亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

第五代 (5G) 技術的部署已被確定為包括軍事在內的各行業的關鍵戰略技術。美國防部(DOD)尤其強調了盡早采用 5G 技術以保持競爭優勢的重要性。然而,在戰術網絡中部署現成商用(COTS)5G 解決方案仍需進一步研究。戰術環境復雜多變,往往充滿敵意,給網絡通信帶來了獨特的挑戰。利用純軟件解決方案集成 5G 技術,實現戰術融合,可在成本、靈活性和可靠性方面帶來顯著優勢。本研究旨在收集和分析 5G 網絡實驗數據,以深入了解在戰術環境中部署和使用 5G 技術所面臨的挑戰和機遇。目標是推動開發更有效、更高效的網絡解決方案。這項研究揭示了顯式網絡切片的潛在性能權衡、5G 擴大頻譜接入的意義,以及 COTS 解決方案在加速戰術網絡開發方面的價值。提出的建議包括在實驗性戰術環境中全面實施網絡切片,以及探索用于資源優化和網絡防御的人工智能/ML 模型。

圖 1.1. 美通信陸戰隊員在加利福尼亞州 29 Palms 的一次野外訓練中安裝 COTS 解決方案。

論文闡述了戰術融合的復雜性及其與 5G 技術的融合,為現代國防通信的戰略需要指明了方向。

第 2 章 “背景和相關工作 ”首先簡要概述了 5G 的歷史,詳細介紹了支撐其徹底改變戰術通信潛力的關鍵技術創新。這一敘述不僅強調了 5G 的關鍵技術能力,還將討論置于相關著作的背景下,明確了本研究試圖解決的貢獻和差距。

第 3 章 “方法論 ”介紹了為探索 5G 的可擴展性及其增強美國海軍陸戰隊戰術網絡并與之整合的潛力而采用的研究方法。本章概述了實驗設計以及為評估 5G 在這些獨特環境中的實用性和有效性而制定的評估標準,為嚴格的實證調查奠定了基礎。在

第 4 章 “結果 ”介紹了實證研究的結果,詳細分析了 5G 網絡在戰術條件下的表現以及軟件解決方案在促進網絡整合方面的作用。分析的重點是評估戰術融合的可行性,利用數據為有關 5G 在支持戰術行動方面的適應性、復原力和作戰效能的討論提供信息。

最后,第 5 章 “結論與未來工作 ”對研究成果進行了總結,探討了在戰術網絡中采用戰術融合的戰略意義。它闡明了 5G 和戰術融合在增強未來國防通信系統方面的預期作用,同時也為進一步研究指明了道路。最后一章旨在總結本研究的見解,反思本研究對更廣泛的軍事通信技術討論的貢獻,并提出未來探索的途徑。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

聯合火力自動化(JFA)項目旨在將聯合火力指揮與控制(C2)數字化,以支持聯合目標定位周期。聯合目標定位周期中的一個重要步驟是為目標分配武器,以最大限度地提高總體效果。在科學文獻中,這一問題被稱為武器目標分配(WTA)問題。雖然有一些算法可以解決這個問題,但它們并沒有考慮移動武器。近年來,隨著無人駕駛航空系統(UAS)的發展,移動武器的使用變得更加便利,從一個目標移動到另一個目標的時間不再可以忽略不計。本科學報告介紹了一種算法,該算法在為武器分配目標時考慮到了武器的移動。對新問題進行了正式定義,并開發了一種啟發式方法。還開發了一個數據生成器,用于生成與現實生活類似的實例。結果表明,所開發的算法可以在可接受的時間內解決生成的實例。

本科學報告介紹了一種為目標分配武器的算法的開發情況。所解決的問題適用于陸地目標定位周期。它符合聯合火力現代化(JFM)資本項目,該項目旨在開發傳感器到射擊的概念和原型。簡而言之,所提出的算法利用從傳感器獲得的信息,以集中的方式有效地將目標分配給武器。報告的主要成果之一是介紹了為在分配質量和執行計算所需時間之間找到適當平衡而進行的戰略探索。這些成果將指導今后在這一主題上的發展。盡管主要是探索性的,但本報告強調了在設計這些算法時必須做出的一些權衡。在使用決策支持工具時,這些取舍會產生重大影響,用戶應予以理解。

報告概述如下:第2節回顧了科學文獻中的類似問題。第 3 節對問題進行了正式描述。第 4 節介紹了一些解決策略和數據生成器。第 5 節介紹并評論了所獲得的結果。第 6 節為結束語。在整個報告中,使用了標準符號。讀者可參閱表 9 了解所用符號的說明。

付費5元查看完整內容

本論文探討了如何應用有監督的機器學習技術來提高網絡控制系統(NCS)的性能和可解釋性。無人駕駛系統(UxVs)可通過覆蓋大片區域的延伸偵察任務提供快速高效的目標定位。以協作方式控制一組 UxV 是一個難題,美海軍正在開發的一個解決方案是網絡控制系統行為集成優化(BION)。BION 是一種 NCS,利用部分可觀測蒙特卡洛規劃(POMCP)算法提供接近最優的近實時編隊控制。本文旨在通過使用訓練優良的神經網絡近似關鍵功能,解決 POMCP 算法的某些局限性。神經網絡利用概率技術和顯著性圖提高了可解釋性,同時也提高了處理速度。在基于 ResNet 的不同架構上進行了實驗,并成功地將訓練良好的神經網絡集成到了 BION 中。這項研究拓展了實驗和開發 BION 的能力,從而推動了UxV 的開發和集成。

第二章將討論 BION 的核心功能,以及與神經網絡和顯著性圖譜相關的關鍵概念。第三章將討論實現過程,包括訓練和評估數據、神經網絡架構、神經網絡訓練算法以及生成顯著性圖。第四章將介紹工作成果,包括訓練統計數據和計算出的顯著性圖樣本。第 5 章總結了本文的貢獻以及未來可能的工作領域。

付費5元查看完整內容

大多數軍事大國--無論是單獨還是合作--都在設計基于新一代有人駕駛戰斗機和無人駕駛飛機系統協同作戰的未來空戰系統。

這一領域的標準制定者以美國為首。經過多年,美國空軍(USAF)和美國海軍(USN)現在正集中精力在中期內發展大量的協同作戰飛機(CCA),以增加其作戰飛機機隊的深度,因為他們認為機隊已經縮減到無法對抗大國行動的水平。目前的概念是 "負擔得起的規模",即在控制成本的前提下增加規模性。這些 CCA 將被整合到美國空軍和海軍的下一代空中主導(NGAD)系統中。這一龐大的協同作戰體系結構所涉及的首要任務是對空作戰,實現空中優勢(即定位和壓制敵方防空系統--SEAD),但美國空軍為 CCA 設想了 "100 種角色"(攔截、CAS、通信中繼)。盡管如此,關于如何權衡這些系統的成本和作戰性能的辯論仍在繼續。

美國人目前正在研制陸基、大部分可回收的飛機,其基礎是 Kratos XQ-58、GA-ASI 的 Gambit 系列或波音公司的 MQ-28 幽靈蝙蝠,但尚不確定這些系統是否能勝任這一任務。盡管如此,此類系統很可能會成為 CCA 初期增量的主力,并在中期內轉化為美國空軍采購至少一千個單元,與 F-35 和 NGAD 戰斗機組成有人-無人聯隊(MUM-T)。雖然所使用的平臺將取決于所需的性能水平,但似乎可以肯定的是,這些系統將基于模塊化開放式架構和 Skyborg 人工智能系統(其開發工作已經完成)。美國人也在開發無人駕駛空射飛行器(如美國國防部高級研究計劃局的 "長槍 "計劃)。洛克希德-馬丁公司的設計和米切爾研究所的兵棋推演表明,美國最終很可能會確定一系列性能各異的 CCA,有些是消耗型,有些是可回收型,發射方案多種多樣,其中包括少量 "精致 "的可回收系統--高度復雜的無人情報平臺或無人戰斗飛行器(UCAV)。參與米切爾研究所幾項對空作戰任務研究的專家贊成在作戰初期大量使用消耗性 CCA,用于誘餌、ISR、協同空戰和通信中繼,先于第五代戰斗機飛行,一旦敵方能力被削弱,再使用更先進的可回收 CCA,以擴大友軍系統的覆蓋范圍。他們沒有使用現有的 UCAV 解決方案。

許多國家正在效仿美國的做法,盡管資源更為有限:

  • 英國正在與 BAE 系統公司合作,結合 "暴風雪 "全球空中作戰計劃 (GCAP),開發遙控解決方案--輕型和重型兩類陸基可回收遙控飛機,提供不同的先進程度。

  • 澳大利亞正與波音公司合作研制 MQ-28 "幽靈蝙蝠",其概念與美國的 CCA 相似。澳大利亞的這一模型也啟發了韓國人,他們正在研制一種忠誠的僚機無人機,以配合其先進版本的 KF-21 Boramea 戰斗機。

  • 在美國的支持下,日本也正在研發一種能夠在 2030 年代與其未來的 F-X 戰斗機配合使用的遙控無人機。

  • 在戰略競爭對手中,俄羅斯的情況最為不確定。莫斯科正在研制 UCAV 型忠誠僚機,如 S-70 Okhotnik 和 Grom,但西方的制裁和推進解決方案的缺乏大大減緩了這些項目的進展。

  • 中國的情況要好得多,在各種無人機中,中國正在開發一系列協同作戰系統,與有人駕駛戰斗機,特別是殲-20 戰斗機一起以 MUM-T 模式作戰:飛鴻 FH-95 渦輪螺旋槳 ISR 和電子戰無人機以及 FH-97 戰斗無人機,與可回收的美國 CCA 設計相似。

  • 印度也在開發自己的系統體系,即印度斯坦航空有限公司的 "戰斗空中聯合系統"(CATS),包括作為 "母機 "的 "泰賈斯 "有人駕駛戰斗機和幾種遙控飛機,特別是與 MQ-28 和 XQ-58 非常相似的 "勇士"(CATS Warrior)、可回收巡航導彈型遙控飛機 "獵人"(CATS Hunter)和 ALFA 漂浮彈藥。

  • 土耳其已經建立了廣泛依賴無人機的空中力量模式,既用于 DITB,也用于彌補其作戰飛機項目的問題,土耳其還在尋求開發自己的 MUM-T 遙控技術模塊,以及未來的 F-X Kaan 戰斗機: Bayraktar 公司的超音速 Kizilelma UCAV、Anka-3 隱身無人機、Super Simsek 消耗型無人機和土耳其航空航天公司的自主僚機概念。

注意到,對于大多數空軍來說,開發無人飛行器技術構件和 MUM-T 系統是為了滿足彌補常規作戰飛機數量不足的迫切需要,而造成這種不足的原因可能是多方面的。

對于未來空中作戰系統(FCAS)及其協同作戰飛機系統,可以得出哪些結論?在許多方面,法國的情況與上述幾個國家相似。誠然,考慮到多年期 LPM 軍費法案所確定的趨勢,法國未來的空中力量應受益于多種能力的進步,包括下一代戰斗機(NGF),它提供了新一代戰斗機的所有附加值,在未來戰場上不可或缺。盡管如此,RCs 面臨的首要挑戰是糾正空中力量深度不足的問題,隨著越來越多的國家實施 IADS(綜合防空系統)升級,或者美國的保證變得越來越不確定,這一問題可能會繼續惡化,并將變得越來越棘手。這種衰退的后果是眾所周知的:它影響到滿足各種戰略職能要求的能力;更具體地說,在干預方面,它使減員難以為繼,減少了可供選擇的行動范圍,并使其無法保持永久態勢,如動態瞄準。

除了深度問題,遙控飛行器還能從質量上提高空中作戰力量的能力:通過提供 "替身 "能力(可在敵方系統的交戰范圍內使用),它們能提高空中力量的穿透力;它們能使情報和交戰/作戰能力分散和分解,使后者更具彈性,并改善空間和時間覆蓋。發射解決方案的多樣性是真正意義上的多領域,增強了空中力量的靈活性和可用性。

在許多方面,空中客車公司和 MBDA 公司的想法與美國專家的想法(上述米切爾研究所的工作突出表明了這一點)在 FCAS 體系結構的框架內趨向于相當類似的解決方案類型,而 FCAS 體系結構與美國 NGAD 體系結構的順序相同。這適用于通過混合使用可消耗或可回收系統,提供各種發射解決方案來降低 "單位效應成本 "的需要。在實施這些系統之前,必須滿足一些條件。這些條件包括:確定作戰性能與成本之間的權衡、開發特定設備和彈藥的必要性、不可或缺的連接架構,以及載人平臺(其乘員必須管理這些遙控任務)和飛行器本身的自主解決方案。這些飛行器的自主性必須遵守非常嚴格的交戰規則。這些無人機的行動可以在兩個層面上進行管理:當然是在任務領導者層面上,這也是最常見的設想(因此有了忠誠僚機的概念),但也有可能在戰斗管理指揮與控制(BMC2)功能層面上進行管理,而這一功能本身將越來越分散。美國人強調,在這些交戰規則范圍內賦予無人駕駛飛機的自主程度以及對其行動的管理水平是可變和相互依存的。特別是,它們將取決于作戰環境,包括可能在不同程度上斷開、間歇、有限(DIL)的電磁環境,這將影響作為系統之系統的連接組織的作戰云的運作。

從作戰角度看,這些 RC 可以改變所有任務的執行情況,包括以下方面:

  • 在情報功能方面,提供穿透性傳感器網絡,大大擴展了 ISR 系統的覆蓋范圍;

  • 在反空領域,通過與駐扎在遠離前線的戰斗機合作,提供遠程誘餌、干擾、瞄準和交戰能力,一方面可以采取必要的迷惑和飽和行動,使敵方綜合防空系統失明和瓦解(通過 SEAD 和戰斗機掃射);另一方面,可以建立動態瞄準能力,在半隱蔽環境中長時間持續開展 SEAD 工作;

  • 在進攻性反陸(OCL)領域,通過在戰役開始時增加穿透力,然后在較長時間內保持對大片區域的覆蓋,實現攔截動態目標能力的倍增,這對于提高近距離空中支援的可用性也是必要的;

  • 提供先進的傳感器網絡和傳輸中繼器,以擴大作戰管理 C2(BMC2)功能的范圍并增強其穩定性。

總之,在未來空戰中,RC 不乏潛在用途,可以重新創造美國人所談論的、歐洲所急需的 "負擔得起的大規模"。然而,如果要充分挖掘這些系統的潛力,還需要克服許多挑戰。

在看來,必須研究這些系統相對于有人駕駛戰斗機的效率。這種效率取決于一種微妙的妥協:一方面,如果要獲得足夠的數量,這些機器必須保持其消耗性;另一方面,性能和可靠性閾值--考慮到需要預測與綜合防空系統(IADS)的對抗等問題,這種妥協就更難找到了,因為綜合防空系統(IADS)已轉變為飽和狀態。其次,RC 的使用概念必須基于出色的多領域整合,以優化協同作用。這就提出了實施這些無人機的部隊的 C2 靈活性問題,以及 FCAS、NGAD、GCAP 和其他系統之間的多國互操作性問題。就技術資源而言,其前提是戰斗云確實按計劃發展。在這方面,雖然 MUM-T 的建設將部分基于現有技術,例如在連接方面,但它也基于尚待證明的技術前提,特別是在人工智能領域,尤其是管理任務的載人平臺。

正如已經進行或計劃進行的演示所幸運地表明的那樣,這些不同的條件自然支持盡快開始對駐地協調員和作戰云進行漸進式開發,以便為這些多重挑戰的具體解決方案開辟道路。

付費5元查看完整內容

為響應美國國防部(DoD)的戰略現代化倡議,美國空軍(USAF)正在努力開發在未來行動中取得成功的技術和戰術,而做好準備取決于現在就進行投資。為了進行有效的投資,美國空軍和其他國防規劃機構都希望了解,當新技術和新概念方案改變軍事行動中使用的系統時,軍事行動的結果會發生怎樣的變化。在這一過程中,軍事模擬是一個重要的工具,可以幫助人們建立對替代技術和概念的理解和推理能力。

在早期能力設計中,需要考慮各種新興技術和創新概念,分析涉及在模擬環境中運行的模擬人和模擬機器的協作和沖突結果。美國空軍最近正在考慮的一個場景是空軍基地防空 (ABAD),其目標是了解如何在空軍基地遭受導彈和無人機襲擊的情況下有效運作。為了決定投資,為成功實現空中基地防御做好準備,美國空軍正在努力確定有問題的場景和有希望解決問題的替代方案。然而,在所考慮的各種情況和投資中,為應對技術變化和不斷發展的威脅而進行現代化所需的速度意味著需要加快基于模擬的分析,以便更快地建立理解并為決策提供依據。

目前的仿真分析是通過部隊設計過程,利用不同的作戰視角迭代建立對未來作戰的理解,從而應對未來預期作戰的復雜性。在美國空軍,這是在空軍作戰集成能力(AFWIC)領導的 "評估-發展-評價能力發展規劃"(CDP)設計循環中完成的。在這一迭代過程中,有兩大部分是有效模擬分析的核心。首先,通過產生重要的、突發的行為來積累知識;其次,通過桌面設計演練,將利益相關者聚集在一起,并允許與基于仿真的數據進行參數化交互,從而實現真實世界的決策。我們為管理突發行為的工作過程制定了一個框架--"在缺乏知識的情況下利用仿真分析管理突發行為的非線性和隨機未來行為探索(ENFLAME)",以構建相關活動的結構,并將研究重點放在這項工作上。

突發行為是軍事行動結果的關鍵性變化,通常難以預測,因為復雜性會導致一系列不幸事件,導致出人意料的壞結果,或一系列幸運事件,導致出人意料的好結果。在 ABAD 的例子中,這可能涉及各種技術和概念的組合,即使在導彈和無人機攻擊的預期困難情況下,也能產生出人意料的好結果。要找到這些突發行為,通常需要專家與模擬進行交互,并知道應關注和查詢哪些領域,或者使用蒙特卡羅模擬(MCS)進行隨機搜索。然而,美國空軍正在使用的高保真、昂貴的軍事仿真卻限制了蒙特卡洛仿真的使用,因為要找到罕見的、令人驚訝的行為,需要進行很多很多次仿真。此外,專家資源有限,只擅長某些領域,而且未來軍事行動十分復雜,即使是專家也難以預測。這些挑戰促使我們需要改進尋找重要突發行為的方法。

本論文的研究工作通過改進 "評估-開發-評估 "設計循環中的兩項關鍵活動,解決了加速仿真分析所面臨的挑戰。首先,為了加速基于仿真的突發行為分析,我們開發了一種能更快找到突發行為的新方法--使用數值優化(LANTERN)方法追蹤極端罕見事件的低成本自適應探索(LANTERN)。LANTERN 基于從文獻中歸納出的突發行為的特定定義,可以制定優化方法,以比蠻力 MCS 技術更快的速度搜索突發行為。具體來說,利用新穎的貝葉斯優化(BO)技術加速搜索作為罕見、局部和隨機極端事件的突發行為,該技術可自適應地查詢仿真響應以查找罕見事件。這些新技術針對的是與突發行為相關的高度局部極值和局部高變異性的獨特特征。與軍事智能體建模(ABM)的預期響應行為相匹配的測試問題實驗表明,與 MCS 相比,該技術有了很大改進。其次,為了在桌面設計演習中加快對隨機行為的分析,介紹了一種替代建模方法--ECDF-ROM 方法,該方法采用了從工程設計中借鑒的降序建模(ROM)技術,并結合了一種新的現場表示方法。

研究突發行為的實驗表明,使用新的 BO 技術比使用蠻力 MCS 有了顯著改進,可以更快地發現罕見的極端事件。針對桌面設計練習的智能體建模實驗也顯示了近似預測完整經驗分布的可行性。利用仿真、集成和建模高級框架(AFSIM)開發的兩個基于智能體的軍事模擬場景,完成了對 LANTERN 方法和 ECDF-ROM 方法的最后演示。首先,使用敵方防空壓制(SEAD)場景來演示 LANTERN 步驟在搜索罕見的局部極端事件方面的有效性。其次,使用四對四空戰場景演示 LANTERN 步驟在搜索罕見、隨機極端事件方面的有效性,同時演示 ECDF-ROM 智能體建模方法。通過這些演示,本論文中開發的 LANTERN 方法和相關方法(基于泰勒擴展的自適應設計 (TEAD)、針對多外延突發行為的分區貝葉斯優化 (PIONEER)、變異貝葉斯優化 (VarBO))以及 ECDF-ROM 智能體方法可用于加速基于迭代模擬的軍事場景分析的關鍵部分。研究結果還強調了對 ENFLAME 框架的重要更新,該框架旨在利用軍事仿真管理突發行為--再次強調利用仿真發現重要突發行為的能力,并使未來的工作重點放在基于新技術和新概念的漏洞識別與緩解以及機會利用上。

圖 1.5:描述和模擬軍事行動的智能體模擬方法圖解。注意重點是獨立感知、決策和行動的自主智能體,以及定義動態的一系列交互作用。

管理突發行為的 ENFLAME 框架

圖 2.2:管理突發行為的 ENFLAME 框架概述。

圖 2.2 是 ENFLAME 框架的示意圖。該框架有四個核心部分。首先,具體化情景涉及情景建模,包括行動概念(CONOPS)、參與者(系統、人員等)、情景中系統之間以及系統與環境之間的交互。此外,這還包括與直接用于決策的投資和感興趣的投資領域之間的聯系。主要的建模任務還包括翻譯和開發模擬表示法,在模擬表示法中對分辨率和范圍進行選擇,以滿足情景中的決策問題所提出的需求。

其次,一旦創建了情景模擬表示法,就需要探索如何發現重要的突發行為,以便對系統行為進行管理(從輸入和情景配置以及結果的角度找出系統的弱點和機會所在)。根據上述將突發行為定義為罕見的極端事件,要找到這些事件發生時的位置,就需要一種尋找突發行為的方法。這與分析中的 "評估 "階段關系最為密切。

第三,當發現突發行為時,就需要解決其極端性所帶來的問題漏洞或潛在機會。這就需要探索情景中各系統相互作用的因果動態,這些動態導致了極端事件的發生,并產生替代規則或變化,以減輕有問題的行為或強化良好的行為。這與分析中的 "發展 "階段關系最為密切。

最后,一旦設計出潛在的替代方案,使系統中的行為保持在可接受或有利的狀態,就需要評估這些替代方案的可行性和可負擔性,并將其與潛在的投資方案聯系起來。這與分析中的 "評估 "階段關系最為密切。

付費5元查看完整內容

隨著美空軍從以反恐為重點調整為應對具有潛在生存后果的近鄰競爭,“一切照舊 ”的系統開發方法將不再適用:將無法繼續在幾十年前開發的概念上循序漸進。相反,需要新的技術,提供新的能力,以及運用這些能力的新的作戰概念。目前在信息科學領域,特別是在自主系統(AS)開發及其相關基礎技術--人工智能(AI)領域,存在著廣泛而深入的技術推動力。隨著新的人工智能算法和學習技術的開發和以新穎的方式加以應用,對認知和神經生理學的了解--大多數時候之所以 “聰明 ”的基礎--也在以令人目眩的速度增長,而構建自主系統(如自動駕駛汽車和游戲機器人)的能力也不斷成為頭版新聞。此外,隨著計算能力、內存、網絡和數據可用性的摩爾定律增長,底層計算基礎設施的爆炸性增長也加劇了這些進步。

在此的目標有兩個:為美空軍高層領導提供自主系統潛力的愿景,以及自主系統如何在各級作戰中發揮變革性作用;為科技界提供一個總體框架和路線圖,以推動技術發展,同時支持其向現有和即將獲得的系統過渡。與其他人一樣,也認為使用這些系統將帶來可觀的回報,原因很簡單,這些自主系統的單項能力將提供更大的使用自由度和新的作戰概念機會。但這只是一種傳統觀點。更深遠的潛在回報將來自于以信息為中心的發展和自主系統的激增,這樣,就可以拋棄傳統的以平臺為中心的思維方式,成為一個以服務為導向、無處不在的網絡化和信息密集型的企業。

本文中,首先闡述在自主系統(AS)“行為”方面的需求:也就是說,無論底層技術手段如何,這些系統在熟練程度、信任度和靈活性等關鍵維度上的行為結果是什么?然后,將重點關注有可能將致力于解決這一問題的多個不同群體聚集在一起的架構方法,然后討論可以將這些架構變為現實的使能技術。最后,提出了一些建議,這些建議不僅涉及技術問題,還涉及應該解決的問題集類型、解決這些問題所需的開發流程和組織結構,以及能夠實現所提出愿景的知識平臺的更廣泛結構。

當今以平臺為中心的美空軍觀

R1. 行為目標

這些基本上是概括性的設計要求,規定了AS 在熟練性、可信性和靈活性方面的行為方式

  • 建議 1a: 自動服務系統的設計應確保其在特定環境、任務和隊友中的熟練操作。熟練性的理想屬性包括情境代理、自適應認知能力、允許多代理出現以及從經驗中學習的能力。

  • 建議 1b: 人工智能的設計應確保由人類同行操作或與人類同行合作時的信任。理想的信任原則包括:認知一致和/或決策透明、態勢感知、可實現自然的人-系統互動的設計以及有效的人-系統團隊合作和培訓能力。

  • 建議 1c:人工智能系統的設計應以實現熟練程度和信任為目標,并能推動不同任務、同伴和認知方法之間的行為靈活性。人工智能系統所需的靈活性原則包括能夠根據整體任務的要求和面臨的情況改變其任務或目標。它應該能夠扮演下屬、同級或上級的角色,并與人類或組織內的其他自主系統一起改變這種角色。它還應能夠改變執行任務的方式,既能在短期內應對不斷變化的情況,也能在長期內積累經驗和學習。

R2. 架構和技術

這包括支持跨學科研究與開發的統一框架和架構,以及支持架構內預期功能所需的技術投資

  • 建議 2a: 開發一個或多個通用的 AS 架構,以涵蓋目前在不同社區使用的多個框架。架構至少應提供 “端到端 ”功能,即為 AS 提供感知能力,以捕捉其環境的關鍵方面;認知能力,以進行評估、計劃和決策,從而實現預期目標;以及運動能力,以在需要時對其環境采取行動。體系結構應具有功能結構,以實現可擴展性和可重用性,不對組件功能的符號處理或次符號處理做出承諾,包含記憶和學習功能,并根據需要支持人機交互。無論采用哪種形式,架構都應可根據分配的任務、參與的同伴關系和使用的認知方法進行擴展。衡量一個架構是否有用的一個關鍵標準是,它是否有能力彌合處理自主性問題的不同群體之間在概念和功能上的差距。

  • 建議 2b: 繼續開發在組件層面提供所需功能的使能技術。這不僅包括支持基本的 “看/想/做 ”功能的技術,還包括支持有效的人機交互界面 (HCI)、學習/適應和知識庫管理的技術,既包括通用技術,也包括特定領域的技術。技術開發的性質應從基礎研究、探索性開發到早期原型設計不等,這取決于具體技術的成熟程度及其設想的應用。

  • 建議 2c: 開發并推廣多層硬件和多層軟件架構,以支持自動系統的開發、驗證、運行和修改,其中每一層都為給定的高級和低級功能提供不同硬件實現/主機的物理結構,每一層都為類似功能提供不同的軟件實現。要充分利用新興技術趨勢,特別是商業領域的新興技術趨勢,可能需要各種復雜的架構模式。

R3. 挑戰性問題

這里既涉及與領域無關的問題(或功能性問題),如動態重新規劃,也涉及與領域有關的問題(或面向任務的問題),如多域融合

  • 建議 3a:通過一套范圍適當、規模適當、抽象化的面向功能的挑戰問題集來推動自動系統的基本行為、架構和功能開發,使科學與技術(S&T)界的不同成員能夠專注于自動系統行為的不同貢獻者。根據最初提名的架構和功能集選擇挑戰問題集,其方式應涵蓋架構所代表的全部功能(詳盡性),并盡量減少解決任何兩個挑戰問題所需的功能重疊(排他性)。

  • 建議 3b:選擇以任務為導向的挑戰問題,其兩個目標是:a) 解決當前或未來可能非常適合應用自動系統的操作差距;b) 挑戰科技界在自動系統功能的科學和工程方面取得重大進展。確保挑戰問題能夠在前面選定的架構和功能的范圍內得到解決,以確保獨立于領域的工作和獨立于領域的工作之間的一致性,避免 “一次性 ”應用工作最終對其他面向任務的問題集貢獻甚微。既要考慮 “部分 ”以任務為重點的挑戰問題,也要考慮 “端到端 ”的挑戰問題。最后,不要將科技資源用于解決在其他部門也有類似問題的作戰問題,除非空軍特有的屬性使問題非常獨特,無法以類似方式解決。

R4. 開發流程

這包括支持創新、快速原型設計和迭代需求開發的流程--與傳統的瀑布式流程(需求說明、里程碑滿足和最終狀態測試與評估(T&E))形成對比,以支持快速 AS 開發和投入使用。

  • 建議 4a: 建立教育和實習人員管道,選派人員到空軍技術研究所參加自主性入門短期課程,重點是人工智能使能因素。然后,個人成員將被嵌入到以人工智能為重點的特別行動活動中:自主能力小組(ACT),學習如何將所學技能應用于滿足美國空軍的自主需求。在四年的時間里支持這項工作,使人工智能人員的數量比現在增加一個數量級。通過一系列特別激勵計劃確保留住人才。通過對關鍵的校外研究人員提供適當的長期支持來補充這支隊伍。

  • 建議 4b:采用三階段框架,反復選擇挑戰性問題,對潛在解決方案的影響進行建模,并進行解決方案開發、原型設計和評估。開展以兵棋推演為基礎的初始階段評估,目標是確定關鍵的挑戰問題以及能夠應對這些威脅或利用潛在機遇的基于自動系統的解決方案。通過定量模型和模擬(M&S)以及性能參數對這些概念進行形式化,對有前途的 AS 候選方案進行更深入的評估。最后,重點設計 M&S 研究中確定的有前途的 AS 候選方案的一個或多個工程原型。開發并實驗評估一個 AS 原型,該 AS 原型可作為:a) 購置的設計原型;b) 其他所需 S&T 的設計驅動力。

  • 建議 4c: 通過空軍首席數據官,獲取存儲美國空軍空中、太空和網絡數據的空間,以便人工智能專業人員使用這些數據創建自主解決方案,解決面臨的挑戰。在相關組織中設立數據管理員角色,以管理數據,并為數據生產者和消費者創建簡化的訪問和檢索方法。

  • 建議 4d: 支持向基于云的計算發展,同時將量子計算作為一種通用計算模式加以利用,以滿足嵌入式和高性能計算處理需求。

R5. 組織結構

這包括圍繞項目(或成果)重點進行組織,而不是按照傳統的技術專業領域進行組織

  • 建議 5:在美空軍研究實驗室(AFRL)內建立 ACT,采用 “扁平化 ”業務模式,將 6.1-6.4 領域的專家集中到一個以產品為中心的組織中,開發自主系統科學,同時為作戰人員提供能力。與空軍科學研究辦公室和 AFRL 其他主要技術局合作,并與 AFRL 以外的美國空軍組織協調,包括國防部自主利益共同體 (COI)、AFWERX 和其他可促進技術向作戰人員過渡的辦公室。在 “ACT ”中,根據類似 “臭鼬工廠 ”的一套 “指導規則”,納入以產品為中心的業務流程,促進未來空軍向以信息為中心的業務平臺模式轉變。

R6. 知識平臺

這提供了一種整合 AS 行為原則、架構/技術、挑戰問題、發展過程和組織結構的整體手段。

  • 建議 6:開發一個知識平臺(KP),其核心是將信息技術(IT)平臺方法與平臺業務模式相結合。為多域作戰空軍設計的知識平臺應壟斷觀察代理與知識創造代理以及作戰效應代理之間的聯系,這些代理可以是人或基于機器的代理(AS)。知識創造代理提供了創造能力所需的生態系統,而這些能力則用于創造作戰效果。這個生態系統將通過以下方式實現:利用自主性的三個行為原則;實現這些行為的架構和技術;驅動挑戰的問題;跨越人員、架構/應用、數據和計算基礎設施的開發流程;以及最后,為推進技術、利用技術和提供能力而需要建立的組織結構。這種方法將提供一種手段,使美國空軍從解決少數問題的傳統工具方法過渡到適用于更多問題的知識平臺方法。

總結

綜上所述,對人工智能系統開發和應用的建議包括

  • 這些系統要想精通業務、得到人類同行的信任并靈活應對意外情況,就必須具備的行為方式

  • 需要統一的框架、架構和技術,以便不僅跨越孤立的科技界,而且跨越操作上的隔閡和領域

  • 挑戰科技界所需的重點難點問題,包括基礎性問題和操作性問題,同時提供遠遠超出傳統的以平臺為中心的現代化方法的操作優勢

  • 處理人員、系統、數據和計算基礎設施的新流程,這些流程將加速創新、快速原型設計、實驗和實地應用

  • 新的組織結構,即自主能力團隊,將技術專業人員整合到一個單一的組織中,專注于創新產品開發,并根據需要與其他組織和社區開展外聯活動

  • 知識平臺,用于全面整合 AS 行為原則、架構/技術、挑戰問題、開發流程和組織結構

美國空軍后勤部,特別是 “ACT”,不能簡單地將其注意力局限于自主系統的研究領域,也不能簡單地延續應用現代人工智能和自動系統技術的模式,在一次性演示中逐步提高任務能力。必須選擇挑戰性問題,以推進知識平臺的能力,在變革性應用中以敏捷的方式提供表現出熟練、可信和靈活行為的人工智能系統。除了以項目為中心的工作外,ACT 還可以優先考慮和協調 AFRL 的整個自主性 S&T 組合--同步工作以最大限度地提高投資效果--及時將 AS 能力大規模地用于應對任務挑戰,同時在各 S&T 局之間 “共享 ”新架構、技術和流程的 “財富”。最后,一旦取得成功,ACT 可以作為一個 “存在證明”,證明美國空軍后勤部如何從其傳統的以學科為中心的組織轉變為一個更加跨學科和以項目為導向的組織,解決美國空軍全企業范圍內的變革性問題。

擁有一個獨特的機會,將空軍從一個以空中平臺為中心的部門(空間和網絡往往處于次要地位)轉變為一個真正以多領域和知識為中心的組織。通過知識平臺向作戰人員提供自主系統,空中、太空和網絡的每項任務都將得到改進,而且不僅是逐步改進,而是成倍地改進。將成為一個以服務為導向、無處不在的網絡化和信息密集型企業。簡而言之:一個靈活的、以信息為中心的企業,通過無障礙訪問高效的外圍設備,及時做出決策。

付費5元查看完整內容

隨著必須考慮的大規模作戰行動環境的廣泛性,美國陸軍網絡作戰的重要性也在不斷增加。傳統上,網絡作戰支持被視為一種戰略資產。美國陸軍網絡司令部(ARCYBER)認識到戰術指揮官需要利用網絡效應,并發布了最新政策,允許戰術指揮官提交網絡支持請求。由于網絡目標的影響深遠,而網絡支持資源的能力有限,因此有效處理這些請求非常重要。效率是衡量有效性的主要標準,體現為處理請求的及時性。計算建模提供了一種在幾分鐘內生成和處理超過一百萬個請求的途徑,同時還能比較流程的不同變體,而不是等待在現場吸取經驗教訓。本文創建了一個仿真模型來表示這一請求流程,同時在支持團隊的熟練程度和學習行為中加入隨機變化,然后通過設計的實驗進行結構化測試,以深入了解流程的性能。請求服務時間、到達率、起始熟練程度和學習曲線對整體效率起著重要作用。建議在收集到更多數據后進行進一步實驗。此方法為類似研究中的人類行為效果建模奠定了基礎。

付費5元查看完整內容

問題

情報、監視和偵察(ISR)行動的目的是收集信息并將信息提供給操作人員,而操作人員則需要就戰區內的各種行動方案做出具體決策。可以肯定的是,ISR 行動是技術密集型的。但與此同時,ISR 行動也是一個非常以人為本的過程。盡管如此,在 ISR 概念開發和評估(CD&E)過程中卻很少甚至根本沒有進行人為因素(HF)研究。通過研究新的 ISR 技術和概念在各種作戰環境下對操作人員表現的影響,研究人員可以提供更加科學嚴謹的建議,為高層政策制定者和決策者提供有關未來 ISR 技術和能力的信息,這些技術和能力適用于所有 ISR 環境:空中、海面、地下和太空,貫穿國內、盟國和整個政府(WoG)的合作關系。因此,HF研究方法應成為任何 ISR CD&E 流程的組成部分,以便為 ISR 指揮系統各級的政策和決策者提供信息和建議。

目的

北大西洋公約組織(NATO)研究與技術組織(RTO)人為因素與醫學(HFM)小組任務組(研究與技術組(RTG)-276 NATO RTG HFM-276)"人為因素與 ISR 概念開發與評估 "的成立是為了確定和了解對有效的 ISR 行動至關重要的HF問題。更確切地說,這項開創性工作的目標是 (1) 確定對有效的 ISR 行動至關重要的HF問題(如態勢感知 (SA)、工作量、組織結構、協調和協調機制、可視化、信任、信息共享和管理、領導力和決策);(2) 使用行為理論模型來制定我們的研究方法并理解我們的研究結果;(3) 就在 ISR CD&E 行動中使用和實施HF研究提出建議。

范圍和限制

基于并擴展最初由北約 HFM-163 RTO 小組開發的軍事組織效能模型,北約 HFM RTG-276 小組的工作范圍是確定并了解對 ISR 行動至關重要的HF問題。為此,小組決定于2018年6月11日至2018年6月26日在德國Einsiedlerhof的美國空軍歐洲(USAFE)戰士準備中心(WPC)的 "北約2018聯合愿景"(UV18)試驗模擬內開展關于聯合ISR(JISR)作戰效能的研究。此外,小組還在 2019 年 5 月于芬蘭舉行的 "大膽探索 2019"(BQ19)演習中進行了類似研究。

結果、對北約的意義和實際影響

北約 HFM-276 任務小組使用組織有效性模型制定了一套調查,以確定和了解對有效的 ISR 行動至關重要的HF問題。該模型的核心是由任務分配、收集、處理、利用和傳播(TCPED)組成的聯合監查制度流程。從這一模型和其他來源得出的數據收集計劃審視了一些HF問題在整個 ISR 行動中的作用:基本HF知識、態勢評估、工作量、組織結構、信任、信息共享、信息管理、領導力、文化、組織流程、組織靈活性、共同意識和責任、協調和協調機制、決策、能力、情報需求管理(IRM)、通信、元數據和應用系統。所有這些HF因素都將影響 ISR 的作戰概念,并影響操作人員的績效。此外,本文還總結了改進北約和非北約行動 ISR CD&E 流程的一些實際意義,重點是開發應納入 ISR CD&E 流程的HF研究方法。這種HF方法就像 ISR 概念開發的技術和程序質量控制部分。預計研究結果將有助于為 ISR 指揮系統各級的政策和決策者提供信息和建議,以加強北約 ISR 規劃、任務執行和能力發展方面的信息和決策優勢。預計研究結果還將有助于為 ISR 與其他聯合進程(如聯合目標定位)的整合提供信息,以確定當前與 ISR 有關的HF差距以及與其他進程的整合。

理論框架

在本節中,我們將為監委會的HF行動提供一個高層次的理論框架。廣義上,理論可以理解為在一組邊界假設和約束條件下對概念間關系的陳述,因此我們對一般假設、約束條件和概念及其與我們框架的關系進行了劃分[1]。我們認為我們的理論框架由三個關鍵概念組成:1)監委會進程;2)各種HF變量;3)產出因素。本節關注的是這些概念之間的關系,以及它們之間關系的支配因素。各節詳細介紹了監委會進程的理論和分析、各種HF因素的影響及其對產出因素的影響。各節還深入介紹了與各小節相關的方法。

人們提出了不同的組織流程方法,如輸入-中介-輸出框架、輸入-中介-輸出-輸入框架以及受結構化啟發的流程框架[2, 3]。從廣義上講,這些方法既包括目的論和順序論的觀點,即假定有明確的目標來指導行動以產生特定的結果,也包括更具突發性的變革觀點,即人類在其中工作的結構會影響其他結構中的人類,并受到其他結構中人類的影響[4]。

我們認為,作為一個基本假設,在聯盟背景下開展的監委會聯合審查進程并不容易采用上述任何一種模式:相反,它是一個預先計劃和設計的順序進程與突發進程的混合體[5]。一方面,有正式定義的程序、理論、戰術、技術和流程(TTP),如《支持北約行動的聯合情報、監視和偵察程序》(AintP)和《作戰命令》(ORBAT);另一方面,也有包括特定節點在內的工作流程的實驗。這表明,我們的研究一方面要對 TTPs 的影響保持不可知論的觀點,另一方面要對執行聯合監查制度時的行動和對這些 TTPs 的看法保持不可知論的觀點。因此,我們的理論框架包含兩種相互作用的兵力:計劃行動和突發行動。計劃中的監委會審查和執行中的監委會審查之間的區別既體現在實驗計劃和實際實驗/演習執行之間的對立,也體現在計劃中的監委會審查行動和執行中的監委會審查行動之間的緊張關系,執行有時甚至是動態的。我們認為,計劃與執行動態之間的矛盾對于理解HF如何影響聯合監委會至關重要。應建立人類決策和協作機制,確保北約的聯合監委會從預先計劃順利過渡到動態執行。

更具體地說,我們的模型試圖將聯合監委會合作的線性和非線性軌跡結合起來。從順序計劃的角度來看,該模型的核心是聯合監委會流程,其中的 TCPED 階段可視為構成伯克等人[6]團隊適應模型的不同階段: SA、計劃制定、計劃執行和團隊學習(可以是評估收集處理、利用和傳播(CPED)是否有助于解決任務)(見下圖 1)。單個 PED 單元的這種相對線性的團隊流程也應結合其在多團隊系統中與其他團隊(單元)的協作來看待,即多個團隊為實現共同目標而集成工作[7]。涉及多個 PED 單元的聯合 PED 對于確保收集必要數據以獲取可采取行動的情報尤為重要。我們預計,由于不同的原因,計劃中的監委會審查流程可能并不總是按照預期的計劃方式可行。例如,從任務的角度來看:一個 PED 單元在執行任務期間的實際工作量可能會嚴重影響其參與整個聯盟聯合監 督和報告進程的能力。北約的事先規劃可在一定程度上減少這一因素,但不能完全消除不確定性。其他一些因素也可能對事先規劃的聯合監查制度進程構成挑戰:如各 PED 單元的動機、經驗、對任務的不同理解程度等。因此,我們認為HF的影響不僅與在單個小組內實現聯合監委會進程的總體目標有先后關系,而且在很大程度上以其他無意方式影響了北約的整體聯合監委會進程。另一方面,所述的監委會進程不一定會因這些障礙而改變,因為這可能取決于多個國家政策、執行和評估小組內部和之間協調和信任的有效性。

在不同的章節中,我們闡述了個人和人際因素、組織因素、文化因素、任務因素、系統因素和團隊因素如何影響聯合監委會。這些輸入因素預計會影響監委會的程序及其在監委會內部以及向外部組織要素(如聯合目標或情報界)提供可用結果的能力,進而影響諸如共享情況意識、數據分析、信息共享和決策以及任務完成的準確性和速度等輸出因素。圖 1 描繪了輸入和輸出因素之間的擬議聯系;該圖概述了本報告研究的所有因素。藍色和帶下劃線的因素是經過實證研究的因素。在隨后的章節中會有更詳細的理論介紹,其中還包括更詳細解釋一般模型中提出的各因素之間擬議相互關系的模型。

付費5元查看完整內容

如果海軍陸戰隊要與近似對手競爭,海軍陸戰隊必須將人工智能(AI)作為一種決策支持系統(DSS),以加快規劃-決策-執行(PDE)周期,從而在認知、時間和致命性方面取得優勢。

信息系統和監視技術正在改變戰爭的特點,使較小的部隊也能分布和影響較大的區域。但是,目前的指揮、控制、通信、計算機、情報、監視和偵察系統(C4ISR)以及機器人和自主系統(RAS)都是人力密集型系統,會產生大量數據,海軍陸戰隊必須迅速利用這些數據來提供可操作的情報。由于遠征高級基地行動(EABO)要求部隊規模小、分布廣、復原力強,必須迅速做出明智決策,才能在各種不斷發展和演變的威脅面前生存下來,因此這就存在問題。

使用數據分析和機器學習的人工智能處理、利用和傳播信息的速度比人類更快。配備了人工智能 DSS 的 EAB 指揮官將以比對手更快的速度做出更明智的決策。然而,在實現這一目標之前,目前還存在著巨大的障礙。海軍陸戰隊必須為 EABO 制定一個人工智能支持概念,并將其納入海軍作戰概念中,充分確定人工智能工作的優先次序和資源,并為企業數據管理提供資源,以最大限度地利用數據分析和機器學習來發現數據庫中的知識(KDD)。此外,海軍陸戰隊必須利用美國陸軍的人工智能實驗和概念開發來實現多域作戰(MDO)。最后,海軍陸戰隊應確定當前可通過狹義人工智能加以改進的技術和作戰領域。

引言

指揮、控制、通信、計算機、情報、監視和偵察(C4ISR)以及機器人和自主系統(RAS)技術的普及正在改變戰爭的特點,使較小的部隊能夠分布和影響更大的區域。然而,作戰期間收集的數據正在迅速超越人類的認知能力。早在 2013 年,美國國防部就指出:"ISR 收集和......收集的數據急劇增加。我們繼續發現,我們收集的數據往往超出了我們的處理、利用和傳播能力。我們還認識到,就戰術層面的分析人員數量而言,PED 的資源需求可能永遠都不夠"。

如果能迅速加以利用,C4ISR/RAS 數據將為指揮官提供戰勝敵人的信息優勢。但是,從這些來源獲取及時、可操作的情報需要大量人力,而且必須通過人工手段對數據進行快速處理、利用和傳播(PED)才能發揮作用。如果遠征軍要通過 C4ISR 與近鄰競爭并獲得競爭優勢,這對海軍陸戰隊來說是個問題。這些豐富的信息可以加快計劃-決策-執行(PDE)周期,但如果不加以管理,就會使領導者被信息淹沒,猶豫不決。必須采取相應措施,利用新技術實現數據自動化和管理。如果海軍陸戰隊要與近似對手競爭,海軍陸戰隊必須將人工智能(AI)作為決策支持系統(DSS),以加快 PDE 周期,從而在認知、時間和致命性方面取得優勢。

本文旨在證明,利用人工智能技術可加快指揮官在其環境中的觀察、定位、決策和行動能力。本文承認,但并不打算解決射頻通信、信息系統和組織變革中出現的技術問題的重大障礙。本文分為四個不同的部分。第一部分重點討論不斷變化的安全環境和新興技術帶來的挑戰,以及這些挑戰將如何影響指揮官。第二部分討論技術解決方案、決策模型,以及人工智能作為 DSS 如何為 EAB 指揮官創造認知、時間和致命優勢。第三部分將在未來沖突中,在 EAB 指揮官很可能面臨的假想作戰場景中說明這種系統的優勢。最后一部分重點討論了實施過程中遇到的障礙,并對今后的工作提出了建議。

第 I 部分:新的安全環境和新出現的挑戰

自 2001 年以來,海軍陸戰隊在 "持久自由行動"(OEF)、"伊拉克自由行動"(OIF)和最近的 "堅定決心行動"(OIR)中重點打擊暴力極端組織(VEO)和反叛亂戰爭。美國武裝部隊所處的是一個寬松的環境,有利于技術優勢、不受限制的通信線路和所有領域的行動自由。隨著 2018 年《國防戰略》(NDS)和海軍陸戰隊第 38 任司令官《司令官規劃指南》(CPG)的出臺,這種模式發生了變化,《司令官規劃指南》將大國競爭重新定為國家國防的首要任務,并將海軍陸戰隊重新定為支持艦隊行動的海軍遠征待命部隊。

為了支持這一新的戰略方向,海軍陸戰隊開發了 "先進遠征作戰"(EABO),作為在有爭議環境中的瀕海作戰(LOCE)和分布式海上作戰(DMO)的一種使能能力。EABO 為聯合部隊海上分隊指揮官或艦隊指揮官提供支持,在反介入區域拒止(A2/AD)環境中提供兩棲部隊,以獲取、維持和推進海軍利益,作為控制海洋的綜合海上縱深防御。然而,EABO 對部隊提出了一些必須考慮的具體挑戰。這些挑戰包括在所有領域與近似對手的競爭、對新興技術的依賴、人員與能力之間的權衡,以及地理距離和分布式行動帶來的復雜性。總的主題是如何通過在關鍵點上集成人工智能技術來克服這些挑戰,從而增強指揮官的 PDE 循環。

處理開發傳播 (PED) 問題

如果情報驅動軍事行動,那么海軍陸戰隊就會出現問題。如前所述,數據收集的速度超過了戰術層面的處理、利用和傳播(PED)過程。數據本身是無用的,必須經過組織和背景化處理才有價值。根據認知層次模型(圖 1),數據和信息對形成共同理解至關重要。聯合情報流程通過規劃和指導、收集、處理和利用、分析和制作、傳播和整合以及評估和反饋這六個階段來實現這一目標。C4ISR/RAS 的擴散擴大了收集范圍,但 PED 卻沒有相應增加。除非采取措施實現信息管理自動化,否則指揮官將面臨信息超載和決策癱瘓的風險。

信息超載是指由于一個人無法處理大量數據或信息而導致的決策困難。 羅伯特-S-巴倫(Robert S. Baron)1986 年關于 "分心-沖突理論"(Distraction-Conflict Theory)的開創性研究表明 執行復雜任務的決策者幾乎沒有多余的認知能力。由于中斷而縮小注意力,很可能會導致信息線索的丟失,其中一些可能與完成任務有關。在這種情況下,學習成績很可能會下降。隨著分心/干擾的數量或強度增加,決策者的認知能力會被超越,工作表現會更加惡化。除了減少可能關注的線索數量外,更嚴重的干擾/中斷還可能促使決策者使用啟發式方法、走捷徑或選擇滿足型決策,從而降低決策準確性。

鑒于 Baron 的結論,C4ISR/RAS 將降低而不是提高戰術指揮官的決策能力。筆者在擔任海軍陸戰隊作戰實驗室(MCWL)科技處地面戰斗部(GCE)處長期間進行的研究證實了這一結論。2013 年,海軍陸戰隊作戰實驗室 (MCWL) 開展了戰術網絡傳感器套件 (TNS2) 有限技術評估 (LTA)。一個海軍陸戰隊步槍連及其下屬排配備了空中和地面機器人、地面傳感器以及戰術機器人控制器(TRC)。戰術機器人控制器使一名操作員能夠在白天或黑夜,在視線范圍外同時控制多輛戰車進行 ISR。MCWL 將這種 ISR 形式命名為多維 ISR(圖 2)。LTA顯示,使用TNS2的排級指揮官在防御、進攻和巡邏時都能迅速發現威脅,但LTA也發現了兩個重大問題:1.在軟件和機器人能夠自主分析和關聯傳感器輸入之前,海軍陸戰隊員仍需收集和整理ISR數據;2.在中高作戰壓力下... 在中度到高度的作戰壓力下......操作人員會超負荷工作......無法探測和識別目標,并普遍喪失態勢感知能力。

海軍陸戰隊情報監視和偵察--企業(MCISR-E)正在通過海軍陸戰隊情報中心(MIC)、海軍陸戰隊情報活動(MCIA)與戰斗支援機構(CSA)和國家情報界(IC)連接,納入預測分析流程,以解決這些問題。通過海軍陸戰隊情報活動(MCIA),MCISRE 解決了全動態視頻(FMV)聯合 PED 支持問題,并于 2017 年成立了全動態視頻聯合 PED 小組,該小組具有全面運作能力,每周 7 天提供 12 小時支持,費用由 14 名分析員和 3 名特派團指揮官承擔。

雖然這是朝著正確方向邁出的一步,但由于人力需求量大,這可能證明是不夠的。EAB 指揮官必須依靠地理位置相隔遙遠的上級總部提供的、通過有爭議的電磁頻譜傳輸的情報成品。海軍陸戰隊司令部的 MIX 16(海軍陸戰隊空地特遣部隊綜合演習)實驗結果證實了這一結論: "未來戰爭將在具有挑戰性的電磁環境中進行,分布在各地的部隊......從上級總部 "伸手回來 "獲取日常情報援助的能力可能有限,而且無法依賴"。此外,在戰術和作戰層面增加更多的分析人員會導致循環報告,這只會加劇信息超載問題。

EABO/分布式作戰 (DO) 困境

根據《EABO 手冊》,EAB 必須 "產生大規模的優點,而沒有集中的弱點"。美國陸軍在 2016 年進行的實驗表明,較小的單位有可能分布并影響較大的區域(圖 3)。有人無人協同作戰概念(MUMT)認為,采用縱深傳感器、縱深效應和支援行動的部隊可實現戰斗力并擴大其影響范圍。

然而,DO 和 EABO 是零和博弈。C4ISR 和 RAS 技術可以讓部隊分布得更遠,但實驗表明,規模經濟會喪失。增加兵力將增加所有領域的需求。正如皮涅羅在 2017 年的一篇研究論文中總結的那樣:"當部隊分散時,就會失去指揮與控制、情報和火力等輔助功能的效率。"在后勤方面也是如此。這種 "DO 困境 "可以用以下經過修訂的 "三重約束范式 "來表示(圖 4)。隨著部隊的分散,一個領域的整合將削弱另一個領域的能力。如果 EAB 指揮官能在不增加 EAB 占地面積的情況下提高能力,就能重新獲得規模經濟效益。智能技術整合可以解決這一問題。

第II部分:融合技術、決策和概念

人工智能展示了解決 PED 問題和 EABO/DO 困境的最大潛力,同時為指揮官提供了對抗性超配。據審計總署稱,"人工智能可用于從多個地點收集大量數據和信息,描述系統正常運行的特征,并檢測異常情況,其速度比人類快得多"。由聯合規劃流程(JPP)提供信息的人工智能系統可以產生更快、更明智的 PDE 循環。如果海軍陸戰隊想要實現 EABO,就不能僅僅依靠人類。相反,未來的關鍵在于如何利用人工智能來增強人類的決策能力。

決策和決策支持系統

研究表明,人類的決策并不完美,在復雜和緊張的情況下會迅速退化。人類的決策在很大程度上是憑直覺做出的,并在進化過程中不斷優化,通過使用判斷啟發法(偏差)來防止認知超載。偏差是快速決策的捷徑,它根據以往的經驗和知識做出假設。36 偏差是一種快速決策的捷徑,它根據以往的經驗和知識做出假設。雖然這些決策已經過優化,但并沒有參考因啟發式方法而被否定的大量數據。由于這些決策都是基于以往的經驗和現有的知識,人們在面對混亂的新情況時可能毫無準備。如前文所述,這對 EAB 指揮官來說是個問題。決策支持系統可以提供幫助。

決策支持系統可以是一個人用來提高決策質量的任何方法。海軍陸戰隊營長利用其參謀人員和聯合規劃流程 (JPP) 提供專家判斷來提高決策質量,而商業部門也越來越依賴于決策支持系統和人工智能來處理大量數據。在本文中,決策支持系統被定義為 "幫助用戶進行判斷和選擇活動的基于計算機的交互式系統",也被稱為基于知識的系統,因為 "它們試圖將領域知識形式化,使其適合于機械化推理"。大多數 DSS 都采用西蒙的有限理性理論(Theory of Bounded Rationality)來建模,該理論承認人類在信息、時間和決策認知方面的局限性。西蒙提出了一個四步模型(圖 5),包括:1.觀察現實的智能;2.制定和衡量標準和備選方案的設計;3.評估備選方案和建議行動的選擇;以及 4.根據信息采取行動的實施。4. 執行,根據信息采取行動,最后反饋到第一步。

指揮官決策的兩個關鍵要素是選擇活動和推理。選擇活動,也稱為選項意識,是指在某種情況下對不同行動方案或備選方案的認識。選擇意識為指揮官提供了通往解決方案的不同途徑。能夠自主分析海量數據的 DSS 可能會揭示出以前不知道的選項。推理是一種邏輯思維能力。通過構建決策過程,數據支持系統可以不帶偏見和感情色彩地對數據得出結論。一些研究表明,在現實環境中,簡單的線性決策模型甚至優于該領域的專家。

DSS 有不同的類型,而類型決定了其性能和對人類增強的效用。智能決策支持系統(IDSS)是與作戰行動最相關的系統,因為它使用人工智能技術和計算機技術來模擬人類決策,以解決實時復雜環境中的一系列問題。在本文中,它將被稱為人工智能決策支持系統或 AI-DSS。它由一個數據庫管理系統(DBMS)、一個模型庫管理系統(MBMS)、一個知識庫和一個用戶界面組成,前者用于存儲檢索和分析數據,后者用于獲取結構化和非結構化數據的決策模型。人工智能-決策支持系統結合了人類構建問題結構的能力,以及通過統計分析和人工智能技術來支持復雜決策的系統,從而壓縮了 PED 流程(圖 6)。

人工智能輔助OODA循環

約翰-博伊德上校(美國空軍退役)被譽為機動作戰條令及其相應心理過程模型的主要作者之一。通過對實驗性戰斗機的研究,他認識到 "錯配有助于一個人的成功和生存,以及敏捷性和節奏之間的關系,以及如何利用它們使對手的感知現實與實際現實相背離"。為了解釋這些不匹配,他提出了一個 PDE 循環,后來被稱為 OODA(觀察、定向、決定和行動)循環(圖 7)。博伊德認為,誰能通過歸納或演繹推理更快地執行這一過程,誰就能獲勝。通過將人工智能融入 OODA 循環,EABO 指揮官可以獲得對敵決策優勢。正如伯杰司令在其規劃指南中所說:"在任何規模的沖突環境中,我們必須比對手更快地做出并執行有效的軍事決策。

更好的信息和選擇有助于做出更迅速、更明智的決策,同時減輕認知負擔。EAB 部隊將面臨超音速和潛在的高超音速武器,這將使他們幾乎沒有時間做出充分知情的決策。EAB 指揮官將被迫利用大量有人和無人傳感器平臺感知威脅,并迅速確定行動方案。

人工智能輔助 OODA 循環(圖 8)直觀地描述了 EAB 指揮官如何借助人工智能技術做出決策。它將博伊德的 OODA 循環作為指揮官 PDE 循環的基礎。這反映出指揮官是決策過程的中心,也是情報和決策支持的主要消費者。下一層是國家情報總監辦公室(ODNI)的六步情報循環,用于將數據處理成情報。下一層是西蒙的有界理性模型,用于描述 AIDSS 如何嵌套在 EAB 指揮官的決策框架中。最后,使用狹義人工智能增強的外部代理被疊加以代表物理工具(如 RAS、武器系統、AI-DSS 和圖形用戶界面 (GUI))。在關鍵點集成狹義人工智能,以實現傳感器操作和利用、數據和情報的 PED 以及武器使用的自動化,從而減少人力并壓縮 PDE 周期時間,為指揮官創造可利用的優勢窗口。

作戰概念

由于 EAB 指揮官將在一個簡樸、分散和資源有限的環境中工作,他必須重新獲得在這些方面失去的效率,以超越對手。AI-OODA 循環將按以下方式解決問題。在執行任務前,指揮官進行任務分析/人員規劃流程,以確定指揮官的關鍵信息需求(CCIR)(優先情報需求(PIR)/友軍情報需求(FFIR))以及與上級總部意圖相關的任務(作戰空間的情報準備(IPB)、行動區域、任務、約束/限制等)。

在步驟 1. 觀察階段,指揮官收集有關作戰環境、敵我態勢和友軍態勢的數據,以驗證 IPB 中的基準假設并更新態勢感知。為此,將利用國防部云服務和配備計算機視覺和機器學習技術的無人系統提供的多源情報,自主分析環境,查找 CCIR。這些系統在收集和識別 CCIR 時,可根據威脅程度和排放控制(EMCON)狀態采取兩種行動方案:1. 從云和/或邊緣 AI 平臺(AI-DSS)分發/縮減信息;2. 限制通信并返回基地進行開發。從這一過程中收集到的數據將反饋到第二階段--定向,以確定其意義和相關性。

在步驟 2. 在第 2 步 "定向"階段,指揮官要對收集到的大量數據進行意義分析,以便做出適當的決策。隨著數據池的不斷擴大,第一步的輸出結果必須由人工進行處理,這將耗費大量的時間和資源。如果處理不當,指揮官就有可能因信息過載而無法確定行動方案。研究表明,在面臨信息超載等人類認知極限時,人們會使用次優的應對策略,從而導致認知偏差。第二步是當前流程中的瓶頸,也是人工智能輔助決策支持系統(AI-DSS)緩解信息過載和縮短 PDE 周期的理想場所。

AI-DSS 的優勢在于它可以自主地以數字方式整合來自無限量來源的數據,包括多源情報、RAS、鄰近邊緣 AI 節點、開放源數據以及最終基于國防部云的服務,以生成決策輔助工具、預測性威脅預報或響應行動方案。通過監控這些來源,人工智能可利用 KDD 推斷出模式和意義,以探測敵方意圖,并在人工智能-OODA 循環的第 4 步中利用 F2T2EA(發現、修復、跟蹤、瞄準、交戰、評估)的殺傷鏈模型做出反應。與計算機網絡防御(CND)中使用的技術類似,EABO 部隊可以探測敵人的行動,將敵人的殺傷鏈指標與防御者的行動方針聯系起來,并識別出將敵人的個別行動與更廣泛的戰役聯系起來的模式,從而建立起陸基情報驅動的 SLOC(海上交通線)防御(IDSD),以控制當地海域。現在,他的情報系統已獲得最佳數據,并輔以人工智能生成的行動方案 (COA),為第 3 步 "決定 "做好準備。

在步驟 3. “決定”步驟中,指揮官現在可以決定采取何種行動方案來實現預期結果。AI-DSS 可以推薦 COA、確定成功概率并建議后續行動或對手行動。通過圖形用戶界面,她的決定可以在整個梯隊中傳達,并傳遞給 RAS 平臺,從而在分布式作戰空間中形成一個綜合的有人無人團隊。

在步驟 4.“ 行動”中,指揮官正在執行任務,并利用反饋機制為其下一個決策周期提供信息,該決策周期已通過綜合通信、火力和指揮控制網絡進行了溝通,以確定可用和適當的武器系統。人工智能 OODA 循環將循環往復地進行下去,直到指揮官達到預期的最終狀態或情況不再需要采取戰術行動。通過利用人工智能作為 DSS,指揮官實現了以下目標:

1.融合--在梯隊中快速、持續、準確地整合來自所有領域、電磁頻譜(EMS)和信息環境的內部和外部能力;

2.優化 - 在正確的時間,以最有效和最高效的方式,向正確的目標提供效果的能力;

3.同步--將態勢感知、火力(致命和非致命)和機動結合起來進行滲透和利用的能力;以及

4.感知和行動速度--在沖突的各個階段都能識別和直觀地看到導致領域優勢和/或挑戰的條件,并采取相應行動;

確信所有數據點都以不偏不倚的方式加權,且周期速度快于敵方。

第 III 部分:關于人工智能輔助 EABO 的小故事

本節將通過一個小故事來解釋人工智能-OODA 循環系統在未來沖突中如何運作,從而將前面討論的主題結合起來。本節旨在從概念上向讀者概述如何使用該系統、它能解決哪些挑戰以及它能創造哪些機遇。

第 IV 部分:障礙和建議

有幾個問題不是本文的主題,但卻是接受和開發 AI-DSS 的重大障礙。將精力和資源集中在這些領域將激發行業解決方案,并協助海軍陸戰隊制定必要的政策、程序和戰術,以實現這一概念,并使海軍陸戰隊與國防部的人工智能戰略保持一致。

第一個問題是 EABO 的人工智能支持概念。如果對問題沒有清晰的認識,海軍陸戰隊就無法在技術、培訓和實驗方面進行適當的投資。一個可以考慮的途徑是與美國陸軍合作。2019 年 8 月,陸軍未來司令部發布了《2019 年未來研究計劃--人工智能在多域作戰(MDO)中的應用》。MDO 是聯合部隊的一個概念,海軍陸戰隊可以輕松嵌套在遠征梯隊中。這項研究通過戰爭游戲得到加強,概述了在 A2/AD 環境中建立人工智能能力的要求、優勢/劣勢和作戰案例。

第二個問題是海軍陸戰隊人工智能的資源配置。國防部人工智能戰略的美國海軍陸戰隊附件在 MCWL 設立了人工智能利益共同體(COI)和人工智能處,以確定人工智能工作的優先順序和同步性,并制定海軍陸戰隊人工智能戰略。這是一個良好的開端,但還不足以滿足人工智能運作所需的資源。海軍陸戰隊必須利用美國陸軍在多域作戰中開展的人工智能工作的范圍和規模,加速技術成熟、實驗和部隊發展。軍事、戰爭和后勤部人工智能有限技術評估應重點關注人工智能-DSS 如何能夠實現、改進或完全修改與 ISR-Strike、C2、維持和部隊保護相關的任務執行。2020 年有機會與陸軍人工智能任務組 (A-AITF) 就其 20 財年人工智能操作化研究計劃開展合作。

第三個問題是企業數據管理。國防部在匯集數據并將其組合成可用的形式方面舉步維艱。為了解決這個問題,國防部數字化現代化戰略要求提供企業云數據服務,也稱為聯合企業防御基礎設施(JEDI)。司令還認識到海軍陸戰隊在數據收集、管理和利用方面的不足,以促進更好的決策。機器要進行 KDD,必須有大量可用的數據集。海軍陸戰隊必須以人工智能-DSS 和其他深度學習技術能夠利用的方式構建其數據,以獲得業務收益。

第四個問題是對人工智能技術的信任。根據美國政府問責局的說法,人工智能正在接近第三次浪潮,但并非沒有嚴重障礙: "第三波人工智能的一個重要部分將是開發不僅能夠適應新情況,而且能夠向用戶解釋這些決策背后原因的人工智能系統"。目前的深度學習方法具有強大的分析能力,但有時會產生不尋常的結果。要讓指揮官信任并在軍事行動中使用 AI-DSS,就必須具備解釋人工智能如何得出答案的能力。可解釋的人工智能是國防部和商業部門共同關注的問題,而商業部門正在牽頭研究可能的解決方案。53 可解釋的人工智能是國防部和商業部門都關注的問題,而商業部門正在引領可能的解決方案研究。了解為什么會做出好的或壞的決策,會讓人對技術產生信任,這對軍事行動至關重要。

第五個問題是邊緣計算,即 "將計算能力下推到數據源,而不是依賴集中式計算解決方案"。這是必要的,因為電磁頻譜將受到爭奪,機器將無法依賴一致的通信和基于云的計算。數據網絡架構將需要重組,以便變得更加分散,并可抵御災難性損失,每個邊緣設備都應能夠與相鄰節點進行網狀連接和通信。在實踐中,數據連接將根據威脅環境從完全連接到拒絕連接的滑動范圍進行。這樣,AI-DSS 就能對本地收集的數據進行快速、實時的 PED,為 EAB 指揮官的決策周期提供支持。此外,國防部必須在戰術邊緣提供基于云的服務,并采用 5G 數據傳輸速率,以機器速度和低延遲充分利用人工智能和 RAS。同樣,這也是與美國陸軍在多域作戰方面的合作領域。

第六個問題是,這在以前已經嘗試過。2002 年,美國國防部高級研究計劃局(DARPA)創建了 PAL(個性化學習助手)計劃,作為一種認知計算系統,它可以通過學習來協助用戶完成任務,從而做出更有效的軍事決策。其主要目標之一是減少對大量人員的需求,從而使決策更加分散,不易受到攻擊。PAL 的一些功能包括將多源數據融合為單一饋送,這些功能已過渡到蘋果 Siri 個人助理和美國陸軍的未來指揮所 (CPOF) 計劃。筆者無法獲得有關 PAL 計劃局限性的詳細信息,但陸軍認識到遠征決策支持系統的必要性,目前正在精簡 CPOF。指揮所計算環境(CPCE)將多個環境整合為一個單一的用戶界面,整體重量從 1200 磅減至 300 磅,主要用于移動作戰。這是朝著正確方向邁出的一步,也是陸軍和海軍陸戰隊的潛在合作領域。

最后,MCWL 應研究在 RAS、計算機視覺、機器學習和數據分析方面的狹窄人工智能領域,這些領域可立即應用于減少指揮官的認知負荷。

結論

當前的 C4ISR/RAS 是勞動密集型的,會產生大量數據,必須迅速加以利用,才能為海軍部隊提供可操作的情報。使用數據分析和機器學習的人工智能可以比人類更快地處理、利用和傳播信息。配備了人工智能信息系統的 EAB 指揮官將以比對手更快的速度做出更明智的決策。然而,在實現這一目標之前,目前還存在著巨大的障礙。展望未來,海軍陸戰隊必須制定一個與海軍作戰概念相匹配的海軍陸戰隊作戰概念,對人工智能工作進行充分的優先排序和資源配置,對企業數據管理進行資源配置,以最大限度地利用數據分析和機器學習來發現數據庫中的知識(KDD),并利用美國陸軍的人工智能實驗和概念開發來實現多域作戰(MDO)。此外,海軍陸戰隊應確定當前可通過狹義人工智能加以改進的技術和作戰領域。

海軍陸戰隊不能再依賴過時的決策支持系統和信息管理方法來進行戰術決策。隨著友軍和敵軍利用技術獲取戰術利益,指揮官的信息負荷將繼續增加。人工智能決策支持系統可以解決這個問題。軍事指揮與控制發展計劃》(MCDP 6)指出了這一點的必要性:"無論時代或技術如何發展,有效的指揮與控制都將歸結為人們利用信息做出明智的決定和行動....,衡量指揮與控制有效性的最終標準始終如一:它能否幫助我們比敵人更快、更有效地采取行動?

付費5元查看完整內容

未來的戰場是一個將受到近鄰對手快速變化的技術能力嚴重影響的戰場。在這種環境下的成功將需要簡單易用的系統,它能適應各種情況,并能與其他部隊和系統整合。多域作戰指揮、控制、計算機、通信、作戰系統和情報(MDOC5i)旨在為海軍陸戰隊準備未來的戰場。由于傳統的機器學習技術存在某些缺點,MDOC5i使用矢量關系數據建模(VRDM),為海軍陸戰隊提供適合動態部署的系統。MDOC5i使用全球信息網絡架構(GINA)作為其VRDM平臺。這項研究使用GINA創建了一個無處不在的決策模型,可以根據美國海軍陸戰隊的場景進行配置。該研究實現了無處不在的模型,并通過一個網絡分析用例證明了其功能。這個決策模型將作為所有GINA實施的基礎模型。快速構建和調整基于場景的GINA模型并將這些模型整合到一個共同的框架中的能力將為海軍陸戰隊提供對抗未來對手的信息優勢。

圖. 超圖描繪了構成 GINA 決策模型的關鍵實體。這是圖 3.2 中描述的“決策者信息”部分的細分。影響力的三個主要領域是現實世界、網絡和網絡。本論文中的模型將僅包含網絡類別的一部分,特別是 XMPP 流量。這三個領域應被視為為大規模網絡診斷設計的決策模型的起點。

引言

在最近的沖突中,美國能夠承擔對其敵人的技術優勢[1]。然而,由于美國已經將重點從反叛亂(COIN)行動轉移到與近距離對手的沖突上,這是一種不能再假設的奢侈。美國和國防部必須不斷尋求獲得并保持對近距離對手的技術優勢。所有軍種的指揮官都強調了這一點,包括司令部的規劃指南[2]。網絡戰場是一個日益復雜和快速發展的領域,在戰爭中從來沒有出現過像現在這樣的能力。目前的對手既有掌握該空間的愿望,也有掌握該空間的能力[1]。人機交互(HCI)將是在未來沖突中實現信息主導的關鍵。人機交互融合了計算機科學、認知科學和人因工程,以 "專注于技術的設計,特別是用戶和計算機之間的互動"[3]。我們必須掌握人機交互,以協助指揮官并保持對敵人的優勢

美國海軍陸戰隊(USMC)沒有很好的裝備來在網絡領域取得成功。美國海軍陸戰隊訓練和教育司令部(TECOM)已經將這一能力差距確定為一個主要的問題聲明:"海軍陸戰隊沒有接受過應對同行威脅的訓練,在這種情況下,我們不再享有數量或技術優勢的歷史優勢。為了在未來的戰場上取勝,我們必須提供一個學習框架,以發展適應性和決定性的海軍陸戰隊,并提供訓練環境,以產生能夠產生決定性效果的互操作單位"[4]。

信息技術的進步產生了一個以網絡為中心的應用框架[5],可以幫助縮小能力差距,使美國海軍陸戰隊保持對對手的網絡優勢。

1.1 MDOC5i

在為滿足指揮官的指導并使美國海軍陸戰隊為網絡戰場做好準備而采取的舉措中,海軍陸戰隊已經建立了多域作戰指揮、控制、計算機、通信、作戰系統和情報(MDOC5i)。MDOC5i是一個基于陸軍網絡信息管理環境(ANIME)的系統,提供了一個以網絡為中心的因果動態數字孿生環境。利用基于實體的模擬,MDOC5i提供以網絡為中心的互操作性和決策模型,可以增強多域作戰(MDO)[6]。MDOC5i計劃 "提供基層開發的技術,使操作人員能夠'推斷和適應'不斷變化的戰斗空間的需求" [7]。MDOC5i確定了需要改進的三個問題領域:互操作性、信息處理和利用,以及文化轉變[7]。

隨著戰場的不斷發展,聯合解決方案將是獲得優勢的關鍵。這些互操作性的解決方案將依賴于網絡和通信能力。互操作性是指與整個服務的各種通信系統相關的所有設備之間的通信能力。因此,目前在互操作性方面的差距需要被彌補,以進行聯合行動。系統之間的互操作性還沒有通過一個標準化的通用方法來實現[7]。MDOC5i認為這個問題的根源在于,當前系統所使用的所有網絡都被認為是彼此獨立的領域,而不是一個統一的作戰指揮和控制(C2)系統[7]。

MDOC5i解決的下一個問題是信息處理和利用。這個問題指的是目前整個海軍陸戰隊沒有能力處理大量的信息。數據通常很豐富,而且隨著傳感器能力的增長,數據會越來越豐富,但很難分析所有的數據并從噪音中分出有用的數據。鋪天蓋地的數據如果不進行適當的分析,對決策過程是無用的,甚至是有害的。這個問題被具體描述為:"當前行動和數據收集的速度超過了我們處理、識別和獲取可操作情報的能力,以快速評估、調整和修改計劃和實時COA,從而優化部隊投射、殺傷力,并實現持久的超額配給"[7]。

為了提高處理越來越多的數據和跟上快速發展的戰場的能力,作戰人員需要關注人機互動。這種關系對于能夠在可操作的時間范圍內將大量的數據轉化為有用的信息,從而做出更好的決定至關重要。更好的人機交互可以幫助確保 "數據處理和決策的速度與行動的速度相稱" [7]。

解決的最后一個問題,即文化轉變,涉及美國防部需要調整其在數據整合和聯合行動方面的重點。雖然國防部致力于為作戰人員提供可操作的情報,但其方法是無效的和低效的[7]。此外,各個軍種制定了自己的就業方法和情報方式,這往往會導致聯合行動的無效性。為了在目前存在的動態戰場上作戰,各軍種必須共同努力,"使能力與任務、標準操作程序、訓練戰術和協議、采購和部署政策以及作戰部隊的整體文化相一致" [7]。

1.2 MDOC5i應用于海軍陸戰隊

5月9日至5月13日,MDOC5i在海軍陸戰隊空地作戰中心(MCAGCC)二十九棕櫚島與第七海軍陸戰隊進行了演示。這次初步測試的目的是展示MDOC5i所帶來的增強的火力能力,并確定MDOC5i通過提供共同情報圖像(CIP)--共同作戰圖像(COP)和決策支持來增強整個海軍陸戰隊空地特遣部隊(MAGTF)的MDO的可行性。

在MCAGCC Twenty-Nine Palms進行的MDOC5i演習成功地描述了該系統的防火能力。MDOC5i系統使用最先進的掃描機制和瞄準系統,將標準裝備的區域射擊武器轉變為精確射擊武器平臺,能夠在幾乎沒有歸零的情況下有效地攻擊目標。雖然這本身就大大增加了海軍陸戰隊的殺傷力,但增強的火力能力僅僅是MDOC5i概念所提供的效用的開始。底層系統使用全球信息網絡架構(GINA),一個矢量關系數據建模(VRDM)平臺,以使所有通過網絡連接的單位都能獲得準確的COP和CIP。這在戰場上提供了一個優勢,因為所有單位都獲得了意識,并將能夠為共享系統提供輸入,從而產生最準確的CIP-COP。

這些投入可以用來幫助決策和影響有利于沖突空間競爭的活動。

這一過程的關鍵使能部分之一是GINA內的決策模型,它能使人采取行動。在二十九棵樹的演示中,海軍陸戰隊員被展示了使用標準武器系統對選定目標進行第一輪射擊的能力。選定的目標出現在通過網絡連接的所有信息顯示器上。為了實現目標定位,GINA模型接受目標的輸入并將信息傳遞給所有用戶。系統首先決定該目標是一個有效的目標還是一個重復的目標。它通過一個專門設計的決策模型來實現這一目標,該模型將確定的目標與其他繪圖的目標進行比較。如果新的目標在指定的距離內,程序會認為它是重復的。這可以防止信息過載,使指揮官對現有的威脅有最準確的描述,以便更好地決定如何使用武器系統來對付敵人的目標。因此,在這個特定的例子中,輸入的是確定的目標位置,決定的是該目標是合法的還是重復的,決定的標準是確定與其他已經繪制的目標的距離,結果是對威脅的準確描述,使海軍陸戰隊能夠最好地與敵人作戰。

在演示中,決策與識別目標有關,而影響的行動與射擊有關。然而,如前所述,增強射擊能力只是MDOC5i通過基于VRDM的GINA平臺所能提供的好處的開始。創建和采用為指揮官提供最新的CIP-COP并幫助決策的模型將對海軍陸戰隊和國防部(DOD)的所有方面都有用。按照目前的情況,每次實施新的模型時,都需要從頭開始創建新的決策模型。

1.3 論文重點和MDOC5i的聯系

海軍研究生院(NPS)論文的目的是在GINA平臺上使用VRDM建立一個不可知的決策模型。重點是該模型的普遍性,以便它可以很容易地被塑造為未來的情景。該決策模型擴展了無處不在的數據表概念,以包含關于數據的信息屬性,并允許通過基于屬性的真值表關系實現來自數據屬性和信息屬性(邏輯類型)的知識屬性。因此,模型將數據轉化為信息,然后從已知的真值(既定協議)中獲取狀態和規定過程的知識,然后模型執行相應的過程。這表明了該方法的普遍性,并使任何數據任務的數據轉化為行動。本論文驗證了使用基于模型的配置方法,該方法由數據、真值表和狀態的概念對象組成,可用于人在/在環的自動數據決定-行動,并可在知識管理圖框架內為任何任務進行管理。

建議的模型在通過分析可擴展消息和存在協議(XMPP)消息來確定網絡健康狀況的情況下進行測試。該模型的輸入是可擴展標記語言(XML)消息,旨在復制大規模戰術網絡的數據包捕獲(PCAP)中捕獲的XMPP消息。雖然網絡診斷分類本身很重要,并證明了功能,但主要的效用將在于決策模型的普遍性。因為該模型是不可知的,它可以很容易地被修改以適應一系列所需的場景。務實地說,它可以作為所有其他GINA實施的基礎模型,使海軍陸戰隊實現信息超配。

1.4 假設和研究問題

本論文的假設是,GINA將被證明是一個高效的平臺,在這個平臺上實現一個可以輕松配置的泛在決策模型,以應對多種情況。在這個假設的核心,主要目標是利用GINA架構成功地設計和實現一個無所不在的決策模型。這項任務已經完成,證明了主要假說的正確性。

本論文的問題包括。

1.無處不在的決策模型能否在GINA的界面中實現?

2.GINA是否為機器學習(ML)提供了一個可行的、可操作的替代方案,該模型是否達到了與傳統機器學習技術相同的效果?

3.該模型是否有切實的方面證明比傳統機器學習技術優越?

4.該模型和GINA平臺能否用于大規模網絡流量分析?

與假設一致,第一個問題是最重要的,并且被證明是正確的。所實施的決策模型應該能夠促進并推動未來的工作。其余的問題涉及模型的可擴展性和與傳統技術相比的性能。雖然這兩個概念都沒有直接解決,但該模型提供了肯定的機會來測試這些概念。

1.5 使用的工具

為了成功地理解決策模型的實施和它可以應用的規模,有必要了解所涉及的工具。其中一些應用在本論文中直接使用。其他的是在MDOC5i中使用的,對于理解這個模型如何推導到多種情況下是很有用的。這些工具也提供了很好的背景,對未來的工作有好處。

1.5.1 全球信息網絡架構

GINA 是一個基于云的、提供可執行建模環境的 VRDM 平臺,該平臺產生的模型能夠進行推理和適應[7], [8]。該架構通過其反思性的、可執行的、基于組件的、與平臺無關的和模型驅動的構造,提供先進的數據、信息和知識的互操作性[9]. 該平臺使用一種語義結構,使應用領域的用戶能夠理解組成的模型組件,并形成具有半知覺行為的系統,這對動態任務需求的適應性和可配置的靈活性至關重要。該創新平臺是松散耦合的,這意味著它可以通過配置創建模型,使用來自遺留系統、現有系統或未來系統的各種輸入[8],而不會破壞或重新編譯。由于概念性的信息對象構造可以臨時引入,并可能存在于任何領域,GINA提供了誘人的可能性,美國防部正在探索這種可能性[2]。

GINA技術由方法論、開發工具和可執行模型的部署平臺組成,可作為軟件程序使用。這些模型不需要被編譯,而是在元數據中定義并實時編譯。該平臺使用通過配置實現的行為、環境和因果的建模概念,以提供定義、操作和互操作性[10]。GINA可以通過其名稱的組成部分進一步理解。"全球 "指的是該平臺通過多層抽象包含了所有的數字表示。"信息 "指的是可以被建模和管理的靜態和動態數據以及互動關系。"網絡 "指的是可以通過模型和圖表顯示、參考和管理的所有互聯關系的數字表示。"架構 "意味著GINA是被使用的系統,專門用于制作行為、背景和因果關系的可執行模型[10]。

第二章將深入討論GINA的優點和特點。

1.5.2 ANIME Dark Stax

Dark Stax是一個由ANIME開發和使用的工具,能夠以接近實時的速度創建復雜系統的數字孿生體。這些數字孿生體可以用來操作克隆的系統進行數據操作和決策分析。這種聯合有助于數據驅動的決策過程。這個工具能夠創建戰術網絡的克隆,并過濾PCAP數據,為網絡診斷模型創建輸入[10]。Dark Stax工具由Ad Hoc維護和運行。他們對該工具的掌握為首要的人工智能(AI)技術和VRDM技術的結合提供了巨大的效用。

1.5.3 StarUML

StarUML是一個開源的軟件建模平臺,支持統一建模語言(UML)[11]。它被設計為支持簡明和敏捷的建模,并提供系統疊加的可視化描述[12]。本文使用UML圖來描述實現的VRDM模型的靜態和動態方面。UML并沒有捕捉到VRDM模型中包含的所有細節,但它確實捕捉到了最重要的信息,并提供了模型中連接的清晰疊加。

在這個項目中,它只被用于GINA模型的可視化和文檔化。然而,我們的意圖是使GINA能夠接受UML設計作為輸入。因此,一個系統可以用UML建模并輸入到GINA中,以放棄配置。

1.5.4 目標光標仿真器

Cursor On Target(COT)"是一個互聯網協議和一個基于XML的機器對機器模式,可以被任何系統讀取和理解,使專有和開放源碼系統能夠相互通信"[13]。模擬器在GINA模型中被用來模擬XMPP流量。XMPP消息的樣本在一個文本文件中生成。然后,Cursor On Target Simulator(COTS)模擬器將文本文檔的內容作為XML輸入到GINA。這個XML是決策模型的輸入。

付費5元查看完整內容

在聯合全域指揮與控制(C2)傳感器網絡和美海軍的 "超配項目"中,無人系統(UxS)是一種共享能力,它擴展了軍事力量的范圍和能力,以加強在有爭議空間的戰術。這增加了對可互操作的網絡框架的研究,以安全和有效地控制分布式無人系統部隊。迄今為止,陳舊的技術、分離和專有的商業慣例限制或掩蓋了對新興產業技術的追求,這些技術提供了當今現代化部隊所需的安全功能,留下了更多的問題而不是事實。此外,UxS的功率和處理限制以及受限的操作環境禁止使用現有的現代通信協議。然而,消息層安全(MLS)的發展,一種安全和高效的團體通信協議,可能是UxS團隊的理想選擇。這篇論文記錄了從一項定性研究中收集到的結果,發現MLS是UxS小組安全和效率的最佳選擇。它還記錄了MLS與ScanEagle無人機(UAV)和海軍信息戰太平洋CASSMIR無人水面艇(USV)的整合。該實施方案提供了一個作戰概念,以證明使用MLS在多域特設網絡配置中為無人機和USV之間提供安全和高效的C2和數據交換。所進行的實驗是在一個虛擬環境和物理UxS中進行的。

引言

對聯合全域指揮與控制(JADC2)架構至關重要的是多樣化的無人系統(UxS)和傳感器。這些不同的設備將使以人機協作為中心的未來海上力量相互連接。

例如,考慮一個聯合全域用例,即無人系統提供針對近距離對手的能力。UxS的指揮和控制(C2)依賴于通信鏈路--其安全性和設計決定了在對手攻擊的情況下的速度、互操作性和傷害能力。相反,在相同的C2通信鏈路中的不足或使用傳統的架構會轉化為戰術和戰略上的劣勢,有可能將傳統的作戰部隊置于危險境地。我們的研究旨在確定和實施一個可行的C2鏈路安全方案,該方案有可能為分布式多域環境中的UxS提供一個安全、可擴展和可互操作的解決方案。

目前,美國防部(DOD)和美海軍部(DON)正在取得重大進展,以利用整個企業的獨特任務和機會[1]。這些新的可能性包括增加對無人系統和傳感器的使用,使之超越目前的使用案例平臺。在實現無人平臺和系統的數據共享時,網絡安全必須被視為眾多核心技術中的重中之重。這些努力必須考慮確保關鍵的推動因素,如網絡、基礎設施和C2,以及強大的安全協議和認證方法。這些考慮將變得至關重要,因為JADC2企業試圖從分離轉向更統一的數據環境,在對手已經開發出高度復雜的反介入和區域拒止(A2/AD)能力的情況下,所有的人都可以訪問[2] 。

在今天的現代戰爭中,作為分布式力量倍增器的UxS將取決于安全和高效的C2。隨著UxS發展的成熟,對互操作性的需求將增加。這項研究分析了當前和新興的安全協議,并將其與JADC2和 "超配項目"的要求相匹配,以評估和確定支持這些要求的最佳屬性和協議。然后,這項工作根據所需的安全排列選擇消息層安全(MLS)協議,以便在UxS平臺上實現可行性,特別是記錄程序ScanEagle無人駕駛飛行器(UAV)。

近鄰的對手繼續追求A2/AD能力,以擊敗傳統的美國軍事力量。假設UxS的網絡和物理安全屬性沒有得到解決或設計得不好。那么其他的核心技術,如定位、導航和定時、可靠性、互操作性、通信以及平臺的感知和決定能力都會退化或受到損害。從目前孤立和陳舊的認證過程遷移到一個有效的集成開發、安全和操作環境,對于成功地將用戶體驗平臺和傳感器納入JADC2環境是至關重要的。這種遷移也受到了挑戰,因為需要從傳統的技術和開發框架迅速發展到快速出現的技術,這些技術更有能力在近距離威脅的進展中保持相關性[3]。解決這一挑戰將需要將技術障礙與文化、財政、程序和政治上的孤島融合起來[4]。一旦美國防部解決了這一挑戰,它將有能力實現無縫整合、同步和安全,這對無人機成為多領域作戰的力量倍增器是必要的。

1.1 問題陳述

在一個技術競爭迅速的時代,JADC2基礎設施依賴于20世紀90年代構思的技術(如IPSec[互聯網協議安全]和TLS[傳輸層安全]),同時被限制在美國家安全局(NSA)制定的通用協議和標準下進行安全通信[5]。這些網絡安全協議是點對點的,每增加一個新的網絡設備,都需要與每一個現有的網絡設備建立單獨的信道,這就是指令概述。盡管在成立之初是最前沿的,但值得注意的是,幾十年后的今天,我們仍然依賴這種點對點的安全連接,在動態自治設備網狀網絡之上強行建立一個高延遲和過時的安全覆蓋層。整合改進不僅需要評估適當的現代替代方案,還需要一個能夠及時有效地用新興的行業解決方案解決UXS安全挑戰的操作授權(ATO)程序。

為了解決這些問題,我們提出了以下研究問題:

  • JADC2和Overmatch項目的C2協議安全要求是什么?

  • 根據在JADC2相關領域工作的國防部主題專家,現代C2安全協議需要哪些功能來滿足JADC2環境的需要?

  • 哪種安全協議能最好地滿足所有這些需求,以及UxS C2鏈接的使用可行性是什么?

1.2 范圍

這項研究支持整個美國防部和美海軍部關于當前規范的討論,不充分的網絡安全做法和認證程序決不能阻礙無人駕駛系統的通信安全的未來狀態。這些方法必須不斷發展,以充分解決我們的傳感器和無人駕駛資產在高度技術性的同行競爭威脅中對速度和安全的日益增長的需求。

這項研究支持整個美國防部和美海軍部關于當前規范的討論,不充分的網絡安全做法和認證程序不得阻礙未來的無人機通信安全狀態。這些方法必須不斷發展,以充分解決我們的傳感器和無人駕駛資產在高度技術性的同行對手威脅中對速度和安全的日益增長的需求。

基于研究結果,一個選定的協議在受控的實驗室環境中被實施、測試并進行虛擬基準測試。在成功完成受控的虛擬測試后,虛擬實施過渡到在NPS自主飛行器研究中心(CAVR)ScanEagle無人駕駛飛行器(UAV)和海軍信息戰中心-太平洋(NIWC-PAC)合作自主系統對峙海上檢查和響應(CASSMIR)無人地面飛行器(USV)上的實際應用。

在本論文中,無人系統和無人車之間沒有任何區別,不分領域,即空中和水面;都被稱為UxS。

然而,在實驗過程中,測試將發生在無人機和USV上。這項研究的目的是解決對不依賴平臺的C2鏈路安全協議解決方案的需求。

通過混合方法(定性和定量)的研究工作,實現以下主要目標是本論文的貢獻

  • 進行定性研究,確定JADC2和Overmatch項目的UxS安全協議需求。

  • 將定性研究結果與對當前軍事和工業安全協議選項的評估結合起來。

  • 為多域作戰(MDO)UxS用例選擇一個可行的安全協議選項。

  • 在最佳網絡條件下實施和評估選定的安全協議,用于UxS模擬。

  • 在ScanEagle和CASSMIR上實施和評估所選擇的安全協議。

1.3 相關研究

UxS的研究空間是巨大和不斷發展的。正如本節所討論的,UxS安全的主題已經在各個研究領域得到了研究和記錄。然而,將不同的協議與軍事要求進行比較,以制定C2協議標準,提高安全性、效率和互操作性的研究有限。盡管如此,選定的先前研究提供了與我們的研究有關或支持我們研究的見解。

來自俄勒岡大學、南佛羅里達大學、海軍研究生院和凱斯西儲大學的研究人員,專注于建立基于性能和安全之間平衡的最有效的密碼文本算法或密碼框架[6]-[8]。這些論文解釋說,我們目前最常用的密碼套件對于小型UxS來說,計算量和功率都太大,例如Craziefile 2.0,它使用ARM Cortex M-4架構,工作頻率為168 MHz。其他研究則是研究用于開發UxS的軟件的安全基元,如機器人操作系統(ROS),并解釋了安全漏洞和緩解措施,以實現無人系統的安全、可靠部署[9]。最后一項研究揭示了這些基礎技術的脆弱性和保護它們的必要性。

從相關的研究來看,重點是尋找最佳的拓撲結構、路由協議或數據信息傳遞,以支持越來越多的無人駕駛系統和傳感器一起工作和運行[10], [11]。這些工作大多旨在通過將傳輸的開銷成本降到最低,找到維持C2的最有效方法[10], [11]。其他的UxS研究課題側重于網絡安全的最佳實踐,強調在無人系統中發現的漏洞到可能的新攻擊載體和可能的緩解技術之間的范圍[12]。

有過多的指導和研究概述了要求和解決方案;然而,沒有一個真正量化了國防部和海軍內部無人系統平臺和傳感器的C2鏈接安全的重要性。更少的指導和研究將協議和算法與這種需求相匹配。相關研究表明,這些觀點并沒有直接涵蓋選擇和使用標準化協議的整體性,以提高UxS C2鏈路安全、效率和互操作性。這些方法考慮了密碼器的內部性能、ROS軟件的安全服務和能力、UxS的脆弱性和整體網絡性能。本論文旨在研究一個標準化安全協議的實施,該協議可以作為應用層的安全軟件,與設備和互聯網協議網絡無關。

有大量的指導和研究概述了UxS的安全需求;然而,沒有一個真正量化了這些軍事用途的安全需求。從美國防部和海軍部的UxS平臺和傳感器的C2鏈路安全的重要性的現實世界經驗。

1.4 論文組織

本論文的其余部分組織如下。

第2章概述了JADC2和Project Overmatch倡議,以了解這些倡議的安全協議要求。本章還討論了美國國家標準與技術研究所(NIST)和美國國家安全局在加密協議的標準化和選擇方面發揮的作用。它回顧了安全通信協議的工業和軍事安全方法、相關性能以及通過使用專有和基于標準的安全協議解決的安全問題。

第3章提供了一個定性研究,包括面向網絡安全的訪談問題。研究的對象是在安全、自主設備和傳感器網絡、獲取或重疊方面有經驗的軍事、民事和承包商人員。從訪談中收集到的數據為國防部和國防部深入了解UxS的通信安全現狀以及相關的網絡安全和認證程序提供了更深的理解。

第4章根據第3章和第2章的結果進行交叉分析,提供了協議的比較和選擇。它討論了專有的和標準化的安全協議,這些協議是第2章中討論的網絡和倡議的關鍵網絡安全組成部分。它還將美國防部和美海軍部的UxS安全要求與定性研究的結果以及所討論的當前和新興的安全協議相匹配,以選擇UxS平臺的C2所需的最有能力的安全協議。

第5章概述了MLS在MDO UxS情況下的方法和實施。它描述了MLS和ROS的結構。它概述了協議功能概述,代碼開發階段,以及為支持實施而創建的核心功能。它還涵蓋了用于創建MLS指揮和控制(C2)應用程序(MLS C2)與ROS接口的分步方法概述。

第6章討論了在5中開發的各種MLS應用程序的實驗,并分析了其對研究用例的影響。這一章包括對測試過程的描述和對結果的描述。

第7章提供了一個結論,涵蓋了本論文研究的意義,對研究進行了總結,并推薦了繼續工作和替代方法的選項。

付費5元查看完整內容
北京阿比特科技有限公司