近年來,各國軍隊加強了整合無人駕駛技術的努力,以提高有人-無人駕駛編隊(MUM-T)的能力。由于一些國家的戰斗年齡人口正在減少,軍隊正在轉向容易獲得的、具有成本效益的和復雜的無人駕駛技術。MUM-T擁有巨大的潛力,不僅可以緩解軍隊的人力短缺,還可以提高作戰能力。這篇論文研究了MUM-T在前線的有效性,直至步兵小組支持城市地形的進攻行動。一個基于智能體的模擬被用來模擬有無無人駕駛地面車輛(UGV)支持一個步兵連的MUM-T作戰行動。對超過76,800次的模擬戰斗進行了分析。據觀察,MUM-T概念可以極大地提高戰斗力,通過增加敵人的傷亡來評估。還觀察到UGV的重裝時間、武器精度和自身的力量結構對步兵的殺傷力和生存能力有很大影響。這項分析的結論是,在小單位戰術層面實施MUM-T對提高整體作戰性能有很大潛力。未來,作戰模型可以被整合到未來的軍事演習中,這樣就可以對模擬的結果進行驗證和確認。
隨著復雜技術和創新的使用,戰爭正在日益演變。在全球人力短缺的推動下,各國正在轉向無人駕駛技術以緩解這種短缺并提供作戰能力。因此,通過采用載人-無人小組(MUM-T),利用無人技術來支持前線步兵的潛力很大。
本論文旨在探索MUM-T在進攻性城市場景中的有效性。論文討論、分析和研究了在城市環境中連級無人駕駛地面車輛(UGV)的戰術運用效果。指導這項研究的研究問題包括以下幾個方面:
主要問題:
1.有UGV或UGV支持的步兵小隊的致命性和生存能力如何?
2.在模擬場景中,MUM-T部隊的不同部隊結構的戰斗結果和分析是什么?
次要問題:
本論文使用基于智能體的模擬環境 "地圖感知非統一自動機"(MANA),通過建立一個模擬并對UGV的作戰方案進行分析,再加上影響城市地形中進攻性步兵部隊作戰效率的因素,來研究MUM-T。
該作戰模型包括兩組主要的作戰部隊,以美國陸軍的步兵作戰順序(ORBAT)為模型: (1)由裝備有UGV的友軍步兵連組成的藍方部隊;(2)由作為防御方的對手步兵排組成的紅方部隊。圖1顯示了模擬作戰行動的一個迭代的開始狀態。
圖1. MANA的一個模擬復制的初始狀態的截圖。
共創建了三個不同的實驗設計(DOE),以研究MUM-T能力和概念的關鍵戰斗特征和效果。衡量性能的重點是任務的有效性,重點是確定與殺傷力和生存能力相關的因素。作者對每個DOE采取了迭代的方法,將前一個DOE的一些發現和分析納入下一個DOE。第一個DOE著重于與基線步兵ORBAT相比,最初引入MUM-T的效果。第二個DOE重點關注不同的人力和部隊結構,以研究支持MUM-T的部隊規模的影響。最后一個DOE結合了前兩個DOE的各個方面,并創建了一個近乎正交和平衡的混合設計,以實現一個更全面和結論性的實驗來結束這篇論文。近80,000次模擬戰役,每次涵蓋超過8小時的戰斗,被運行和分析。
海軍陸戰隊步兵連的組成正在發生變化以應對新的威脅。這些演變將如何影響未來部隊的殺傷力、生存能力和交戰?這項研究使用基于智能體的戰斗模型技術,為未來的實戰實驗和兵棋推演提供見解。作者使用建模軟件模擬了基于2030年兵力設計提案的不同步兵連配置。模擬的場景設想了一個未來的海軍陸戰隊步兵連在遠征軍先進基地的側翼防守一個進行兩棲攻擊的同行對手。這項研究考察了連隊交戰區域的大小以及新的和正在出現的技術,如游蕩的精確彈藥,對步兵連的殺傷力和生存能力的影響。作者確定了模型中發現的最有效的戰術、技術和程序。基于44,500次模擬戰斗,這項研究發現,在常規連級規模的交戰中,首先發現并向對方提供足夠的游蕩彈藥的部隊往往能產生勝利。這一現象可以從一個連隊的 "投擲重量",或者說它每發炮彈可以用來對付敵軍的彈藥數量來理解。調查還得出結論,未來的戰場將是高度致命的,預計所有各方都將經歷巨大的減員,甚至是勝利。
戰爭的特征正在迅速改變。基于先進的機器人技術、人工智能和能源儲存的新技術的出現,使精確、創新的平臺,如無人駕駛航空系統(UAS),為攻擊、偵察和其他功能而優化。除了新技術之外,西太平洋地區的地緣政治緊張局勢正在推動國防部根據新的國家戰略重點進行調整。作為這些趨勢的結果,海軍陸戰隊司令在2019年發布了規劃指南,啟動了2030年兵力設計。兵力設計審查將2030年作為未來部隊必須準備進行戰斗行動的年份。設想中的未來編隊將作為遠征先進基地行動的一部分,在敵方武器交戰區內行動。
兵力設計審查在小單位層面的影響是多方面的。如果目前的建議被接受,海軍陸戰隊步兵連將看到幾十年來對部隊結構最重大的改變。這些修改有望提高海軍陸戰隊在未來戰場上的殺傷力和生存能力。擬議的變化分為兩類:戰術、技術和程序(TTPs)的變化和裝備的變化。在指揮官尋求勝利的過程中,作戰的需要將支配這兩組變化。在海軍陸戰隊步兵連一級,出現了兩個關鍵問題。
1.未來的連長如何最好地設計他們的交戰區域?
2.一個連隊需要多少軍械和什么類型的軍械來對付特定規模和類型的敵人?
通過在連一級回答這兩個問題,指揮官可以更好地準備他們的部隊,以應對充滿游蕩彈藥、反艦導彈和其他尚待發明的因素的未來戰場。
為了研究這兩個研究問題,作者采用了地圖感知非統一自動機第五版基于智能體的作戰建模和仿真軟件,創建了一個海軍陸戰隊步兵連防御敵方兩棲機械化連的隨機模型。戰斗模型的建立過程采用了迭代的第一原理方法,首先模擬了未來的海軍陸戰隊火力小組,然后將模型擴展到模擬整個海軍陸戰隊步兵連的有機精確火力(OPF)游動彈藥。該作戰模型包括兩種不同的OPF系統: OPF 1級,一種殺傷性游蕩彈藥,以及OPF 1級,一種反裝甲游蕩彈藥。這兩個系統的成功是指揮官在小單位層面上進行分布式作戰的愿景的關鍵--因為它們能夠在沒有海軍陸戰隊員集結的情況下進行集結射擊。作者使用當前和擬議的系統規格來建立OPF模型智能體。
模型中紅方部隊的主要機動單位是一個安裝在ZBD-05中的兩棲機械化步兵連。紅方部隊的連隊在模型中得到了攻擊型無人機系統的支持和來自高級海軍資產的海軍水面火力支持。在該場景中,紅方部隊試圖奪取關鍵的海上地形,為摧毀一個海軍陸戰隊濱海團(MLR)創造條件。藍方部隊試圖控制那片關鍵的海上地形,以防止紅方部隊對MLR行動的干擾。
模型完成后,作者使用近乎正交的拉丁超立方體、分辨率V分位因子和全因子設計創建了穩健的實驗設計。實驗設計能夠利用高性能的集群計算進行有效的模型復制。在實驗和數據收集期間,在幾天內模擬了44,500次不同的戰斗,改變了關鍵因素,如OPF徘徊彈藥的殺傷概率和海軍陸戰隊殺傷網內的通信延遲。總的來說,研究設計探討了九個關鍵因素,包括OPF蜂群的大小和藍軍的交戰距離。
該研究的主要建議包括:
1.為了成功地進行分布式作戰,一個海軍陸戰隊步兵連必須有足夠數量的游蕩彈藥,如果僅僅依靠有機的戰斗力來取得對一個連級機械化部隊的勝利,那么游蕩彈藥的數量不能少于10個OPF 1級2系統。
2.勝利最好是由首先在對方發現并使用足夠的游蕩彈藥的部隊產生。因此,未來的海軍陸戰隊步兵連必須在允許的火力支援控制方法下作戰,以便在其作戰區域內使用OPF。作者建議設立一個限制性作戰區,未來的連長擁有足夠高度的空域,并能自行清除其領域內的所有火力。
3.如果雙方都采用精確的游動彈藥,在未來的戰場上,高損耗是可能的。在導致藍軍獲勝的模擬戰斗中,海軍陸戰隊步兵連在特定的實例中,仍有超過30%的傷亡。未來的指揮官必須為這種可能性做好準備,不要讓敵人在戰斗中利用由此產生的人為因素而獲得優勢。
4.HAW-MAW-LAW在公司層面上優于大規模的驚訝射擊。這項研究發現,以三到五節的速度在海浪中移動的ZBD-05極易受到OPF的攻擊。海軍陸戰隊連隊指揮官應在戰斗中盡可能早地通過與OPF徘徊彈藥的交戰來尋求誘發敵方系統的摩擦。
無人駕駛地面車輛(UGVs)可用于軍事領域,以減輕士兵承擔的風險,以及為體力要求高、枯燥或危險的任務提供解決方案。雖然使用UGV有好處,但也有需求和限制。本論文探討了最終用戶--瑞典武裝部隊的一個輕步兵營--對于為城市地形中的軍事行動而設計的UGV在功能方面的要求。這是通過一個帶有焦點小組的探索性案例研究來完成的,來自第31游騎兵營的士兵和軍官使用兩種不同的UGV原型來完成任務。隨后是半結構化的小組討論,探討了需求、限制和要求。然后,通過主題分析方法對收集的數據進行分析。
主題分析的結果發現,焦點小組的要求有幾個重復出現的意見。這些要求被分為四類:(1)速度,(2)用例,(3)圖像生成的傳感器,以及(4)自主功能。總之,本論文在四個類別中共確定了13個需求。總而言之,這些要求意味著用于城市地形的軍事行動的UGV必須能夠跟上沖刺的士兵,提供視覺掩護,能夠與附近的物體互動,有幾個高質量的傳感器和強大的自主功能,使士兵能夠專注于控制UGV以外的其他事情。
無人駕駛航空系統和其他相關技術的發展,包括人工智能、數據和云網絡、自主控制系統和系統/武器/傳感器的小型化和網絡化,以及增加昂貴的載人平臺艦隊數量的需要,推動了許多武裝部隊和工業界積極嘗試有人無人機編隊(MUM-T)。除非任務目標或載人平臺的生存需要,否則在有人平臺之外部署無人駕駛、"低成本 "和 "可損耗 "但不 "可拋棄 "的戰斗飛行器,可以最大限度地發揮其作為力量倍增器的價值,在高度競爭的空域提高殺傷力和生存能力。盡管自主技術和人工智能的引入正在徹底改變全域作戰,但新的自主平臺和武器系統的交戰規則正在通過嚴格的倫理考慮和評估來發展,其中人在環路上繼續發揮重要作用。本文希望對MUM-T方案和活動做一個整體的、非詳盡的分析。
天堡(Skyborg)是美國空軍 "先鋒 "計劃中迅速投入使用的三個技術項目之一,它是一個架構套件,旨在為自主可損耗的機身設計,根據該服務,它將能夠以足夠的節奏進行姿態、生產和維持多任務飛行,以挫敗對手在有爭議和高度爭議的環境中采取快速、決定性行動的企圖。天堡自主核心系統或ACS于2019年首次曝光,由Leidos公司開發,已在2021年的多月測試活動中得到驗證,在此期間,它被成功整合到兩個不同的無人平臺上,即Kratos UTAP-22 Mako和通用原子-航空航天系統公司的MQ-20,證明了政府擁有的自主核心的可移植性,使其在未來整合到不同平臺上。一個關鍵的活動里程碑是參加了 "橙旗21-2 "演習,這是美國在2021年6月進行的首要的大型部隊多領域測試活動,其中Skyborg ACS被集成到一個MQ-20中,成為在這種復雜活動中自主操作的無人車的首次飛行測試。由空軍研究實驗室(AFRL)進行,根據服務文件,Skyborg被組織成三個主要的努力方向(LOE)。LOE 1開發、演示和原型化由天堡自主架構和軟件組成的ACS,實現機器-機器和有人-無人的合作,同時也確保天堡自主任務系統套件的開放性、模塊化和可擴展性。ACS LOE還開發、演示和試制所需的硬件組件和開放架構標準,以便在系統集成實驗室和平臺上將模塊化傳感器、通信和其他有效載荷集成到Skyborg自主性和車輛架構中。LOE 2開發、演示和原型化新的低成本可移動飛行器的概念和技術,用于遠征的大規模生成,包括架次生成就業概念。LOE 3對可追蹤的、自主的、無人駕駛系統的操作概念和就業概念進行分析和實驗,并評估傳感器和任務系統的開放性、模塊化能力和整合。2021年8月,克拉托斯公司和通用原子公司都獲得了一份合同,以進一步支持將Skyborg分別集成到XQ-58A "女武神 "和MQ-20 "復仇者 "無人平臺,同時在大部隊演習中進行系統實驗。這些額外合同的目的是在資金允許的情況下,在2023年將Skyborg過渡到一個記錄方案。根據USAFRL的計劃,ACS還將從2022年開始在波音公司的隱形空中力量合作系統UCAV(無人駕駛戰斗飛行器)上進行實驗,該系統正在為澳大利亞國防部開發,如后所述。有趣的是,今年3月,AFRL授予藍色力量技術公司一份合同,開發一種支持對手空中訓練任務的無人駕駛飛行器,該飛行器將納入通過Skyborg努力開創的先進技術。2021年12月,空軍部長弗蘭克-肯德爾宣布,該軍種正在研究無人平臺與諾斯羅普-格魯曼公司的B-21 "突襲者 "遠程攻擊轟炸機和主要是下一代空中優勢(NGAD)先進飛機之間的MUM-T新概念方案,但也有可能與洛克希德-馬丁公司的F-22 "猛禽 "和F-35 "閃電II "聯合攻擊戰斗機合作。
圖:在通用原子公司的MQ-20上成功進行了測試,天堡自主核心系統(ACS)由自主架構和軟件組成,實現了機器-機器和有人-無人的合作。
圖:2021年8月,克拉托斯公司和通用原子公司都收到了一份合同,以進一步支持將天堡系統分別集成到XQ-58A "女武神"(此處描述)和MQ-20 "復仇者 "無人平臺上,同時在大部隊演習中進行系統試驗。
圖:去年11月的 "橙旗 "演習涉及F-35A "閃電 "II等飛機和兩架通用原子公司的MQ-20 "復仇者 "無人機,它們攜帶 "天堡 "自主核心系統進行了持續數小時的飛行測試。
美國海軍正在推行不同的高性能無人平臺計劃,以便在航空母艦上服役。在包括無人作戰系統的MUM-T工作中,2020年初,波音公司宣布,海軍作戰發展司令部在海軍作戰發展司令部的年度艦隊實驗中,由第三架飛機成功進行了兩架自主控制的EA-18G "咆哮者 "的演示。該實驗涉及到咆哮者在第三架咆哮者的控制下作為無人系統行動,以證明F/A-18超級大黃蜂和EA-18G咆哮者空勤人員從駕駛艙遠程控制戰斗機和攻擊平臺的有效性。該演示涉及四個架次的21項任務,為波音公司和海軍提供了分析所收集的數據并決定在哪里進行未來技術投資的機會。美國海軍繼續加速開發下一代空中優勢(NGAD)系統家族(FoS),以提供先進的、基于航母的力量投射能力,擴大其航空母艦的航程。當F/A-18E/F Block II飛機在2030年代開始達到使用年限時,NGAD FoS將取代這些飛機,并利用載人無人機組隊(MUM-T)來提供更強的殺傷力和生存能力。F/A-XX是NGAD FoS的攻擊戰斗機組件,根據該部隊的說法,它將成為MUM-T概念的 "四分衛",在戰斗空間的前沿指揮多個戰術平臺。F/A-XX在2021財年開始了概念完善階段,并且仍然按計劃進行。
2021年5月,澳大利亞政府宣布將對 "忠誠僚機"--高級發展計劃追加投資4.54億澳元。自2017年以來,根據澳大利亞皇家空軍(RAAF)計劃,澳大利亞國防部投資超過1.5億澳元,以支持澳大利亞皇家空軍和波音防務澳大利亞公司領導的當地工業團隊的合資企業,該企業設計、開發和生產了Loyal Wingman無人駕駛戰斗飛行器(UCAV),最近被命名為MQ-28A Ghost Bat。據澳大利亞政府稱,在短短四年內,該合資企業已經成功地制造和飛行了50年來的第一架澳大利亞制造的軍用作戰飛機,這可以使該計劃成為關鍵出口市場的重要競爭者。MQ-28A飛機于2020年5月亮相,2021年2月進行了首次飛行,距離項目啟動僅兩年零三個月。第二架飛機已經加入了飛行測試計劃,第三架飛機正準備在2022年晚些時候進行飛行測試。每架飛機的70%以上是在澳大利亞采購、設計和制造的。這項投資將看到該計劃擴大到更多的本地公司,以及國際合作伙伴和盟友,并在布里斯班附近的圖文巴(Toowoomba)建立一個生產設施,以及在今年加速開展側重于傳感器和任務系統能力的活動。除了用于概念演示的三架原型機外,這項投資將增加七架MQ28A,總共十架飛機,并將快速跟蹤 "幽靈蝙蝠 "在2024-2025年的服役情況。制造商所稱的空中力量組隊系統提供了類似戰斗機的性能,其機身長度為11.7米,能夠飛行超過3700公里。該UCAV有一個模塊化和可互換的機頭部分,可以容納集成傳感器包,以支持不同類型的任務,包括情報、監視和偵察、通信中繼以及動能和非動能打擊能力。據RAAF稱,該計劃是整合自主權和人工智能的探路者。
圖:澳大利亞國防部投資支持RAAF和波音防務澳大利亞公司領導的當地工業團隊的合資企業,該團隊設計、開發和生產了 "忠誠僚機"戰斗無人駕駛飛行器,最近被命名為MQ-28A幽靈蝙蝠。
圖:除了用于概念演示的三架 "忠誠僚機"原型機外,澳大利亞政府去年5月宣布的投資將增加7架MQ-28A,共10架飛機,并將加快 "幽靈蝙蝠 "在2024-2025年投入使用的步伐。
蚊子項目于2019年7月首次由英國皇家空軍快速能力辦公室和國防科技實驗室披露,該項目旨在開發和證明一種技術演示器,作為更廣泛的輕量級廉價新型作戰飛機(LANCA)計劃的一部分,根據公告,。該計劃旨在提供額外的能力,將無人平臺與F-35、"臺風 "和下一代 "暴風雪 "等戰斗機部署在一起,為有人駕駛的飛機提供更多的保護、生存能力和信息,甚至可以在未來提供一個無人駕駛的作戰航空 "艦隊"。有趣的是,2021年7月,英國皇家空軍空軍總司令邁克-威格斯頓爵士在空天力量協會的全球空軍首長會議上談到廣泛的未來戰斗航空系統(FCAS)時說,"與意大利和瑞典等國際盟友合作,我們正在采取一種革命性的方法。我們正在研究改變游戲規則的蜂群式無人機和無機組人員作戰飛機的混合編隊,以及像 "暴風雪 "這樣的下一代駕駛飛機,"這為與上述國家和其他國際盟友開展無機組人員作戰飛機和無人機的潛在共同計劃開辟了道路。
圖:2021年1月,由Spirit AeroSystems公司領導的一個工業團隊獲得了一份3000萬英鎊的合同,以快速設計和制造英國第一個無機組人員的戰斗航空系統的技術演示器,該系統是在 "蚊子 "三年全尺寸飛行測試計劃下的。
圖:"蚊子"將從機場、空客A400M "母艦 "或航空母艦上發射,計劃到2023年底在英國領空飛行。"蚊子"UCAV和Alvina蜂群無人機將支持新一代的 "暴風 "作戰空中平臺。
作為 "蚊子 "項目第二階段的一部分,2021年1月,由英國Spirit AeroSystems公司作為主承包商和機身設計者領導的工業團隊與諾斯羅普-格魯曼英國公司(人工智能、網絡、人機界面)和Intrepid Minds公司(航空電子和動力)一起獲得了一份3000萬英鎊的合同,在為期三年的全尺寸飛行測試計劃中快速設計和制造英國首個無機組人員作戰航空系統(UCAS)的技術演示機,作為目前F-35、臺風和下一代 "暴風 "平臺的補充。無人駕駛作戰飛機主要是為了增加軍方作戰航空部隊的數量,它被設計為與戰斗機一起高速飛行,配備導彈、監視和電子戰技術,以瞄準和擊落敵方飛機,并能抵御地對空導彈。蚊子 "將從機場、空客A400M "母艦 "或航空母艦上發射,計劃在2023年底前在英國領空飛行,但沒有說明實際的首次飛行是否會提前在外國天空進行。2021年,當時的英國國防參謀長尼克-卡特爵士將軍在一次國際戰略研究所的虛擬活動中說,到2030年,今天由8架臺風戰斗機組成的皇家空軍(RAF)戰術編隊將由2架臺風戰斗機、10架蚊式無機組人員戰斗機和100架阿爾維娜蜂群無機組人員飛行器組成,"因為這是產生大量的方式,你可以看到這在陸地和海洋領域也會上演。" 未來的皇家空軍預計將由暴風雪、F-35、蚊子、阿爾維納和保護者組成,其中80%將是無人駕駛或遙控平臺。2021年,空軍總司令邁克-維格斯頓爵士宣布,皇家空軍無人機測試中隊 "已經毫無疑問地證明了我們的阿爾維娜計劃下蜂群無人機的顛覆性和創新性效用"。在英國Alvina計劃的前兩個階段之后,2019年1月授予了第三階段250萬英鎊的合同,用于綜合概念評估活動,以探索協作運行的無人機群的技術可行性和軍事效用,2021年1月成功測試了涉及英國20架蜂群無人機的最大的協作性軍事重點評估。據報道,與正在為皇家空軍開發的 "蚊子 "分開,皇家海軍正在推進其名為 "維克斯 "的忠誠僚機。
法國、德國和西班牙,未來戰斗航空系統/未來戰斗系統(FCAS/SCAF)的伙伴國,以及它們各自的產業,正在開發遠程載具(RC)元件,它與可選擇駕駛的新一代戰斗機(NGF)和聯網的戰斗云(CC)一起構成下一代武器系統(NGWS)。RCs的開發是由空中客車防務和空間公司作為主體,法國MBDA公司、德國MBDA公司和西班牙SATNUS技術公司組成的合資公司Sener Aeroespacial、GMV和Tecnobit-Grupo Oesia公司進行的。該工業團隊正在開發一個蜂群和網絡化的飛行器系列,其尺寸從數百公斤的消耗性飛行器到數噸的更復雜和可重復使用的忠誠僚機類型。根據空中客車公司和MBDA之間的合作協議,前者專注于開發可重復使用的遙控飛行器,而后者則致力于開發消耗性的。正在開發的關鍵技術包括人工智能支持的合作算法、穩健和故障安全的數據通信、小型化傳感器、新的驅動技術、獨立于GPS的導航、可擴展的行動手段、低觀測性解決方案和蜂群技術。如果達索航空公司和空中客車公司將很快簽署各國已經達成的協議,遙控飛機技術演示器可能在2027-2028年飛行,但這將取決于發展路徑和時間。遙控飛機的初始作戰能力可以在2030年代達到,以初步補充第四代戰斗機,但這將取決于國家要求和對平臺及其任務套件的修改。FCAS的MUM-T作戰概念(CONOPS)和相關要求,定義了對遙控飛機機體和控制系統能力的要求,正在調查作為發展路徑的一部分,直到技術演示飛行階段。正如在2019年布爾歇航展和隨后的活動中所展示的那樣,RCs被設想為支持載人平臺的空對空和空對地任務,包括海軍領域,以及情報、監視和偵察(ISR)以及電子戰斗序列的繪制,還有干擾/欺騙、壓制和摧毀敵人的防空。MBDA正在利用其所有的經驗和技術,開發更深入的打擊武器系統,如 "風暴之影 "和 "金牛座",以及基于國家計劃的新系列 "長矛"、"智能滑翔機 "和 "智能巡洋艦 "的智能連接武器,以進一步發展這些概念的RCs,其發展取決于MUM-T平臺的選定類型。迄今為止,MBDA已經在2019年公布了其RC100和RC200遠程運載工具的概念,但最終的RC可能會有所不同,并且可以設想更大的一攬子解決方案,包括已經公布的用于攔截針對受保護平臺發射的空對空導彈的短程導彈。空中客車公司正在開發的更大的RC,在2019年提出了早期模擬,需要由運輸機(如A400M)進行空中發射,或從跑道起飛。目前還沒有提供關于忠誠的僚機型UCAV的信息。
圖:法國、德國和西班牙,FCAS/SCAF的伙伴國,以及它們各自的工業界,正在開發遠程載具(RC)元素,這些元素與可選擇駕駛的新一代戰斗機(NGF)和聯網的戰斗云(CC)一起構成了下一代武器系統(NGWS)。
圖:根據空客防務與航天公司和MBDA之間的合作協議,后者專注于開發消耗性遠程運載工具,而空客DS則專注于可重復使用的運載工具。
土耳其Baykar技術公司在2021年7月公布了其UCAV設計。據制造商稱,該平臺最初以土耳其語縮寫MIUS(無人駕駛作戰飛機系統)聞名,2022年3月改名為Kizilelma(土耳其語中的紅蘋果),預計將于2023年飛行。Baykar技術公司公布的概念和模型顯示,單渦輪風扇發動機驅動的CUAV具有隱形設計,其特點是三角翼和鴨翼配置,機身能夠容納一個武器艙。雖然沒有提供關于平臺尺寸的官方數據,但制造商提供了關于主要能力的信息。Kizilelma最大起飛重量為6,000公斤,不僅能夠從短的陸地跑道上起飛和降落,而且還能從甲板上的海軍平臺,如土耳其海軍未來的旗艦LHD Anadolu上起飛和降落,據稱它具有全自動起飛和降落的功能,以及包括主動電子掃描陣列雷達、先進的光電攝像機和電子戰系統在內的任務套件,以及視線內和視線外通信套件。Kizilelma的最大有效載荷容量為1500公斤,據稱能夠達到0.6馬赫的巡航速度和11550米的工作高度,續航時間為5小時,任務半徑為926公里,但沒有公布任務有效載荷。
圖:土耳其Baykar技術公司的UCAV Kizilelma(土耳其語中的紅蘋果),據制造商稱,預計將于2023年飛行。
Baykar技術公司公布的Kizilelma UCAV的概念和模型顯示了一個以單渦輪風扇發動機為動力的平臺,其隱身設計的特點是三角翼和鴨翼配置,其機身能夠容納一個武器艙。
無人機系統(UAS)和其他相關技術(人工智能或AI、無線數據網絡、擊敗敵方電子戰的電子支援措施)已經發展到一個新的地步,無人機系統被認為原則上能夠執行目前由有人駕駛飛機執行的幾乎任何任務。
因此,許多武裝部隊正在積極試驗有人-無人編隊協作(不同的縮寫為MUM-T或MUMT)。通過將有人和無人資產作為一個單位而不是單獨部署,無人機最大限度地發揮了其作為力量倍增器的價值,提高了在高度競爭性空域的殺傷力和生存能力。無人機系統的直接控制權可由飛行中的有人單位或單獨的空中、地面或海上指揮中心掌握。隨著時間的推移,人工智能的進步將允許無機組人員的編隊元素自主地執行大部分任務。這最終可以將人類干預減少到最低,只保留任務目標的輸入、交戰規則的定義和武器釋放的授權。事實上,這種自主能力對于MUM-T概念來說是至關重要的,以防止人類飛行員被控制無人機的額外任務所淹沒。 無人機系統的主要應用包括:
在“武裝護衛”角色中,無人機系統可以在有人平臺執行任務之前壓制敵人的防空設施(SEAD角色),或者作為一個外部武器庫,使單一的有人駕駛飛機在每次任務中能夠攻擊大量的目標。
不斷發展的顛覆性技術被證明是軍事領域的游戲規則改變者,并正在改變戰爭的特征。新技術大大縮小了部隊與指揮和控制之間的空間、時間和信息差距。戰略和戰役層面的直接接觸戰正在逐漸成為過去。對敵人的遠程非接觸性影響成為實現戰斗和行動目標的主要方式。軍事機器人可以在所有的戰爭行動和所有的地形中發揮重要作用。世界上領先的軍隊正在開發機器人技術,使他們在戰場上獲得決定性的優勢。印度的對手正在開發這種技術,以便在未來的戰斗中充當力量倍增器。這項技術的發展對印度陸軍至關重要,因為它具有巨大的潛力,可以使地面上的士兵以更有效的方式執行其任務。它在巡邏、監視、掩蔽區的行動、探測和消除爆炸裝置、提高生存能力、后勤支持和軍事設施的安全方面的應用需要得到利用。完全自主的挑戰需要分析,但士兵與機器人的合作是一項可能的任務,特別是在印度的條件下。利用機器人技術將拯救寶貴的人類生命,但不一定能取代士兵,因為邊境的兩個戰線上都需要有地面部隊。為半自主士兵-機器人協作量身定做的解決方案值得關注,也是印度陸軍未來長期需求的必要條件。
印度陸軍不可避免地需要分析和發展機器人能力,以便在戰場上為其提供決定性的優勢。本文分析了與該技術有關的各個方面,它的應用及它在各種地形中的應用,發展和應用中的挑戰,并為印度陸軍提供建設性的建議。
機器人和人工智能(AI)是技術和認知智能的結合,用于模擬、處理信息和知識,在機器中建立模仿人類行為的能力。它是一種變革性的技術,在軍事領域有巨大的應用。軍用機器人是自主機器人或遙控移動機器人,設計用于監視、后勤、安全和攻擊性任務等軍事應用。這種軍用機器人是用若干代碼和算法組裝而成的。人工智能將在未來的戰爭中發揮更大的作用,使戰場機器人化,但并不完全否定人類參與的必要性。因此,人工智能、相關硬件、傳感器和控制機器人的綜合網絡構成了軍用機器人執行軍事任務的關鍵因素。根據要求,軍用機器人可以開發出不同的形狀和尺寸,它們可以是遠程控制的,也可以是完全自主的。根據應用,機器人可以被開發為攜帶不同類型的有效載荷。根據應用要求,傳感器、探測器、武器、編程軟件和其他有效載荷可以裝備在軍事用途的機器人上。 軍用機器人可大致分為無人駕駛航空器(UAV)、無人駕駛地面車輛(UGV)和水下無人駕駛車輛。這些可以進一步分為半自動和自動。 本文將主要關注陸地部分,該技術對印度士兵起到了促進作用和伙伴的重要性。
自主/半自主機器的創建不是為了成為 "真正的'道德'機器人",而是為了遵守戰爭法則和交戰規則(ROE)。因此,影響人類士兵草率決定的疲勞、壓力、情緒、腎上腺素等都被去除;不會有個人所做的決定對戰場造成的影響。 軍事機器人可以不知疲倦地工作,減少人類的工作量,也減少戰場上的傷亡。它們是準確的,因此消除了人類的錯誤。使用機器人技術同樣能提高生產力,增強盈利能力。 這些機器可以在惡劣的天氣條件下,在核、生物、化學污染區等危險情況下工作。
領先的發達國家正在開發能夠在有/無人類干預的情況下進行作戰行動的機器人。到2022年,美國的軍用機器人產業預計將達到308.3億美元,從2017年到2022年的年復合增長率為12.92%。 美國正在建立一個下一代作戰員,可以使用所有可用的數據來幫助決策,以減少風險,管理不確定性,并提高致命性。 被稱為 "超能作戰員"的機器人機器通過提供技術援助來縮短OODA環路內的時間,從而使美國特種作戰司令部(USSOCOM)的特種作戰人員具有認知上的優勢。
美國還開發了一些機器人系統,如FLIR系統公司的Centaur,一種遠程操作的中型無人地面車輛(UGV),為作戰人員提供了探測、確認、識別和處理諸如簡易爆炸裝置等危險材料的能力。 多用途戰術運輸車(MUTT)是一種跟隨士兵的UGV,在他們的路線上為他們攜帶裝備。MUTT也可以在戰場上運送受傷的士兵,以便其他士兵可以繼續他們的行動。遙控的MUTT可以在人類之前偵查一個地區,也可以用來發射武器。Themis"(履帶式混合模塊化步兵系統)是一種多功能UGV,旨在減少戰場上的部隊數量。該機器人有一個開放的架構,可以配備輕或重機槍、40毫米榴彈發射器、30毫米自動炮和反坦克導彈系統。它有一個自穩定的遙控武器系統,可以在大范圍內提供高精確度,也可以在白天和晚上發揮作用。Throwbot 2.0是Recon Robotics公司制造的可投擲機器人,僅重0.6公斤,可在室內和室外環境中發揮作用。這種軍用機器人實時傳遞情報和偵察信息。它是一個超輕量級的防水機器人,可以被扔到野外的任何地方,并被設計成可以在各種地形上爬行。
俄羅斯武裝部隊已經發展了UGV方面的專業知識,URAN6在敘利亞進行了嘗試和測試,Uran -9目前正在開發中,以支持步兵行動。他們經常對無人系統保持一種務實的態度,利用T-72(Shturm)和T-90(Prokhod)主戰坦克以及BMP-3(Vikhr)步兵戰車等舊平臺,將這些平臺轉換為可選擇的載人作戰系統,可以在無人模式下遠程操作。Uran-9的特點是 "一個遠程操作的炮塔,可安裝不同的輕型和中型口徑的武器和導彈。Sorantik正在開發的另一種UGV被指定用于偵察和火力支援任務,但也可以承擔掃雷和巡邏任務。該車可以在全自動模式下運行,但也可以由作戰員直接控制。
印度北方邊境的多山地形給武裝部隊帶來了巨大的挑戰。空中機器人平臺可以通過利用第三維度來提高對形勢的認識。可以獲得峰頂以外的實時信息,通過人工智能算法處理,無論是在無人機上還是在操作員端,都可以提供實時的目標情報。一系列微型到遠程的無人機現在正被各種軍隊用于監視。通過武裝UCAVs和游蕩彈藥,半自動的精確瞄準也是可行的。配備有合適的傳感器和攝像機的地面機器人可以執行不同的任務,移動機器人可以遠程操作進行偵察巡邏,并將視頻和圖像傳回給操作員。機器人實際上可以充當巡邏隊中領先的先遣偵察員的伙伴。配置一個機器人以登上和降低山地高度和障礙物是一個挑戰,可以通過改變設計使其更加靈活、堅固和使用更多的動力來克服。該系統必須被設計成既能克服樓梯等規則形狀的障礙物,又能克服巖石、倒下的樹木和其他雜物等不特定形狀的障礙物。"設計基準是能夠走上45度傾斜的平坦表面或不規則的障礙。有時要求高達50度或更陡峭"。
在被雪覆蓋的山區進行搜索和救援是另一個應用,軍隊中使用的機器人可以在拯救生命方面發揮關鍵作用。大多數傷亡是由于延遲向受害者提供必要的援助而發生的。許多國家正在大力投資,以最大限度地縮短反應時間,以挽救最大數量的生命。它們可以由士兵從一個指揮中心遠程操作。在某些情況下,它們甚至可以自主地工作。美國的Vecna技術公司正在開發戰場提取輔助機器人(BEAR),它可以從戰場上營救士兵而不危及人的生命。
印度軍隊在從連隊到更高的總部和彈藥到后勤基地的許多基地/地點駐扎。在這些邊境地區的安全和防御是一個挑戰,可以有效地開發機器人來保護這些基地的安全。美國已經開發了機器人狗,它是一種靈活的移動機器人,以前所未有的機動性瀏覽地形,使你能夠自動完成常規檢查任務和安全地捕獲數據,該系統已經部署在美國的各個基地。
沙漠/半沙漠地帶的行動通常以機動性為特點。機動性是贏得戰斗的一個決定性因素。UGVs在機械化戰爭中帶來了一場革命,提供了相應的機動性。半自動的UGVs可以幫助偵察部隊實現對局勢的了解,就像眼睛和耳朵一樣。除了可以在UGVs中內置大量的傳感器外,它們還可以發射無人機作為天空中的眼睛,也可以作為無線電通信的中繼。對己方和敵方機械化編隊的實時地理定位、圖像、坦克、物體的自主識別可以證明是一個游戲規則的改變者。需要開發一個UGV和半自主坦克的組合,它可以在進攻戰中穿透敵人的蓄意防御,通過建立一個機器人射擊陣地系統來支持戰術編隊的防御行動,為前進的單位和分隊提供火力掩護,并壓制敵人的武器系統。還可以開發機器人用于炮兵偵察和為地基火炮的發射提供服務。可以利用UGV進行工兵偵察、布雷、掃雷、在雷區和其他障礙物中清理出一條通道并支持其談判。他們還可以在敵人的火力影響區布置煙幕。最后,UGV可以在后勤方面發揮重要作用,作為移動后勤縱隊的一部分,還可以協助傷員撤離。
機器人在全球反恐戰爭中發揮了重要作用,它們被用來探測和消除可能爆炸的可疑物體。機器人可以在近距離戰斗中充當領頭的偵察兵或進入者,它們不僅可以探測到威脅,還可以在最初的炮擊中首當其沖,然后將恐怖分子消滅。它們可以作為士兵的伙伴,在城市戰斗中發揮作用。偵察機器人也被稱為 "投擲機器人",是 "小而輕的機器人,足夠堅固,可以通過窗戶或門縫投擲。該機器人配備了一個攝像頭,可以在不派人的情況下看到建筑物內的情況"。這些低端機器人可以很容易地被開發出來,以便在建筑物/房間干預之前立即了解情況。反簡易爆炸裝置機器人可用于識別和拆除封閉區域、建筑物、道路和車輛中的簡易爆炸裝置和其他危險物品。它們需要被整合到炸彈探測系統中。根據反簡易爆炸裝置的任務,它們可以攜帶各種有效載荷。
印度的軍事技術發展系統以一種孤立的方式進行。這是能力發展的垂直領域內不信任的一個因素。這一挑戰需要得到解決。
根據分配的任務為前線部隊配備模塊化設備是一個挑戰。這些系統應該是多功能的、可互操作的,并且有能力整合到武裝部隊現有的和先進的結構中。
為系統開發綜合網絡,使其在各個層面上運行是另一個重大挑戰。
邊界沿線不同的地形和天氣條件要求不同的電力需求和高效的傳輸系統,以獲得更高的速度、靈活性、準確性、耐久性和堅固性。
與移動機器人平臺之間傳輸的數據,特別是視頻,其安全性至關重要,需要采取足夠的措施來建立安全的網絡和加密,并采取強有力的ECCM措施。
印度陸軍的機器人系統需要圍繞七個主要技術/原則進行開發:算法、數據、軟件程序、綜合網絡、軍民合作、綜合研究與開發和強大的制造。
這些技術需要在一個屋檐下以綜合方法開發,作為政府的整體方法。
正如本文所建議的那樣,原型開發應該以部門(地形)為基礎,口號應該是小規模開始,快速測試和大規模。
研究和開發的預算應該是專用的和長期的,目的是針對中小微企業和私營企業。如果一個公司/行業的研究沒有資金,而且對產品沒有確定的需求,那么它就不會投資于技術。隧道的盡頭必須有光,才能讓印度的年輕人的思想繁榮起來。
人工智能和機器人不再是小說或基于科幻的好萊塢電影的單純想象,它們現在是一個現實。勇敢的、英勇的血肉之軀的士兵需要與智能材料和更聰明的非人類士兵合作,他們不關心獎章、徽章或在調度中的提及。發達國家正在開發這種技術,它正在改變戰爭的特征。印度IT行業擁有巨大的領域知識,并被印度和國外的民用產業在多個領域利用。這種人才需要被利用來開發這種技術以促進國家安全。這項技術的發展對于提高印度軍隊的能力至關重要,需要采取措施來建設這些能力。
軍方正在開發自主機器人以執行偵察和監視等任務。其中一些機器人打算以群組形式運作。由于目前還沒有可操作的機器人群,理論開發者最初將使用建設性的實體級戰斗模型來開發和測試機器人群的戰術。實驗設計方法和1991年美軍和伊拉克軍隊之間的東興73號戰役的回顧被用來校準一個半自動兵力系統。然后,校準后的作戰模型被用來估計在該戰役中進行偵察和監視的名義上的伊拉克機器人群的戰術影響。校準確保了模型的參數是準確的,從而能夠可靠地估計機器人群的戰術影響。此外,實驗設計方法對機器人群的效果與戰斗人員的武器系統技術的相互作用進行了估計。模擬試驗和統計分析表明,伊拉克機器人群的戰術優勢被美軍的熱成像儀所提供的優勢掩蓋了。然而,額外的試驗表明,如果雙方都只裝備了光學瞄準器,機器人群向伊拉克部隊提供的早期預警可能對戰斗的結果產生重大影響。
圖1. 示例:VR-Forces的SAF系統操作界面。(圖片由MAK Technologies提供。)
隨著世界進入另一個大國競爭時期,自主性、人工智能和蜂群等屬性作為軍事技術和理論的未來被大眾媒體越來越多地提及。正在研究的自主性、人工智能和蜂群的一個應用是使用機器人群進行偵察和監視,以提高軍事部隊的態勢感知。2017年3月公布的美國陸軍機器人和自主系統(RAS)戰略是陸軍的公開聲明,說明陸軍打算如何在現有的機器人能力基礎上,"在將地面和空中RAS能力整合到陸軍組織方面實現統一的努力"。利用無人地面系統(UGS)和無人飛機系統(UAS)提高態勢感知是RAS的五個能力目標之一。
在未來的軍事行動中使用機器人群,需要制定與軍事部隊的理論、訓練和裝備的能力和限制相結合的機器人群戰術。戰術是實體層面的行為或行動的學說或程序,旨在實現任務的成功。目前還沒有軍事機器人群的作戰實例,無法在實際環境中制定這種戰術,也沒有軍事機器人群的歷史實例。因此,最初將使用建模和模擬來開發和測試這種戰術。6這樣做就需要模型不僅準確地代表機器人群的能力,而且還代表人類戰斗人員、武器系統和參戰部隊采用的戰術。
在這項研究中,一個半自動兵力(SAF)系統被用來估計機器人群的潛在戰術影響。明確地說,這項研究的目標不是如何設計蜂群機器人以達到某種水平,而是估計在某種水平上執行的機器人蜂群可能對戰斗產生什么影響。因此,模擬的機器人群被假定為具有某些合理的、甚至是適度的能力,而不考慮這些能力可能如何實現。
第一項任務是將SAF系統中的車輛和武器系統的相關參數,如裝甲保護、傳感器能力和武器精度,校準為現實的數值。校準是一個反復的過程,執行模擬模型,將其結果與描述模型系統的數據進行比較,并調整模型以提高其準確性。在這項研究中,SAF系統或模型是通過追溯預測或 "追溯 "來校準的,這種方法包括模擬一場歷史戰役并將模擬結果與戰役的歷史結果進行比較。在1991年海灣戰爭期間,美國和伊拉克的地面部隊之間發生了有據可查的73 Easting戰役,該戰役被用于校準。實際戰斗的結果是出乎意料的,而且是明顯的一邊倒,這就要求校準時考慮到美國和伊拉克軍隊在武器技術、戰術運用和部隊訓練方面的重大差異。
正式的實驗設計(DOE)方法被用來構造模型的校準。六個因素被確定為可能影響模擬戰斗的結果,每個因素被設定為兩個水平。一個全因子實驗設計,每個水平組合有兩個重復,需要128次模擬戰斗的試驗。在這六個因素中,DOE的統計分析確定了其中三個因素,即美國對熱瞄準器的使用、M1A1坦克的裝甲保護以及伊拉克軍隊占領其車輛和準備戰斗的延遲,是對戰斗結果最突出的影響。
如果使用機器人群來提供足夠的早期預警,那么延遲占領伊拉克車輛及其對戰斗結果的影響可能是可以避免的。另外還進行了120次實驗,以估計伊拉克部隊使用機器人群可能對結果產生的影響。在兩個因素的四個組合中,每個組合都進行了30次試驗。美軍采用或不采用熱傳感器,伊拉克軍隊采用或不采用無人機群進行預警。由于戰斗時天氣狀況不佳,使用熱敏瞄準器使美軍能夠在視覺范圍之外800米處觀察伊拉克人,而伊拉克人只有光學瞄準器可用。使用熱成像儀否定了蜂群可能提供的任何預警優勢。然而,在雙方部隊都只有光學傳感器的試驗中,使用蜂群機器人提供預警使美國戰車的損失平均增加了4.8輛。結果表明,使用機器人群的有效性與現有的不同軍事技術有著強烈的互動。
本文的結構如下。在這段介紹之后,第2節提供了關于本研究主要課題的背景信息。第3節解釋了如何應用實驗設計方法來校準一個SAF系統。第4節詳細介紹了校準的輸出和分析。第5節報告了使用校準后的SAF系統來模擬和估計機器人群的戰術效果的結果。第6節陳述了研究的結論,并描述了未來可能的相關工作。
近年來,各國軍隊加強了整合無人駕駛技術的工作,以提高有人駕駛-無人駕駛團隊(MUM-T)的能力。由于一些國家的戰斗年齡人口正在減少,軍隊正在轉向容易獲得的、具有成本效益的和復雜的無人駕駛技術。MUM-T擁有巨大的潛力,不僅可以緩解軍隊的人力短缺,還可以提高作戰能力。這篇論文研究了MUM-T在前線的有效性,具體到步兵小組支持城市地形的進攻行動。一個基于智能體的仿真被用來模擬有無無人駕駛地面車輛(UGV)支持一個步兵連MUM-T作戰行動。對超過76,800次的模擬戰斗進行了分析。據觀察,MUM-T概念可以極大地提高戰斗力,通過增加敵人的傷亡來評估。還觀察到UGV的重裝時間、武器精度和自身的力量結構對步兵的殺傷力和生存能力有很大影響。這項分析的結論是,在小單位戰術層面實施MUM-T對提高整體作戰性能有很大潛力。?未來,作戰模型可以被整合到未來的軍事演習中,這樣就可以對模擬的結果進行驗證和確認。
美國軍隊繼續在日益復雜的安全環境中作戰,不能再期望在每個領域都有無爭議的或主導性的優勢。由特種作戰部隊(SOF)操作的飛機需要改進防御能力,以支持在非許可環境下的任務。將自動化和人機協作納入現有的防御能力,可以減少威脅的反應時間,提高有人和無人飛機配置的防御機動的有效性。這篇論文研究了作為威脅反應一部分的飛機機動的價值,以確定人類干預對時間和準確性產生負面影響的情況。它還考慮了復制Merlin實驗室的飛行自動化方法和將能夠進行防御性機動的機器訓練系統納入現有飛機的機會。分析表明,飛機的機動性對于有效的威脅反應至關重要,自動選擇操作者的行動可以提高對某些地對空威脅的生存能力。這篇論文建議重新關注特種部隊飛機的防御能力,并贊同將機載自主系統整合到傳統的載人平臺上,以提高防御性威脅反應。它還主張繼續研究在SOF任務中使用可選的載人飛機,以完善其操作效用,并在各種任務平臺上擴大能力。
美國軍隊繼續在日益復雜的安全環境中運作,不能再期望在每個領域都有無爭議的或主導性的優勢。由于地對空威脅已經擴散到在世界各地活動的敵對行為者,未來的作戰環境將以有爭議的空域為特征,這將對有人和無人駕駛飛機的操作構成挑戰。由特種作戰部隊(SOF)操作的飛機需要改進防御能力,以便在這些有爭議的地區進行機動,同時支持傳統SOF任務。這篇論文研究了商業能力的進步,以減少威脅的反應時間,提高有人和無人駕駛飛機配置的防御性機動的有效性。
通過與位于波士頓的飛行自動化初創公司Merlin實驗室合作,本分析探討了防御性機動的潛在自動化。飛機機動是對威脅作出有效反應的一個關鍵方面,自動選擇操作者的行動可以提高對某些地對空威脅的生存能力。通過確定AC-130J威脅反應中人為干預影響飛機操縱時機和準確性的步驟,這項分析揭示了復制梅林實驗室的飛行自動化方法和將能夠執行防御性操縱的機器訓練系統納入現有飛機的機會。
在威脅反應過程中確定的關鍵步驟包括威脅指示、威脅作戰識別和威脅反應配對。目前,機組人員手動執行這些步驟來完成防御性威脅機動。然而,這些步驟中的每一個都可以從自動化和人機協作中受益,通過三種明顯的方式提高整體性能。首先,生成簡化的視覺和聽覺威脅指示,確保及時通知威脅的存在。其次,自動識別過程以準確識別威脅的變體,減少了反應時間和人類識別錯誤的可能性。最后,將威脅識別與適當的飛機反應同步配對,減少了不必要的延誤,并提高了威脅操縱的準確性。
這篇論文建議重新關注SOF飛機的防御能力,并贊同將機載自主系統整合到傳統的載人平臺上,以改善防御性威脅反應。將人機協作和自主能力納入飛機防御系統,可以使防御機動性能優于傳統系統,并允許在更廣泛的環境中作戰。除了改善防御性機動,梅林實驗室的自動飛行甲板在各種不同的飛機和任務中提供了潛在的用途。繼續研究應該調查在SOF任務中使用可選擇的載人飛機,以完善其操作效用,并在各種任務平臺上擴大能力。最后,在整個特種部隊中采用梅林系統將顛覆既定的操作慣例,需要個人和組織行為的改變。為了緩解過渡期并提高采用率,AFSOC應采取步驟,盡量減少利益相關者的行為變化,同時最大限度地提高系統的操作效益。培養對人工智能、機器學習和自動化的理解,將使這些行為者為軍事技術的快速變化和戰爭特征的變化做好準備。
圖 9. AC-130 防御性威脅反應圖。
野外火災對國土安全構成直接威脅,因為它們造成嚴重的個人、經濟和社會壓力。隨著無人駕駛飛行器(UAV)蜂群的使用越來越普遍,它們很可能作為一線消防航空資產,提高空中滅火飛行的操作速度,從而提高消防員的安全。這篇論文探討了使用無人機蜂群作為火災撲救方法的概念,在一個現實的火災場景中,將理論上的無人機蜂群與傳統的航空資產進行比較,然后使用系統工程方法來定義在林野空間實施無人機蜂群的壓力點。這項研究的結果支持無人機蜂群的繼續發展,并明確界定了在實施大規模無人機蜂群飛行之前必須解決的領域。滅火無人機蜂群系統顯示出巨大的前景,因為它具有相對的便攜性,并且能夠為無法隨時獲得傳統滅火飛機的地區提供空中滅火選擇。然而,在實施之前,解決無人機蜂群系統的后勤和通信限制,將是至關重要的。
野外火災對美國國土安全構成了明顯的威脅,因為它影響了自然資源,降低了以森林產品工業為生的人們的經濟穩定性,造成了財產和房屋的損失,并可能造成生命損失。認真對待野地火災的威脅,并尋求實施增加安全和保障的技術進步是至關重要的。荒地消防戰術的下一個重大進展可能是使用成群的無人駕駛飛行器(UAVs)對荒地火災進行火力攻擊。
隨著全球變暖和火季延長的趨勢,促進荒地消防領域的創新至關重要,以確保消防部隊的最大影響,同時提高消防員的安全。在一項回顧性研究中,巴特勒發現,從2000年到2013年,有78名野外消防員的死亡,即26.2%,與航空有關。國家機構間消防中心報告說,在過去10年中,"每年平均有62,693場野火,每年平均有750萬英畝受到影響。"國家消防局估計,現在每年用于撲滅野火的費用為16億美元。盡管有所有這些事實,這些年用于撲滅這些火災的資源基本上保持不變。由于野外火災的威脅使公民面臨財產損失、高額的撲滅費用和潛在的生命損失,目前有必要探索基于無人機的火災撲滅。無人機群可能比目前的航空資產更有效地執行空中滅火的關鍵任務。
無人機蜂群是在特定參數下部署的半自主的航空器群,以完成一項任務。這些飛機在發射和回收時得到人類控制器的協助,但隨后被允許在特定參數下完成任務。無人機蜂群可以被證明是快速部署的空中資產,可以在地面部隊到達之前找到并壓制火勢。利用無人機群進行滅火行動可以提高消防員和公眾的安全,使火勢保持小規模和可控,提供早期探測和撲滅野地火災,并釋放傳統的航空資產以部署到關鍵的火場。
使用傳統的固定翼和旋轉翼飛機來撲滅火災有其局限性,即飛機無法在濃煙條件下、天氣事件和黑暗的夜晚飛行。在不受控制的環境中,在靠近活躍的野地火災時駕駛飛機,不允許有任何誤差,其結果可能是災難性的。由于無人機和無人機群有能力在夜間和許多有機組人員的飛機無法做到的條件下飛行,因此利用無人機和無人機群可以實現更高的操作速度。致力于使用無人機群進行空中滅火可能會減少消防員因空中事故而死亡的人數,同時使火勢更小、更容易控制。
這篇論文旨在回答這樣一個問題:新興的無人機群技術如何在野外環境中作為一種火災攻擊方法來實施。研究設計采用了一種三管齊下的方法。首先是概念驗證法,通過參與先進機器人系統工程實驗室(ARSENL)和海軍研究生院的機器人和無人系統教育與研究集團的實際無人機群飛行任務來促進。在測試過程中,我們飛行了多種類型的無人機群,并將無人駕駛的地面車輛整合到群中。實際測試表明了在荒地部署無人機群的可行性,并強調了在全面部署前必須解決的問題。
第二種方法是對50架無人機群和傳統的單引擎空中加油機(SEAT)進行比較分析,攻擊理論上的火災。該分析允許對無人機群和傳統飛機在特定時間內攻擊火災進行比較。衡量標準包括投放的滅火劑數量和每種資產的預計運營成本。這些信息被用來完成無人機群和傳統飛機之間的成本比較。最后,Innoslate 4(V 4.5.1.0)基于模型的系統工程軟件和建模系統被用來模擬無人機群和空中加油機的飛行方案,使用準確的飛行、加油和重新裝載周期時間。這些飛行方案允許(a)確定實施的壓力點,(b)了解無人機群和SEAT飛機的限制和好處,以及(c)確定無人機群操作和確保成功任務所需的地面支持人員之間的關鍵關系。
作為這項研究的結果,我們相信無人機群可以對野外環境中的空中滅火做出重要貢獻。無人機群因其相對的便攜性和對防火區有限的進入障礙而顯示出巨大的前景。雖然50架無人機群對每個森林保護區來說可能并不可行,但即使有幾架滅火無人機,在地面部隊可以攻擊它們之前,也可以控制低至中強度的火災。然而,在這之前,必須解決許多壓力點,以全面實施基于無人機群的火災撲救。其中一些問題包括制定和實施明確的無人機群飛行政策和程序,審查聯邦航空管理局關于無人機群行動的現行規則,制定支持無人機群行動的后勤最佳做法,并確保積極的通信聯系以保證對無人機群的完全控制。最后,如果美國接受了將無人機群用于野外消防和其他商業行動的概念,那么支持無人機和無人機群的基礎設施以及專注于建造、編程和操作的無人機具體教育就至關重要。
在野外環境中使用無人機群的概念對于提高消防行動的安全性和生產力有明確的價值。雖然有一些障礙需要克服,但未來的野外消防工作將大量涉及無人機群。預計多個運營商將尋求進入無人機群建設和運營的最前沿,這既是一個商業機會,也是一個協助解決日益嚴重的野外火災問題的機會。雖然無人機滅火不太可能很快取代傳統的空中滅火,但使用無人機群作為另一種空中滅火工具的能力,特別是在傳統飛機不飛行的夜間,應該為火災管理人員提供另一種快速和更安全地緩解火災的手段。
荒地消防戰術的下一個重大進展可能是使用無人駕駛飛行器(UAVs)群,在荒地火災失去控制之前對其進行火力攻擊。蜂群是在特定參數下部署的無人機自主團隊,以完成一項任務。無人機群被允許在任務參數范圍內做出自主和合作的決定,同時由一個操作員進行監督控制。這種能力與目前的無人機操作形成對比,后者需要每架飛機都有一個飛行員。利用無人機群進行滅火行動有可能提高消防員和公眾的安全,提供早期探測和撲滅野地火災,并釋放傳統的航空資產以部署到關鍵的火災。
野地火災對美國國土安全構成了明顯的威脅,因為它影響了自然資源,降低了以森林產品工業為生的人們的經濟穩定性,造成了財產和房屋的損失,并可能造成生命損失。大規模的野地火災所代表的危險是如此嚴重,以至于火災管理人員必須嘗試使用所有可用的戰術來抑制它們,包括直接和間接的火災攻擊方法。這些技術需要將消防員置于危險之中,以減緩或阻止火災的發展。2010年至2019年期間,134名消防員在撲滅野地火災時因公殉職。"國家機構間消防中心 "報告說,在過去10年中,"平均每年有62693場野火,平均每年有750萬英畝受到影響。 "然而,這些年來,對抗這些火災的資源可用性保持不變。隨著全球變暖和火季延長的趨勢,促進野地消防領域的創新至關重要,以確保消防部隊的最大影響,同時提高消防員的安全。
使用單個無人機來協助收集野地火災的情報的概念是熟悉的領域。對于大多數大型野地火災,單個無人機可用于觀察火災的位置和運動,或監測已逃離控制線的火災。無人機產生的情報成為火災預測和即將到來的行動期的行動規劃的一個關鍵因素。然而,無人機還沒有被部署用于直接滅火活動,也沒有在野地火災中部署無人機群。蜂群技術正處于起步階段,需要更多的開發才能成為應用于滅火行動的可行選擇。
術語 "無人機群 "是指由一個控制器操作的多個無人機。受控蜂群是為特定任務編程的無人機團隊,由一個控制器操作。半自主的蜂群是一個由控制器協助發射和回收的無人機團隊。半自主蜂群有特定的任務參數,據此它可以識別任務,決定哪些成員將完成任務,完成任務,并恢復到基站,同時在成員之間進行分工以確保成功完成。
由于必須在火場上放置大量的水或阻燃劑的滅火有效載荷,使用單個無人機進行直接滅火攻擊的概念既沒有被大力探索,也沒有被研究。然而,隨著無人機群技術的潛力,允許在站點上放置許多較小的有效載荷,以及攜帶多達100磅的重型無人機系統的進步,許多無人機群可能會有效地壓制火災。使用無人機群而不是傳統的飛機,可能是野火撲滅的下一個巨大進步。執行這項工作的技術正在開發中,然而,目前它既不實用,也無法擴展。
野地火災必須作為國土安全問題用廣角鏡頭來看待。許多行動方案可以同時進行,以減少野地火災的頻率、嚴重程度和強度。有必要不把一個解決方案作為解決野地火災問題的萬能藥,而是擁抱創新和技術,以應對減少這些破壞性火災的挑戰。
由于大火對經濟、社會和情感的影響極大,野地火災直接威脅到美國的國土安全。撲滅這些火災的成本在貨幣支出和人力成本方面繼續增加,包括消防員和死于野地火災的市民的生命。國家消防局估計,現在每年用于撲滅野地火災的費用為16億美元。歷史上,有一個指定的 "火災季節";然而,損失巨大的野地火災發生在一年中的所有月份,導致西部一些州放棄火災季節的概念。
由于野地火災繼續給消防員和生活在城市-野地交界處的人們帶來挑戰,探索更有效和更具成本效益的方法來對抗這些破壞性的火災變得至關重要。人們無法逃避的事實是,全球變暖正在改變森林的易燃性,使其更容易燃燒。這些煤渣干燥的條件造成了由于火勢發展速度太快而導致多人喪生的情況。一個明顯的例子是2018年加利福尼亞州的營地大火,85人喪生,18,804座建筑被燒毀,主要是在火災發生的前五個小時。一個更近的例子是2021年12月30日科羅拉多州丹佛市外的馬歇爾大火,在短短幾個小時內,有兩人喪生,991座建筑被燒毀。這場大火是由干燥的條件和超過每小時90英里的風助長的。加劇這些火災的事實是,在人員、飛機和雇用額外援助的資金方面,打擊這些火災的資源有限。資源的稀缺已經成為一個重要的問題,特別是在火災季節的中心地帶,多個火災正在燃燒并迅速擴大。在過去的幾個火災季節,有的時候根本沒有足夠的資源投入到消防工作中。當這種情況發生時,火災管理人員必須做出艱難的決定,注銷有時數千英畝的土地或數百個房屋。
以前被認為是史無前例的火災和火災行為,現在似乎已經成為每年夏天的常態。全球變暖極大地影響了荒地環境,創造了更熱和更干燥的氣候,使火災持續增長。目前和遺留的關于在何處、如何以及何時滅火的政策增加了美國森林的燃料負荷。森林管理政策需要幾十年才能趕上美國森林目前的燃料負荷。全球變暖和氣候變化倡議可能需要幾十年才能對森林產生積極的影響。根據保險信息協會的數據,2020年美國大約有1010萬英畝的土地被燒毀,美國處于野火高風險或極端風險的房屋共有450萬。
必須承認全球變暖和氣候變化對野外環境的負面影響。全球變暖對森林最重要的影響是干旱和更高的日平均溫度。這些較高的溫度對植被有兩個重大影響。第一是創造較低的長期燃料濕潤度(從燃料中帶走水分)。第二,在環境中造成蒸汽壓力不足(帶走空氣中的水分),使植被更容易著火。11 燃料越干燥,受熱時越容易著火。這兩種氣候變化影響共同作用,使燃料干燥,然后保持干燥。
全球變暖的第二個影響是氣候變化促成的不穩定的天氣模式,在雨季帶來大量的雨水,在夏季帶來更熱和更干燥的條件。雨水在春季促進了輕型植被的生長,增加了總體燃料負荷。當更熱、更干燥的夏季到來時,新生長的植被很容易干燥。這些植被現在已經 "固化",并準備好攜帶火種,特別是當暴露在風中時。如果該季節的植被沒有燃燒,那么下一個火災季節的燃料量就會增加。全球變暖影響的天氣模式對野地火災產生了指數級的影響,首先是增加了燃料負荷,然后是嚴重干燥的地區,使其更容易發生火災。森林管理政策允許嚴重的灌木叢積累,在森林環境中創造了促進火災更熱、更快、更強烈的條件。
能否準確地界定什么是導致全球變暖和氣候變化對野地火災的具體影響,在未來幾年將繼續吸引公眾的關注。全球變暖的影響每年都隨著美國西部和全球其他地區的大型野火燃燒而顯示出來。這些大火將要求消防管理人員接受有可能限制未來大火增長的技術和政策。莫里茨指出,國家對野火在全球變暖中的作用的理解正在改變。他說,在2003年至2007年期間,在大型野地火災期間,通常問的問題是 "這里該怪誰?" 相反,現在問的問題是:"這些火災是由于氣候變化造成的嗎?"也許認識到野火是全球變暖的一個極端結果將影響到對全球氣候變化產生積極影響的政策。
隨著野地火災的威脅使公民面臨潛在的生命損失,高額的貨幣成本,以及無人機研究的其他領域的新興潛力,探索基于無人機的火災撲滅,在這個時候是有必要的。了解飛機在撲滅野地火災中的作用是至關重要的。使用消防直升機和固定翼飛機已經成為當前整體滅火計劃的一個組成部分,特別是在大型快速移動的野地火災中。一般來說,消防管理人員利用飛機的速度和能力,在火勢擴大為重大火災之前迅速撲滅。很少,如果有的話,飛機能夠完全壓制火災。最終需要地面上的消防員來完全控制野地火災。從本質上講,飛機是用來 "爭取時間",以便獲得和部署其他消防力量。
然而,使用飛機是一種極其昂貴的救火方法。美國林務局(USFS)按類型和能力確定了飛機的合同費率。在2018年至2021年的合同期內,1型直升機(動力最強,能夠投下最多的水)的合同費率在每飛行小時4000美元至8000美元之間,這取決于飛機類型。固定翼飛機投放緩釋劑的成本可能在每飛行小時7100美元至13500美元之間,不包括緩釋劑成本。美國聯邦調查局在2018年 "約6.07億美元的合同飛機,"包括旋翼和固定翼飛機。在預算緊張的時代,人們必須考慮使用飛機滅火的成本效益。如果使用無人機滅火可以證明成本較低,而且與傳統航空資產一樣有效,甚至比傳統航空資產更有效,那么就應該深入探索無人機的使用。
使用固定翼和旋轉翼飛機來撲滅火災有其局限性,即飛機不能在濃煙條件下飛行,天氣事件,夜晚的黑暗,飛行員飛行時間的限制,能夠駕駛這些飛機的人有限且專業,以及在需要維修時無法進入飛機。在不受控制的環境中,在靠近活躍的野地火災時駕駛飛機,不允許有任何誤差,其結果可能是災難性的。大量的消防員在從事滅火行動時因飛機事故而死亡。在一項回顧性研究中,巴特勒、奧康納和林肯發現,從2000年到2013年,有78名野地消防員的死亡與航空有關,占26.2%。19在這種情況下,高度熟練的消防員和飛行員喪生,他們駕駛的機體通常被摧毀。雖然消防管理人員試圖將消防員和機組人員的風險降至最低,但不幸的是,將男女人員置于危險境地以減緩或阻止野地火災,仍然是一種有效的策略。
在未來幾年,無人機和無人機群可能會取代載人航空資產進行火情識別和直接滅火。由于無人機和無人機群有能力在夜間和多種條件下飛行,而有機組人員的飛機卻不能,因此利用無人機和無人機群可以實現更高的操作速度。此外,無人機理論上可以飛行整整24小時,只受制于所需的維護、飛行員的休息要求,以及嚴重到不允許飛行的火災條件。致力于無人機和無人機群可能會減少消防員因空中事故而死亡的人數,并使火災更小、更容易控制。
如何將新興的無人機群技術作為野外環境中的一種火災攻擊方法來實施?
本論文探討了無人機群如何成為直接滅火行動的一種新方法,即抑制或延緩火勢發展到初期階段,使常規消防部隊有時間在火勢發展到重大荒地火災之前到達、控制和壓制火勢。通過與先進機器人系統工程實驗室(ARSENL)和海軍研究生院的機器人和無人系統教育與研究小組一起參與實際的無人機群飛行任務,使用了概念驗證方法。這些飛行為情景研究的有效性提供了依據,這些研究用于開發在荒地環境中實際應用的任務。實際測試告知了部署的可能性,并強調了全面部署前必須解決的問題。此外,我們分析了商業無人機群用戶的當前利用模式,以確定他們的應用與他們可能融入荒地消防行動的關系。
為了說明無人機群直接攻擊火災的潛在價值,本論文利用俄勒岡州西部的蒂拉穆克州森林的一場理論火災。使用50架無人機群和一架單引擎固定翼空中加油機對火災進行 "攻擊"。單引擎空中加油機(SEAT)是傳統上用來攻擊火災的常規飛機。對無人機群和傳統的SEAT飛機攻擊這場火災進行了比較分析。符合國防部建筑框架的系統工程建模軟件Innoslate 4(V 4.5.1.0)被用來模擬無人機群和空中加油機的飛行方案,使用準確的飛行、加油和重新裝載周期時間。為了進行比較,飛行受制于SEAT的一個正常燃料循環。通過對兩種資源所提供的總的消防產品和每加侖的比較成本,對火災攻擊方法進行了比較。這些信息導致了關于使用無人機群作為消防資產的可行性的結論,這些無人機群可以代替傳統的空中消防設備,也可以作為輔助設備。最后,對目前的空中野地滅火方法進行了定量分析,明確地側重于使用常規固定翼飛機與蜂群技術對付理論火災的成本。通過比較分析和實際測試,建立了一個理論部署模型,解決了利益相關者的擔憂和作為商業運作的無人機群行動的潛力。
檢驗利用無人機群進行野外滅火的可行性。
確定如何將無人機群應用于荒地消防工作。
識別目前特定于軍事的無人機群應用,這些應用可以適用于荒地消防。
這篇論文在很大程度上受到了城市-荒地交界處的消防員個人經驗的影響。第一章討論了這項研究的動機和它的關鍵性。野地消防是一個高度專業化的領域,帶來了自己的語言和行話,所以第二章定義了關于野地消防的背景信息,并介紹了與理解本論文有關的術語。第三章涉及與論文主題和研究問題相關的學術文獻。在第四章中,對比較分析的方法進行了描述和解釋。由于對蜂群技術的研究有限,第四章劃定了分析中的假設和限制。它還主要依靠Innoslate 4系統工程軟件來圖解滅火的過程。本章最后介紹了我們的實驗和建模的結果。第五章討論了傳統的固定翼空中加油機和50架無人機組成的蜂群飛行之間的比較分析結果。從這個比較分析中,設計出了對未來無人機群實施的建議。第六章回顧了這些結論,并建議進行后續研究,以進一步發展無人機群在野外環境中的使用課題。該研究應加強使用無人機群進行直接火力攻擊的可行性。雖然這項技術和研究的實際應用可能要在未來幾年才能實現,但這些發現應該為未來的研究人員提供一個起點。
兵棋模擬是一種決策工具,可以為利益相關者分析的場景提供定量數據。它們被廣泛用于制定軍事方面的戰術和理論。最近,無人駕駛飛行器(UAVs)已經成為這些模擬中的一個相關元素,因為它們在當代沖突、監視任務以及搜索和救援任務中發揮了突出的作用。例如,容許戰術編隊中的飛機損失,有利于一個中隊在特定戰斗場景中勝利。考慮到無人機的分布可能是這種情況下的決定性因素,無人機在超視距(BVR)作戰中的位置優化在文獻中引起了關注。這項工作旨在考慮敵人的不確定性,如射擊距離和位置,使用六種元啟發法和高保真模擬器來優化無人機的戰術編隊。為紅軍蜂群選擇了一種空軍經常采用的戰術編隊,稱為line abreast,作為案例研究。優化的目的是獲得一個藍軍蜂群戰術編隊,以贏得對紅軍蜂群的BVR戰斗。采用了一個確認優化的穩健性程序,將紅軍蜂群的每個無人機的位置從其初始配置上改變到8公里,并使用兵棋方法。進行了戰術分析以確認優化中發現的編隊是否適用。
索引詞:優化方法,計算機模擬,無人駕駛飛行器(UAV),自主智能體,決策支持系統,計算智能。
兵棋是在戰術、作戰或戰略層面上模擬戰爭的分析性游戲,用于分析作戰概念,訓練和準備指揮官和下屬,探索情景,并評估規劃如何影響結果。這些模擬對于制定戰術、戰略和理論解決方案非常有用,為參與者提供了對決策過程和壓力管理的洞察力[1]。
最近,無人駕駛飛行器(UAVs)作為一種新的高科技力量出現了。利用它們來實現空中優勢可能會導致深刻的軍事變革[2]。因此,它們的有效性經常在兵棋中被測試和評估。
由于具有一些性能上的優勢,如增加敏捷性、增加過載耐久性和增加隱身能力,無人機已經逐漸發展起來,并在許多空中任務中取代了有人系統[3]。然而,由于戰斗的動態性質,在視覺范圍之外的空戰中用無人系統取代有人平臺是具有挑戰性的。在空戰中,無人機可以被遠程控制,但由于無人機飛行員對形勢的認識有限,它將在與有人平臺的對抗中處于劣勢。然而,這種限制可以通過自動戰斗機動[4]和戰術編隊的優化來克服。此外,使用無人機可以允許一些戰術編隊和戰略,而這些戰術編隊和戰略在有人駕駛的飛機上是不會被考慮的,例如允許中隊的飛機被擊落,如果它有助于團隊贏得戰斗。文獻中最早的一篇旨在優化超視距(BVR)作戰中的飛機戰術編隊的文章[5]表明,空戰戰術是用遺傳算法(GA)進行優化的候選方案。該實施方案采用分層概念,從小型常規作戰單位建立大型編隊戰術,并從兩架飛機的編隊開始,然后是四架飛機,最后是這些飛機的倍數。在模擬中沒有對導彈發射進行建模。當一架飛機將其對手置于武器交戰區(WEZ)的高殺傷概率(Pkill)區域內一段特定時間,簡化的交戰模擬器就宣布傷亡。事實證明,所提出的方法的應用是有效的,它消除了團隊中所有沒有優化編隊的飛機,并為整個優化編隊的飛機團隊提供了生存空間。
Keshi等人[6]使用了與[5]相同的分層概念,從由兩架飛機組成的元素中構建大型戰術編隊。模擬退火遺傳算法(SAGA)被用來優化編隊,使其能夠克服對局部最優解的收斂。對16架飛機的編隊進行了優化,提出的最優解表明SAGA比基本的GA更有效。最后,為了探索一個穩健的SAGA,對不同的馬爾科夫鏈進行了比較,事實證明自調整馬爾科夫電流更適合所提出的問題。
Junior等人[7]提出使用計算機模擬作為一種解決方案,以確定BVR空戰的最佳戰術,使擊落敵機的概率最大化。在低分辨率下使用通用參數對飛機和導彈進行建模,并改編了名為COMPASS的模擬優化算法,模擬了兩架飛機對一架飛機的BVR戰斗。低分辨率模型假定在水平面的二維空間內有一個均勻的直線運動。使用優化的戰術表明,擊落敵機的平均成功率從16.69%提高到76.85%。 Yang等人[8]提出了一種方法來優化飛機對一組目標的最佳攻擊位置和最佳路徑。該工作考慮到飛機能夠同時為每個目標發射導彈,并將飛機與目標有關的攻擊性和脆弱性因素作為評價攻擊位置的指標。一個高保真模擬被用來模擬每個導彈的飛機、雷達、導彈和WEZ的動態特性。這項工作并沒有解決在BVR戰斗場景中優化一組飛機對另一組飛機的編隊問題。
Li等人[9]提出了一種基于指揮員主觀認識的編隊優化方法,即在空戰中目標設備信息不確定的情況下選擇飛機編隊的問題。首先,計算戰斗機的戰斗力,這是通過指揮員的主觀認識評估目標戰斗力的基礎。戰斗機的戰斗力以能力的形式表現出來,包括攻擊、探測、生存能力、通信、電子戰、預警系統等。因此,通過采用前景理論和綜合模糊評估來優化空戰訓練。最后,一個應用實例證明了該方法在小規模空戰中的可行性。作者聲稱,利用戰斗力評估戰斗情況的能力為優化空戰訓練提供了一種新的方法。
?zpala等人[10]提出了一種在兩個對立小組中使用多個無人駕駛戰斗飛行器(UCAVs)進行空戰的決策方法。首先,確定兩隊中每個智能體的優勢地位。優勢狀態包括角度、距離和速度優勢的加權和。在一個團隊中的每個智能體與對方團隊中的每個智能體進行比較后,每個航空飛行器被分配到一個目標,以獲得其團隊的優勢而不是自己的優勢。為一對對立的團隊實施了一個零和博弈。對許多智能體參與時的混合納什均衡策略提出了一種還原方法。該解決方案基于博弈論方法;因此,該方法在一個數字案例上進行了測試,并證明了其有效性。
Huang等人[11]開發了新的方法來處理UCAV編隊對抗多目標的合作目標分配和路徑規劃(CTAPPP)問題。UCAV的編隊是基于合作決策和控制的。在完成目標偵察后,訓練指揮中心根據戰場環境和作戰任務向每架UCAV快速傳輸任務分配指令。UCAV機動到由其火控系統計算出的最佳位置,發射武器裝備。合作目標分配(CTAP)問題通過增強型粒子群優化(IPSO)、蟻群算法(ACA)和遺傳算法(GA)來解決,并在歸因、精度和搜索速度等方面進行了比較分析。在進化算法的基礎上發展了UCAV多目標編隊的合作路徑規劃(CPPP)問題,其中提供并重新定義了獨特的染色體編碼方法、交叉算子和突變算子,并考慮燃料成本、威脅成本、風險成本和剩余時間成本來規劃合作路徑。
Ma等人[12]開展的工作解決了在BVR作戰場景中優化兩組(R和B)無人機對手之間的優勢地位問題。一個無人機ri∈R對一個無人機bj∈B的優勢是通過ri和bj之間的距離、ri的導彈發射距離的下限和上限、ri的高度和bj的高度之差以及ri的最佳發射高度來估計的。決定性的變量是無人機在兩組中的空間分布和每架飛機在這些組中的目標分配。無人機在三維作戰空間BVR中的可能位置被簡化(離散化),通過立方體的中心位置來表示。每個無人機組都有一組立方體。優化問題被建模為一個零和博弈,并被解決以獲得納什均衡。
Ma等人[12]提出的工作沒有使用高保真模擬來分析無人機空間分布的選擇和分配給它們的目標對BVR作戰的影響。高保真模擬對飛機、雷達、導彈及其導彈的WEZ的動態特性進行建模。這些動態特性也影響到BVR作戰時每架飛機的行動觸發,因此也影響到最終的結果。例如,如果在兩組無人機之間第一次沖突后的時間窗口內考慮高保真BVR作戰模擬,新的沖突可能會發生,直到模擬結束。因此,每個在交戰中幸存的無人機將能夠選擇一個新的目標,這取決于可用目標的優勢值。在[12]中沒有考慮與無人機行為有關的不確定性。有關敵方無人機在戰術編隊中的確切位置及其導彈發射距離的信息是行為不確定性的例子。這兩個信息和上面描述的其他信息在BVR戰斗中是相關的:它們直接影響飛機之間的交戰結果。
在這項研究中,我們試圖解決文獻中發現的一些局限性,如低分辨率模擬、與敵人有關的不確定性的處理以及缺乏對優化解決方案的穩健性的確認,旨在提高兵棋結果的質量。我們的目標是驗證哪些藍色蜂群的戰術編隊可以在BVR戰斗中戰勝紅色蜂群。作為一個案例研究,RED蜂群使用了空軍經常采用的戰術編隊,稱為line abreast[13]。為了評估BLUE蜂群解決方案的穩健性,我們解決了新的問題,改變了RED蜂群每架飛機的位置,目的是估計新的RED蜂群編隊對BLUE蜂群的優化戰術編隊的效率的影響。
我們使用自主智能體和高保真計算機模擬來優化BVR戰斗中的無人機戰術編隊,考慮與敵人相關的不確定性,如戰術編隊中的位置誤差和導彈發射距離。統一行為框架(UBF)被采納為創建自主智能體的基礎。飛機和導彈在三維環境中用六個自由度(DoFs)建模。
該程序將在接下來的章節中進一步討論。