規模作戰行動(LSCO),而且過于脆弱。最近的沖突證明情況恰恰相反。這些沖突還表明,無視戰場上無人機系統威脅的部隊將無可挽回地面臨失敗。通過三個案例研究(納戈爾諾-卡拉巴赫、中東和利比亞),本專著將強調無人機系統威脅對聯合作戰模式的嚴峻挑戰。然而,如果部隊具有凝聚力、訓練有素、組織有序,能夠保護自己免受這種威脅,并采取積極主動的方法應對這種威脅,那么這種作戰方式在無人機環境下仍然適用。此外,最近發生的涉及使用無人機的沖突重新喚起并強調了不同部門之間,甚至部隊不同領域組成部分之間必要的合作精神,并強調了這種方法的重要性。最后,無人機并沒有改變戰爭的性質。相反,無人機加強了戰爭的政治性,因為無人機的使用直接影響到面對無人機的交戰方的決策。
時間是 2040 年。法國陸軍正以一個師的兵力投入到一次大規模、全域、作戰行動(LSCO)中,以應對同行的威脅。這支部隊正在對行動區內威脅法國國家利益的一個地區勢力實施聯合強行進入行動。美國向法國提供了防空能力,以確保部隊的機動自由。在聯合部隊成功突破反進入/區域封鎖(A2AD)保護后,該師的偵察梯隊完全由無人駕駛車輛組成。這個無人駕駛的第一梯隊旅使指揮官能夠在不與滯留在后方的輕步兵部隊交戰的情況下進行偵察。由于無人機在戰場上占據主導地位,裝甲單元被認為過于脆弱,坦克或步兵戰車因被認為過于昂貴而退役,無法在作戰環境中保持相關性。由于敵方強大的 A2AD 網絡,并根據總參謀長的建議,法國總統選擇不部署有人駕駛飛機,因為損失一架飛機在財政成本和公眾輿論方面都將是災難性的。因此,空中部分完全由武裝無人機組成,它們具有強大的持久打擊能力,而無需冒有人駕駛飛機的風險。以前的師系統,包括重型和輕型裝甲旅戰斗隊、一個師偵察營以及完全由人員組成的情報、火力和維持輔助部隊,已經被放棄,因為它太重太脆弱,不夠靈活,無法在大量使用無人資產的作戰環境中取得勝利。現在的新師是由搭載在輕型裝甲車上的輕步兵單元和無人機組合而成。該單元在強大的防空系統保護傘下開展行動,既能防護有人或無人飛機,又能依靠動能和非動能資產。該師擁有輕型車輛,易于部署;擁有無人機,機動性強;擁有強大的防空層,生存能力強。
一種新的作戰方式已經形成,傳統的聯合兵種機動方式已被歷史塵封。無人機取代了傳統的情報和火力資產,將兩者結合在一個平臺上。由于無人機能夠在戰場上的任何地方開展行動,它們證明了裝甲和機械化單元的無用性,因為它們很容易成為無人機的目標。無人機可以飛越敵方領土,瞄準雷達、指揮所或后勤節點。它們在戰場縱深的行動會擾亂敵軍的陣腳,摧毀其戰斗意志。因此,配合無人機行動的唯一部隊是輕步兵,以占領地面并確保持久的勝利。
未來幾十年,聯合作戰是否會朝著這個方向發展?無人機是否代表著戰爭性質的最終改變?無人機能否僅靠自身力量贏得沖突并限制地面部隊的投入?通過對近期沖突的研究,如 2020 年的納戈爾諾-卡拉巴赫戰爭、近期中東地區圣戰組織與常規部隊(美國、俄羅斯或歐洲)之間的沖突以及 2019 年和 2020 年的利比亞戰爭,這些沖突都顯示了無人機的廣泛應用,可能會得出這樣的結論。這些沖突顯示了使用無人機所帶來的潛力,以及從 20 世紀戰爭演變中繼承下來并延續到 21 世紀初的常規聯合武器方法的局限性。使用裝甲和機械化編隊的傳統聯合作戰方法的交戰方在面對無人機攻擊時遇到了困難,因為無人機的攻擊會在戰爭的戰術、作戰或戰略層面上削弱指揮官的能力。無人機為其使用者提供了非對稱優勢:通過使防空系統飽和、永久占據天空、通過攝像頭捕捉可能造成的高傷亡以及在社交網絡上播放宣傳片的影響,無人機代表了一種進入對手決策圈的新方法。
在這里,沖突的性質很重要。正如理查德-哈斯(Richard Haas)在《必要性戰爭,選擇性戰爭》(War of Necessity, War of Choice: 兩次伊拉克戰爭回憶錄》中所下的定義。在比較兩場伊拉克戰爭時,他說:"必要的戰爭涉及最重要的國家利益,除了使用武力之外沒有其他有前途的選擇,如果要維持現狀,肯定要付出相當大的代價"。另一方面,"選擇性戰爭往往涉及不那么明顯'重要'的利害關系或利益,以及存在可行的替代政策"。這一區分非常重要,因為它將決定使用手段的范圍,限制或擴大武器的選擇。在一場有選擇的戰爭中,無人機可以提供良好的能力,給對手造成損失,并在不冒生命危險或昂貴的物資損失的情況下達到目標。由于其無人駕駛的性質,無人機為其使用者提供了可擴展和創造性的選擇,而不會受到使用有人駕駛飛機固有的技術、戰術甚至政治限制的阻礙。在迫不得已的戰爭中,它們可以通過瞄準防空網絡、后勤節點、指揮所或機動單元,作為力量倍增器來削弱對手的軍事力量。
20 世紀,交戰國陸軍提出了聯合作戰的概念。一戰結束后,法國開始實施坦克、步兵和炮兵協同作戰。在戰時,這一概念繼續發展,并在第二次世界大戰期間得到所有交戰國空軍的整合。沖突結束后,面對作戰環境的變化、原子武器的威脅或反叛亂戰斗,這一概念得到了完善,但總體上仍具有現實意義。根據美國的條令定義,聯合作戰是 "同步和同時使用各種武器,以達到比單獨或依次使用每種武器更大的效果"。這種方法的優勢在于使不同的作戰功能能夠彌補其他功能的不足。通過這種合作,作戰功能構成了一個強大的作戰系統。
上述每一次沖突都對聯合作戰方法提出了挑戰,迫使領導人修改作戰方法。今天,無人機的威脅是對聯合作戰模式的嚴峻挑戰。然而,在無人機環境下,如果部隊具有凝聚力,訓練有素,組織有序,不僅有能力保護自己免受威脅,還能采取積極主動的方法應對威脅,那么這種作戰方式仍然適用。此外,最近發生的涉及使用無人機的沖突重新喚起并強調了不同部門之間,甚至部隊不同領域組成部分之間必要的合作精神,并強調了這種方法的重要性。最后,無人機并沒有改變戰爭的性質。相反,它們加強了戰爭的政治性質,因為它們的使用直接影響到面對它們的交戰方的決策。
在為潛在的高強度沖突做準備的背景下,這個問題與西歐或美國陸軍等行為體高度相關,因為自冷戰結束以來,這些行為體一直在相對舒適的環境下作戰,擁有無可爭議的空中優勢。在此期間,西方軍隊面對的敵人不具備造成大量傷亡的能力或技能。因此,他們不會像納戈爾諾-卡拉巴赫戰爭中那樣,面臨意味著友軍大量損失而導致決策癱瘓的重大致命僵局。
無人機也被稱為 "無人駕駛航空系統"(UAS),指的是在沒有任何飛行員的情況下自主或遠程操作的任何飛機。無人機系統由三個關鍵部分組成:
最初,無人機是在不裝備武器的情況下運行的,但最終還是裝備了武器。如今,閑逛彈藥是武裝無人機的最后演變。據無人機研究中心的丹-格廷格和阿瑟-霍蘭-米歇爾稱,"它們的設計目的是用爆炸彈頭攻擊視線以外的地面目標"。懸停彈藥將在戰場上空飛行,跟蹤潛在目標并最終將其擊落。簡而言之,這種彈藥就是自殺式無人機。在本研究中,無人機系統和無人機的表述將不加區分地使用。
本專著將介紹三個案例研究:第一個案例研究將側重于 2020 年的納戈爾諾-卡拉巴赫戰爭,以及亞美尼亞人無力應對無人機威脅所造成的后果:由于阿塞拜疆憑借無人機和閑逛彈藥獲得了空中優勢,亞美尼亞領導層被削弱,被迫承認失敗,同時在戰場上面臨重大損失。第二個案例研究將考慮非國家行為者在伊拉克和敘利亞使用無人機打擊常規對手的情況。盡管戰術成功與否參差不齊,但無人機使用者能夠讓對手懷疑自己的實力,并在敵人的母國制造恐慌。反伊斯蘭國聯盟成員通過加強聯合武器合作和窒息恐怖分子的無人機制造網絡,成功地保護了自己的部隊。最后,第三個案例研究的重點是利比亞的無人機。利比亞被認為是世界上最大的無人機行動區,表明無人機構成了新的廉價版空中力量。然而,在利比亞,無人機并不足以在戰場上強制決策;要贏得長期決策,就必須與地面裝甲和機械化單元合作。僅靠無人機的部隊無法保持戰術優勢,也無法實現戰略目標。從作戰角度看,利比亞案例研究強調,無人機的使用加強而非徹底改變了聯合和聯合武器合作的精神。無人機是戰爭方式范式的轉變。它迫使軍事領導人改變作戰方式和作戰方法。然而,這還不是一場軍事革命。跨領域合作能夠在面對這一威脅時扭轉局勢。
現代戰斗艦艇,如護衛艦和驅逐艦,經常使用海上直升機。眾所周知,在惡劣天氣中降落直升機既困難又危險;此外,如果飛行條件過于惡劣,直升機將無法獲準起飛,艦艇能力的一個重要組成部分也將喪失。艦船上空不穩定的氣流,尤其是飛行甲板附近的氣流,是限制直升機作業范圍的一個重要因素。氣流的特性被稱為艦船氣流,取決于相對于艦船的風速和風向,以及艦船上層建筑的幾何形狀。與雷達橫截面等因素相比,船舶上層建筑的空氣動力學在設計階段并未受到太多關注。本論文介紹了一項利用建模和仿真技術對一艘現代戰艦的空氣動力學設計進行評估和指導的研究。所采用的建模技術包括時間精確計算流體動力學,用于計算全尺寸艦艇上復雜的三維非穩定流場;以及直升機飛行動力學數學模型,用于計算直升機如何對非穩定氣流做出反應。這些建模技術隨后被用于兩個模擬應用中:一個是虛擬 AirDyn,用于評估船舶氣流對直升機造成的不穩定載荷;另一個是在運動基地飛行模擬器中進行駕駛飛行模擬,用于評估氣流對飛行員在甲板上著陸時工作量的影響。這些建模和模擬技術被用于評估船舶上層建筑的不同設計方案。這些技術還用于研究船舶尺寸如何影響氣流和船舶運動,以及這些因素如何影響直升機和飛行員在著陸甲板上操作時的工作量。氣流建模還用于預測船舶的熱發動機廢氣如何與氣流混合,從而導致飛行甲板上方和周圍的溫度波動升高。
研究表明,飛行甲板前方船舶上層建筑幾何形狀的相對微小變化如何影響直升機的空氣動力負荷,這些影響可以被檢測和量化,從而為船舶設計師提供指導。研究還表明,大型船舶會產生更大、更猛烈的氣流,從而干擾直升機,增加飛行員在著陸時的工作量。另一方面,較小的船舶在波濤洶涌的海面上會有更大的動態運動,而且甲板較小,上層建筑較近。模擬顯示了這些不同的影響如何結合在一起,以及船舶大小如何影響甲板著陸時飛行員的工作量。研究還發現,雖然近海石油鉆井平臺直升機運營商對空氣溫度上升的限制有明確的指導方針,但在操作直升機前往船舶時卻沒有這樣的指導方針,而且飛行甲板上可能出現的溫度上升范圍足以影響直升機的性能。
這項研究的一個重要貢獻是為一艘真實艦船的設計提供了參考,從而證明了建模和模擬在直升機作業船舶設計中的潛力。
完全自主的航空系統(FAAS)將邊緣和云硬件與無人機和大量軟件支持結合起來,以創建自主系統。FAAS 通過對環境的實時感知和響應,在無人駕駛的情況下完成復雜的任務。FAAS 需要高度復雜的設計才能正常運行,包括機載、邊緣和云硬件和軟件層。FAAS 還需要復雜的軟件,用于控制無人機的底層操作、數據收集和管理、圖像處理、機器學習、任務規劃和高層決策,這些軟件必須在整個計算層次結構中有效集成,以實時實現自主目標。
即使是相對簡單的 FAAS,其復雜性也難以保證效率。然而,效率對 FAAS 的有效性至關重要。FAAS 在資源稀缺的環境中執行任務,如自然災害地區、農田和偏遠的基礎設施設施。這些地區的計算資源、網絡連接和電力都很有限。此外,無人機電池壽命短,飛行時間很少超過 30 分鐘。如果 FAAS 設計不合理,無人機可能會浪費寶貴的電池壽命來等待遠程計算資源的進一步指示,從而延誤或無法完成任務。因此,FAAS 設計人員必須謹慎選擇或設計邊緣硬件配置、機器學習模型、自主策略和部署模式。
FAAS 有能力徹底改變許多行業,但要提高其可用性和有效性,還有許多研究工作要做。在本論文中,我將概述自己為設計和實施高效、有效的 FAAS 所做的努力。本文將重點討論以下五個主題,包括 FAAS 的設計、實施和應用:
§1. 創建新的通用和特定領域的機器學習算法,并謹慎使用其他算法
§2. FAAS 層次結構中各級硬件的選擇
§3. 為自主策略、硬件設備、機器學習技術和部署特性的選擇和切換提供動力和環境意識信息。
§4. 在線學習能力可抵御有限的云訪問、網絡中斷和電力短缺。
§5. 全面的應用,展示 FAAS 的技術價值,推動采用,并確定未來的研究挑戰。
圖:FAAS 非常復雜。它們在遠程環境中運行,使用新穎的自主策略和機器學習算法,必須承受功率限制并利用創造性的網絡解決方案來實現其目標。
隨著技術的不斷進步和日常對海洋資源的依賴,無人水面航行器(USVs)的作用成倍增加。目前,具有海軍、民用和科學用途的 USV 正在各種復雜的海洋環境中進行廣泛的作業,并對其自主性和適應性提出了更高的要求。USV 自主運行的一個關鍵要求是擁有一個多車輛框架,在此框架下,USV 可以在實際海洋環境中作為一個群體運行,并具有多種優勢,例如可以在更短的時間內勘測更廣闊的區域。從文獻中可以看出,在單體 USV 路徑規劃、制導和控制領域已經開展了大量研究,而在了解多載體方法對 USV 的影響方面卻鮮有研究。本論文整合了高效的最優路徑規劃、穩健的路徑跟蹤制導和合作性集群聚合方法等模塊,旨在開發一種新的混合框架,用于 USV 蟲群的合作導航,以實現海洋環境中的最優自主操作。
首先,設計了一種基于 A* 算法的有效而新穎的最佳路徑規劃方法,其中考慮到了與障礙物的安全距離約束,以避免在移動障礙物和海面洋流的情況下發生碰撞。然后,將這種方法與為 USV 開發的新型虛擬目標路徑跟蹤制導模塊相結合,將路徑規劃器的參考軌跡輸入制導系統。當前工作的新穎之處在于將上述集成路徑跟蹤制導系統與分布式集群聚集行為相結合,通過基于簡單電位的吸引和排斥功能來維持 USV 蟲群的中心點,從而引導 USV 集群進入參考路徑。最后,介紹了一個用于 USV 船隊合作導航和制導的最佳混合框架,該框架可在實際海洋環境中實施,并可在海上有效地實際應用。
無人機(UAVs)在軍事和民用領域發揮著至關重要的作用。本論文的研究有助于智能控制系統(ICS)領域,特別是實現旋轉翼無人飛行器(RUAV)可靠、便捷的自主控制。特別是,本論文解決了如何適應未建模動態和干擾(如在空中改變有效載荷)的難題。
無人機可以攜帶額外的重量,如傳感器、貨物,甚至被稱為有效載荷的懸掛物。已經開發了許多策略來穩定不斷變化的有效載荷,但這些策略都假定有效載荷是剛性的,重心(CoG)是靜態和已知的。有效載荷質量及其類型在飛行過程中的變化會極大地影響無人機的動態性能,這就要求控制器進行調整,以保持令人滿意的閉環性能。此外,還沒有探索過在半空中從一架較大的飛機(如氣象氣球)上發射一組具有隨機姿態的送貨無人機的情況。最后,未建模的動力學和陣風等不確定因素給飛行操作帶來了挑戰,因此綜合控制系統對于處理這些不確定因素至關重要,但對非基于模型的綜合控制系統的設計和開發關注不夠。
受這些研究空白的啟發,本論文探討了如何處理有效載荷在空中的 CoG 變化和姿態獨立發射的控制問題。為解決這些問題并實現理想的軌跡跟蹤控制,本文提出了一種新型非基于模型的綜合控制系統,稱為雙向模糊腦情感學習(BFBEL)控制系統。所提出的控制系統融合了模糊推理、神經網絡和基于強化學習的新型雙向腦情感學習(BBEL)算法。所提出的 BFBEL 控制器能夠從零開始快速適應,可用于控制 RUAV 的所有六自由度 (6DOF)。為擴大擬議控制器的適用性,開發了單輸入-單輸出(SISO)和多輸入-多輸出(MIMO)架構。本研究考慮的兩種無人駕駛飛行器模型是四旋翼無人駕駛飛行器(QUAV)和直升機無人駕駛飛行器(HUAV)。SISO 版本的 BFBEL 控制系統被應用于 QUAV,以解決處理 CoG 和重量不同的外部有效載荷的問題。BFBEL 控制系統的 MIMO 版本應用于 HUAV,以解決在空中獨立發射姿勢的問題。對這兩種系統都進行了模擬評估,并通過實驗驗證了如何處理 CoG 不確定的外部有效載荷問題。最后,在相同的控制情況下,將飛行能力和控制性能與傳統的比例積分微分(PID)控制器方案進行了比較。
隨著洛克希德-馬丁公司的F-35 "閃電 "II戰斗機在西方部隊的引進,世界各國空軍正在發展第五代戰斗機能力。F-35 引入了先進技術,包括傳感器融合、隱形和先進的網絡能力。為了以最佳方式利用新能力,空軍需要調整其組織的許多要素,包括技術、文化和空戰方法。一些空軍將這種轉變稱為向 "第五代空軍 "的轉變。
在戰爭史上,雖然使用電磁頻譜(EMS)--"整個電磁輻射范圍"--相對較新,但其使用已迅速改變了戰爭方式。軍事上使用電磁頻譜的一個后果是電子戰(EW)的興起,其重點是啟用和反擊電磁頻譜的使用。幾千年來,由于通信的局限性,有效控制長距離和大部隊的陸軍受到限制,因為成功地進行通信是贏得戰爭的關鍵。隨著陸軍規模越來越大,控制難度越來越高,人們越來越需要更好的通信手段。雖然鴿子、聲音、燈光和煙霧信號都被用來在較遠的距離上快速傳遞信息,但這些方法都受到限制,指揮官不可能在地平線外向成群的士兵即時傳達命令。隨著電報的發明和應用,以及隨后無線技術的出現,軍事通信開始在遠距離上迅速傳播。這些事件使通信變得越來越高效。我們現在所說的電子戰,其最初的實施形式是針對遠程通信的反制措施,這一點也不足為奇。隨著超視距通信的發展,陸軍不僅可以擴大規模,而且變得更加機動,能夠更快地從更遠的地方對敵人做出反應。這導致戰術越來越復雜。自遠距離通信開始以來,軍方一直在尋找攔截和影響通信的方法,以發揮自己的優勢。
軍事力量一直在尋求超越對手的方法,有時,技術在提供優勢方面發揮了重要作用。著名理論家克勞塞維茨認為,戰爭有兩個不同的要素:性質和特點。戰爭的性質是不變的,包括使用暴力,戰爭是政策的延續;這兩個要素在沖突中肯定會表現出來。但戰爭的性質是不斷變化的,它總是在適應和被適應技術、社會、文化以及涉及戰爭領域的許多其他領域所發生的變化。在戰爭中利用 EMS,特別是其遠距離即時投射信息的能力,無疑改變了戰爭的性質。
科學和商業化的出現使 EW 特別容易受到技術快速變化和改進的影響。這些變化在大規模沖突和全球戰爭中尤為明顯。盡管電子戰在戰爭中相對新穎,但它在反開發方面已有很長的歷史。最近的歷史表明,在 EMS 戰役中獲勝會帶來巨大優勢。然而,在倡導電子戰影響戰爭的新方法時,應該有一些細微差別,因為它的優勢可能很大,但不是絕對的。一些沖突表明,僅靠技術無法贏得戰爭。與技術進步相比,人民的戰斗意志等其他因素對戰爭結果的影響更大。由于使用 EMS 已變得至關重要,它可以進一步影響戰爭和沖突的進程。
與戰爭本身一樣,電子戰也不是一成不變的藝術。隨著技術創新和新技術的應用,電子戰不斷發展,其應用范圍和指導理論也在不斷擴大。現在,電子戰包含了 "在整個作戰環境中保護友軍行動和阻止敵方在 EMS 內行動所必需的 "各種措施。在大多數國家,電子戰理論目前使用三個獨立的類別來表示電子戰系統的不同應用方式:電子攻擊(EA)、電子防護(EP)和電子戰支援(ES)。雖然各國對它們的解釋不同,但處理方法相似。
盡管有相似之處,但空中力量并沒有全球公認的定義。一個國家如何定義取決于其空軍的能力。近來界定空中力量的一個趨勢是,軍方現在將范圍擴大到太空甚至網絡空間。美國目前將空中力量定義為 "通過控制和利用空中、太空和網絡空間來投射軍事力量或影響力,以實現戰略、作戰或戰術目標的能力"。相比之下,澳大利亞的定義僅限于 "一個國家通過在空域、通過空域和從空域投射軍事力量來宣示其意志的能力"。最后,經翻譯后,荷蘭對空中力量的定義是 "通過和在地球表面以上的三維空間內實現或幫助實現政治和軍事目標的能力"。由于像美國這樣的軍隊為太空和網絡空間投入了大量資源,因此將太空和網絡空間納入其空中力量定義是現實的。然而,對于許多規模較小的空軍來說,太空和網絡空間是目前往往資源不足的資產。許多國家的空中力量定義中還沒有太空和網絡空間這兩個術語,盡管這種情況在不久的將來可能會改變。然而,這并不意味著這些空軍無視太空和網絡空間。本文后面將詳細介紹空中力量、太空和網絡空間之間以及與電子戰之間的關系。
空中力量和電子戰一直以來都是互惠互利的,以至于空中力量和電子戰的變化往往是相對應的:當空中力量出現井噴式增長時,電子戰幾乎總是緊隨其后。因此,領導層對空中力量的抵制本身就轉化為對機載電子戰的抵制。空軍使用機載電子戰主要是為了使空中力量更好地發揮效果,并為聯合作戰資產提供支持。
要理解機載電子戰及其任務,就不能不考慮當前和歷史上空中力量發展的動向。隨著當前技術的進步導致傳感器小型化、通信范圍擴大、電子戰系統普及,空中力量與電子戰的互惠互利更加明顯。此外,與第五代飛機配套的許多技術在某種程度上都與 EMS 有關,因此與電子戰的關系也比過去更加密切。本文重點討論第五代空中力量與電子戰之間日益增強的互動。
本文是澳大利亞皇家空軍(RAAF)和荷蘭皇家空軍(RNLAF)合作的成果,它們都是現代化的空軍。同時,他們也在為自己的庫存增添第五代戰斗機--F-35 "閃電 II"。兩支空軍都在研究如何調整部隊設計,以最大限度地利用第五代能力;第五代系統在很大程度上依賴于 EMS。將第五代系統引入空軍會在許多層面上影響電子戰。本文通過考慮過去和現在空中力量與電子戰的發展,并研究未來第 5 代系統的重點發展,探討這種適應對電子戰的影響。重要的是,第五代能力不僅與技術有關,還需要努力調整程序、戰術、基礎設施、人員、文化和許多其他要素,以最佳方式將組織轉變為第五代空軍。
所有中小型空軍在向第五代空軍轉型并相應調整部隊設計時,都可能會經歷與皇家空軍和皇家海軍陸戰隊類似的過程。盡管本文是 RAAF 和 RNLAF 合作的成果,但對其他計劃向第五代空軍過渡的中小型空軍也有借鑒意義。
本文探討了空中力量和電子戰的幾個方面,隨著向第五代空中力量的過渡,這些方面正在或應該發生變化。要了解電子戰發生的變化,就必須了解空中力量及其與 EMS 和 EW 的關系。第 2 章概述了空中力量和電子戰的起源、依賴、變化和動機。
這段歷史有助于了解當前和未來的發展對機載電子戰的影響。第 3 章介紹了當今空中力量的作用和特點。第 4 章探討了當今電子戰及其在空中力量中的作用,最后介紹了目前影響兩者的變化。第 5 章探討了什么是第五代空軍,以及這對空中力量和電子戰的影響。第 6 章探討電子戰如何與第五代空中力量相互作用。第 7 章探討了與電子戰發展密切相關的其他一些主題,如太空和網絡空間。本文最后就第五代空中力量中的電子戰提出了建議。
自從洛克希德-馬丁公司(Lockheed Martin)創造了 "第五代戰爭 "這一術語來描述與 F-22 和 F-35 戰斗機相關的技術和能力的重大飛躍以來,有關第五代戰爭的文章和言論可謂大量顯現。應用于戰斗機的第五代技術的特點是可觀察性非常低,并通過以網絡為中心的作戰環境大大提高了態勢感知能力。澳大利亞皇家空軍(RAAF)彼得-雷頓(Peter Layton)最近撰寫的工作論文《第五代空戰》全面概述了第五代空戰的構造。雷頓博士的論文將大量已發表的文獻解釋了第五代空戰的進攻和防御兩個方面,并超越了美國對第五代空戰的看法。
雷頓博士將第五代空戰技術分為四個部分:網絡、作戰云、多域作戰和融合戰。這樣做有助于將第五代空戰的討論從 F-35 和 F-22 轉移到第五代空戰的環境中。雷頓博士、LTGEN(美國空軍退役)戴維-德普圖拉、RADML(美國海軍退役)邁克-馬納齊爾和 Wing Commander(皇家空軍)克里斯-麥金尼斯等軍事理論家,現在都在全面思考和發表第五代戰爭--環境、指揮與控制(C2)需求,以及重要的組織和人力需求。
本文旨在研究第五代(以下簡稱 "第五代")在空戰管理(ABM)環境中的表現。本文將對第五代進行解構,將其分解為各個組成部分,從而提出一個基本特征,幫助更廣泛的受眾了解第五代是什么、為什么第五代是真實的以及為什么它很重要。本文提供了一個模型作為透鏡,通過該模型可以解釋 "n 代 "的簡單特征。論文通過這一模型追溯了反彈道導彈的歷史,為描述反彈道導彈作為多域指揮與控制(MDC2)努力的重要組成部分的未來設定了背景。本文介紹了從第三代和第四代空戰管理向第五代空戰管理(5G-ABM)過渡過程中人類面臨的一些挑戰。雖然本文側重于空戰領域,但其中的許多觀點適用于所有戰爭領域。
本論文開發了一個基于海底特征導航的模擬框架。使用自動潛航器(AUV)在海底定位感興趣的物品是一種對海軍大有裨益的能力。自動潛航器為消除勞動力需求提供了一個途徑,但其購置和維護成本仍然很高。解決這一問題的辦法是使用兩艘 AUV,其中一艘的能力更強,負責用信標尋找和標記海底物品。配備成本效益型傳感器的消耗性 AUV 將對威脅進行定位、識別和消除。利用海底成像技術將海底圖像與先驗圖像馬賽克關聯起來,再加上超短基線(USBL)信標,AUV 可以在沒有傳統導航系統的情況下完成具有挑戰性的任務目標。增量平滑與測繪 2(iSAM2)是一種同步定位與測繪(SLAM)技術,可用于 AUV 的位置定位,是一種適合實時導航操作的技術,具有圖像和 USBL 傳感功能。模擬框架能夠評估 AUV 的性能,同時將實際操作的風險降至最低。該框架由一個軟件架構組成,可使用與實際操作相同的軟件進行測試。本論文展示了這一框架,并對其在基于圖像的 SLAM 中的可用性進行了分析。
近年來,各國軍隊加強了整合無人駕駛技術的努力,以提高有人-無人駕駛編隊(MUM-T)的能力。由于一些國家的戰斗年齡人口正在減少,軍隊正在轉向容易獲得的、具有成本效益的和復雜的無人駕駛技術。MUM-T擁有巨大的潛力,不僅可以緩解軍隊的人力短缺,還可以提高作戰能力。這篇論文研究了MUM-T在前線的有效性,直至步兵小組支持城市地形的進攻行動。一個基于智能體的模擬被用來模擬有無無人駕駛地面車輛(UGV)支持一個步兵連的MUM-T作戰行動。對超過76,800次的模擬戰斗進行了分析。據觀察,MUM-T概念可以極大地提高戰斗力,通過增加敵人的傷亡來評估。還觀察到UGV的重裝時間、武器精度和自身的力量結構對步兵的殺傷力和生存能力有很大影響。這項分析的結論是,在小單位戰術層面實施MUM-T對提高整體作戰性能有很大潛力。未來,作戰模型可以被整合到未來的軍事演習中,這樣就可以對模擬的結果進行驗證和確認。
隨著復雜技術和創新的使用,戰爭正在日益演變。在全球人力短缺的推動下,各國正在轉向無人駕駛技術以緩解這種短缺并提供作戰能力。因此,通過采用載人-無人小組(MUM-T),利用無人技術來支持前線步兵的潛力很大。
本論文旨在探索MUM-T在進攻性城市場景中的有效性。論文討論、分析和研究了在城市環境中連級無人駕駛地面車輛(UGV)的戰術運用效果。指導這項研究的研究問題包括以下幾個方面:
主要問題:
1.有UGV或UGV支持的步兵小隊的致命性和生存能力如何?
2.在模擬場景中,MUM-T部隊的不同部隊結構的戰斗結果和分析是什么?
次要問題:
本論文使用基于智能體的模擬環境 "地圖感知非統一自動機"(MANA),通過建立一個模擬并對UGV的作戰方案進行分析,再加上影響城市地形中進攻性步兵部隊作戰效率的因素,來研究MUM-T。
該作戰模型包括兩組主要的作戰部隊,以美國陸軍的步兵作戰順序(ORBAT)為模型: (1)由裝備有UGV的友軍步兵連組成的藍方部隊;(2)由作為防御方的對手步兵排組成的紅方部隊。圖1顯示了模擬作戰行動的一個迭代的開始狀態。
圖1. MANA的一個模擬復制的初始狀態的截圖。
共創建了三個不同的實驗設計(DOE),以研究MUM-T能力和概念的關鍵戰斗特征和效果。衡量性能的重點是任務的有效性,重點是確定與殺傷力和生存能力相關的因素。作者對每個DOE采取了迭代的方法,將前一個DOE的一些發現和分析納入下一個DOE。第一個DOE著重于與基線步兵ORBAT相比,最初引入MUM-T的效果。第二個DOE重點關注不同的人力和部隊結構,以研究支持MUM-T的部隊規模的影響。最后一個DOE結合了前兩個DOE的各個方面,并創建了一個近乎正交和平衡的混合設計,以實現一個更全面和結論性的實驗來結束這篇論文。近80,000次模擬戰役,每次涵蓋超過8小時的戰斗,被運行和分析。
在可視范圍內執行空戰,需要飛行員在接近1馬赫的飛行速度下,每秒鐘做出許多相互關聯的決定。戰斗機飛行員在訓練中花費數年時間學習戰術,以便在這些交戰中取得成功。然而,他們決策的速度和質量受到人類生物學的限制。自主無人駕駛戰斗飛行器(AUCAVs)的出現利用了這一限制,改變了空戰的基本原理。然而,最近的研究集中在一對一的交戰上,忽略了空戰的一個基本規則--永遠不要單獨飛行。我們制定了第一個廣義的空戰機動問題(ACMP),稱為MvN ACMP,其中M個友軍AUCAVs與N個敵軍AUCAVs交戰,開發一個馬爾可夫決策過程(MDP)模型來控制M個藍軍AUCAVs的團隊。該MDP模型利用一個5自由度的飛機狀態轉換模型,并制定了一個定向能量武器能力。狀態空間的連續和高維性質阻止了使用經典的動態規劃解決方法來確定最佳策略。相反,采用了近似動態規劃(ADP)方法,其中實施了一個近似策略迭代算法,以獲得相對于高性能基準策略的高質量近似策略。ADP算法利用多層神經網絡作為價值函數的近似回歸機制。構建了一對一和二對一的場景,以測試AUCAV是否能夠超越并摧毀一個優勢的敵方AUCAV。在進攻性、防御性和中立性開始時對性能進行評估,從而得出六個問題實例。在六個問題實例中的四個中,ADP策略的表現優于位置-能量基準策略。結果顯示,ADP方法模仿了某些基本的戰斗機機動和分段戰術。