亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

作為瑞典戰斗機工業薩博航空項目的一部分,進行了這項研究。戰斗機飛行員在敵區空域和空戰的復雜環境中冒險時承受著巨大的壓力。人機交互(HMI)是飛行員和飛機的共同點,它能使任務取得成功,但也有其局限性。自適應人機交互(AHMI)是一種經過改進的人機交互,可以在飛行員所處的環境中為其提供幫助。自適應人機交互有許多任務,但它的優勢在于能夠適應不同的情況,并為飛行員的健康提供幫助。這可以通過信息的適當可視化來實現,也可以通過較少任務的自動化來實現。任務的成功取決于生理參數,如心理工作量和態勢感知,以達到最佳的操作性能。在這篇論文中,我們深入探討了 AHMI 的重要性以及制作和演示 AHMI 所需的要求。將要求映射到模擬器上是推進人工生命監測儀開發的一個重要方面。為了進一步了解該領域并回答研究問題,我們進行了文獻綜述和訪談。受訪者一致認為,映射需求的正確方法取決于需要研究的內容。是圖形組件、原理、功能還是場景?通過文獻對比和訪談主題分析,我們發現需求映射取決于要調查的內容。此外,AHMI 被認為是試點的有效支持系統,自主性在一定程度上是有效的。但是,當自主控制權過大時,飛行員就會失去對態勢的感知能力,從而導致性能下降。在該項目中,受訪者一致認為 AHMI 是推進戰斗機駕駛艙發展的必由之路。

自第二次世界大戰以來,人控機械一直在根據人類的直覺進行改造,并對飛機的人機交互進行了真正的實際試錯(Sears & Jacko, 2016)。在討論操縱作戰飛機的復雜性時,有幾個方面需要加以考慮。無論是在預期情況下,還是在意外情況下,飛行員都承受著巨大的精神和身體壓力。要使飛行員能夠做出最佳決策,從而獲得最佳性能,一種簡便易行的方法就是自適應人機交互(AHMI)。該交互位于駕駛艙內,可提高人與飛機之間的溝通效率和效果。它的設計能夠適應用戶的需求和偏好,使人機交互更加直觀和高效。

飛行員與飛機之間的良好互動現在是、將來也會是在執行任務或使命期間保持最高安全水平的同時實現最高效運行性能的基本支柱(Haider,2022 年)。為提高人機交互的整體適應性而進行的進一步開發具有巨大潛力,可提高飛行員的性能,從而有助于任務期間的安全和效率(Lim 等人,2018 年)。隨著任務的復雜性越來越高,對飛行員的要求也越來越高。因此,設計一個可用且直觀的人機交互(HMI)來傳遞飛行員與機組人員之間的信息以及飛行員與飛機本身之間的信息就顯得尤為重要(Haider,2022 年)。盡管開發出了更先進、更自主的駕駛艙,但事故分析表明,人為錯誤率始終保持在 65%。根據對人為失誤的不同看法,甚至可以說維修人員對飛機進行的錯誤維修也可以算作人為失誤。這就改變了飛行區域內的人為錯誤率,使其達到約 80-90%(蘭德公司,1993 年)。

AHMI 一直是一條顯著而有前途的發展道路。許多財團認為,AHMI 是駕駛艙發展的必由之路。AHMI 可以有不同的外觀和行為,因為對它的解釋方式不同,而且在不同領域也有不同程度的可行性。對于戰斗機來說,它需要直觀并適合使用它的飛行員,以便通過將飛行員和系統更緊密地聯系在一起,盡可能高效地使用系統。另一方面,工業數控機床不需要像駕駛艙那樣快速易用,因為在使用工業機器時,駕駛艙并不那么關鍵或處于復雜的環境中(Haider,2022 年)。

Bradshaw & Boy(2006 年)認為,從人類可靠性的角度來看,設計和使用基于工具或組織的動力有幾個原因。其理念是,軟件和硬件的開發都是為了克服人類的不可靠性,并提供抵抗和容忍人類錯誤的可能性。此外,自動化的使用應與試點工作相輔相成(Bradshaw & Boy, 2006)。這一理念還源于人類飛行員比自動化突擊隊員更有能力做出正確的決定并確定任務訂單鏈的優先次序。如果沒有這種想法,那么就不需要人類飛行員,系統的表現甚至可以與人類飛行員不相上下。

在人工智能概念中,有三個關鍵要素非常突出。它們是:(1)評估系統所處環境狀態的能力;(2)評估駕駛員狀態的能力;(3)人機交互與前兩個要素相關的適應性(Lim 等人,2018 年)。

為了在模擬器中測試、開發和展示 AHMI,那么需求是確定模擬器應確定的內容的可行方法(Davis,2005 年)。在這種情況下,模擬器應被稱為演示器,因為除了上述測試和開發之外,它還展示了模擬的一個特定方面(Moultrie,2015)。

1.1 背景

本論文是瑞典戰斗機工業薩博航空研究的一部分,其目的是為未來戰斗機系統的自適應人機交互提出新概念并進行評估。為此,將使用一個測試環境。本論文旨在以理論為基礎,協助開發這樣一個環境。

1.2 目標與宗旨

本研究的目的是分析文獻中有關 AHMI 和需求工程等方面的理論信息。稍后將進行訪談。這項研究將通過科學家、試飛員和項目中其他人員提供的信息,為需求提供依據。這樣做是為了進行專題分析,我們將在專題中找到感興趣的關鍵點。根據專題分析的結果,我們將把自動人機交互的概念化和需求放在一個示范環境中,在這個環境中可以測試和評估新穎的自動人機交互概念。

1.3 研究問題

本論文將回答以下研究問題:

1.從多行為體的角度出發,可以對演示器提出哪些要求?

2.專家們是否認為人工智能對試點有益,需要克服哪些障礙?

3.在自適應人機交互的自動化方面,不同專家認為哪些因素更為重要?他們為什么這樣認為?

4.飛行員和工程師對演示器提供的結果的期望是否存在差異?

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

航空業中的小型無人機系統(sUAS)領域正經歷著前所未有的增長。然而,將 sUAS 安全納入國家空域系統 (NAS) 的監管指南并未跟上市場技術發展的步伐。目前對視線操作的監管限制可能會影響到為無人機系統的操作建立與有人駕駛飛機同等的安全水平。視線操作討論的焦點一直是無人機系統飛行員能否安全及時地看到并避開所有障礙物和其他飛機。本論文研究的目的是考察在 NAS 內駕駛 sUAS 時使用第一人稱視角(FPV)技術是否會對操作員的工作量產生影響,以及 FPV 技術是否會影響操作員的 1 級態勢感知(SA)。更具體地說,本研究考察了使用三種視覺敏銳度技術時無人機系統操作員的工作量和 1 級態勢感知:視覺視線、使用 21 英寸液晶顯示器的 FPV 以及使用 FPV 頭戴式護目鏡。

為了收集分析所需的數據,設計并進行了一項初步實驗。參與者被隨機分配到三個視覺敏銳度技術組中的一組,并被要求在飛行路線上駕駛大疆 Inspire 1 四旋翼飛行器。參與者完成了一項人口調查、石原色盲測試和兩項實驗后測試。實驗后測試包括美國國家航空航天局任務負荷指數(NASA TLX)問卷調查和 1 級 SA 測試,分別用于評估參與者在實驗過程中根據指定視敏度技術感知到的工作量和對飛行課程環境因素的回憶。為驗證假設,進行了方差分析和方差分析檢驗。結果表明,三組學員在感知工作量或 SA 方面的得分在統計學上沒有顯著差異。

實驗的初步結果為使用從美國國家航空航天局航空安全報告系統數據庫中檢索到的無人機系統數據集(其中主要飛機被列為無人機系統)進行進一步分析奠定了基礎。在事件報告中,SA 被確定為人為因素中最普遍的致因。使用卡方統計檢驗對 SA 組和非 SA 組進行了比較。結果表明,將 SA 列為致因因素的事件報告與報告中列出的事件地理區域之間存在顯著的統計學關聯。其他的卡方分析表明,在報告中未指明地理區域的事件報告中,SA 的人為因素與時間壓力之間存在統計學意義上的顯著關聯。航空組織的安全管理人員必須不斷分析其安全管理系統的性能,以確保其風險緩解措施的有效性。本文研究提供的信息有助于業務經理及其風險緩解流程的選擇。

付費5元查看完整內容

軍事行動需要具備對復雜的大城市環境進行態勢了解的能力。這通常是在情報、監視和偵察(ISR)任務中制定的。這些任務類型發生在戰斗的不同階段,包括戰斗行動和穩定與支持行動(SASO)。自主移動機器人小組可在已知的動態城市環境中執行巡邏和偵察任務,為士兵提供支持。

本文旨在開發一個名為 "風險地圖 "的概率框架。自主機器人將使用 "風險地圖 "規劃其行動,"風險地圖 "顯示了一個與戰術相關的位置,在該位置的暴露或環境可能使攻擊造成最大傷害(例如,可能的簡易爆炸裝置或狙擊手位置)。

“風險地圖”以決策過程為基礎,針對適應性對手事件分配機器人巡邏。這些技術將利用時間演化來防止對手不可避免地適應這些策略,因為這可能會使這些策略的效果大打折扣。

使用多機器人協調方法進行分散、信息量大且自適應的采樣應用不會出現單點故障。它允許隨時預測,任何機器人在任何時間點都能獲得環境的合理模型。此外,它還能將所需的通信量保持在最低水平。此外,適當的地理信息系統(GIS)技術為軍事指揮官提供了快速整合數據集、評估條件、規劃戰略和評估選項的手段。

圖:UGV和無人機之間的交互作用,進行源搜索和目視目標識別。

未來,人類將與人工智能系統密切合作。智能系統將成為團隊成員,并將起到擴展單個單元的覆蓋范圍和能力的作用,從而實現前所未有的能力。

自主機器人的智能探索和強大的協作監控將成為城市行動的關鍵,使其能夠預防未來的脆弱性和威脅風險。本論文探討了環境的先驗知識和類似場景中的行動歷史如何預測和預防未來的攻擊。在這篇論文中,我們提出了一個概率框架,在這個框架中,可以將一套領域專家規則與空間和語義知識結合起來,使自主智能體能夠收集信息。然后,自主智能體可以利用這個不斷演化的框架,針對不斷變化的信息環境規劃最佳行動,從而以最佳方式完成任務。我們的方法擴展了[Pit+08; ZST15]中描述的技術,用于本論文中介紹的 MAST/ARL 導航模塊所使用的基于信息的探索框架。Pita 等人創建了系統架構: ARMOR。該系統提供的月歷滿足了洛杉磯國際機場官員對檢查站和警犬在洛杉磯國際機場部署的所有關鍵要求。

多機器人團隊為部隊提供支持的一大挑戰是了解環境是如何動態變化的,以便為車隊選擇最明顯或最便捷路線的區域提供安全保障。為了應對這一挑戰,利用有關特定地點的地理信息系統數據和活動日志很有意義。實現這一目標的一種方法是使用基于信息的地圖(風險地圖),該地圖由一組模塊化組件組成,在評估風險的先驗概率時,這些組件代表了敵方戰略知識。此外,風險地圖還有一個時間組件,可逐漸回到先前的地圖狀態,代表戰爭迷霧。

我們考慮的現實場景是,由不同能力的機器人組成的團隊探索未知環境,每個機器人獲取并計算自己的地圖,并與團隊其他成員交換這些信息,同時考慮到通信限制,即機器人只能在特定距離內通信,信息量的交換受帶寬限制。此外,每個機器人都能從探索任務切換到尋找任務源,并能在需要時提供或請求援助。

論點陳述

利用自適應信息采樣的多機器人探索和導航協調策略,使機器人平臺能夠在未知環境中自主執行情報、監視和偵察(ISR)任務,從而防止未來的脆弱性和威脅風險。

貢獻

  • 完整的分布式多機器人 SLAM 解決方案,可執行基于特征、基于目標以及基于姿態的圖形 SLAM,并具有概率數據關聯和閉環功能。
  • 一種分布式算法,可根據相對姿態測量結果估算多個合作機器人或移動設備的 3D 軌跡。
  • 提供高低威脅級別信息的系統框架,該信息將用作運動編隊和巡邏的行動計劃。
  • 異構多機器人自適應信息采樣的新型協調策略,具有分散性和魯棒性。

本論文的所有貢獻都通過使用模擬和真實數據的實驗結果得到了驗證。

圖:模擬地圖,用于在舞臺模擬器內的各類環境中測試協調策略。機器人在其初始起始區域顯示為一排紅點,該區域代表一個突破口。導航關鍵點用紅色 "X "標記表示。

付費5元查看完整內容

該項目旨在利用強化學習(RL)開發防御性無人機蜂群戰術。蜂群是一種軍事戰術,許多單獨行動的單元作為一個整體進行機動,以攻擊敵人。防御性蜂群戰術是美國軍方當前感興趣的話題,因為其他國家和非國家行為者正在獲得比美國軍方更多的優勢。蜂群智能體通常簡單、便宜,而且容易實現。目前的工作已經開發了飛行(無人機)、通信和集群的方法。然而,蜂群還不具備協調攻擊敵方蜂群的能力。本文使用預先規劃的戰術模擬了兩個軍用固定翼無人機蜂群之間的戰斗。即使在數量多到100%的情況下,也有有效的戰術可以克服規模上的差異。當用于防御艦艇時,這些規劃的戰術平均允許0到0.5架無人機通過防御并擊中艦艇,這超過了阿利-伯克級驅逐艦目前的防御系統和其他研究的無人機蜂群防御系統。這項研究表明,使用某些機動和戰術有可能獲得對敵人蜂群的戰術優勢。為了開發更有效的戰術,使用RL訓練了一種 "智能體 "戰術。RL是機器學習的一個分支,它允許智能體學習環境,進行訓練,并學習哪些行動會導致成功。"智能體"戰術沒有表現出突發行為,但它確實殺死了一些敵人的無人機,并超過了其他經過研究的RL訓練的無人機蜂群戰術。繼續將RL落實到蜂群和反蜂群戰術的發展中,將有助于美國保持對敵人的軍事優勢,保護美國利益。

關鍵詞 無人機蜂群戰術 強化學習 策略優化 無人機 艦船防御 軍事蜂群

引言

現代計算機科學家試圖解決的問題正變得越來越復雜。對于大規模的問題,人類不可能想到每一種可能的情況,為每一種情況確定所需的行動,然后為這些行動編碼讓計算機執行。如果計算機能夠編寫自己的指令,那么計算機科學的世界可以擴展得更大,以完成更困難的任務。這就是機器學習領域。最近的工作為世界帶來了各種照片分類器、計算機視覺、搜索引擎、推薦系統等等。利用機器學習,計算機甚至能夠學習和掌握蛇、國際象棋和圍棋等游戲。有了這項技術,自動駕駛汽車、智能機器人和自主機械似乎不再是不可能的了。

美國軍方一直在推動技術的發展,使其在戰術上對敵人有優勢。利用機器學習來協助美國作戰,將提高軍事能力。非傳統戰爭的最新發展催生了無人駕駛車輛和無人機等自主智能體戰術蜂群。當務之急是,美國軍方必須建立對敵方類似技術的防御措施,并開發出利用蜂群的有利方法。將機器學習方法應用于多智能體無人機群問題,可以為美國軍隊提供對抗和反擊敵人蜂群的能力。

1.1 動機

美國軍方一直在探索最新的技術進步,以保持對敵人的競爭優勢。蜂群戰術是目前軍事研究的一個主要領域。美國和其他國家正在尋找使用無人機、船只和車輛與現有蜂群技術的新方法。例如,俄羅斯正在開發令人印象深刻的無人機蜂群能力。[Reid 2018] 伊朗已經創造了大規模的船群。[Osburn 2019] 大大小小的國家,甚至非國家行為者都在利用目前的蜂群技術來增加其軍事力量,與美國抗衡。這種對美國安全的可能威脅和獲得對其他大國優勢的機會是本研究項目的動機。如果美國不發展防御和戰術來對付敵人的蜂群,其人民、資產和國家利益就處于危險之中。這個研究項目旨在使用最先進的RL算法來開發無人機群戰術和防御性反擊戰術。研究當前的RL算法,并學習如何將其應用于現實世界的問題,是計算機科學界以及軍事界下一步的重要工作。該項目旨在將現有的RL工具與無人機群結合起來,以便找到能擊敗敵人機群的蜂群戰術和反擊戰術,改進軍事條令,保護美國國家利益。

1.2 本報告組織

本報告首先介紹了促使需要無人機蜂群戰術的當前事件,以及試圖解決的問題的定義。接下來的章節提供了關于無人機、軍事蜂群、強化學習以及本研究項目中使用的策略優化算法背景。還包括以前與RL有關的工作,以及它是如何與當前的無人機和蜂群技術結合使用的。下一節介紹了建立的環境/模擬。之后介紹了目前的成果。建立了兩個不同的場景,并對每個場景進行了類似的測試。第一個是蜂群對戰場景,第二個是船舶攻防場景。這兩個場景描述了實施的程序化戰術,并介紹了這些戰術的比較結果。接下來,描述了RL智能體的設計和RL訓練,并測試其有效性。在介紹完所有的結果后,分析了研究發現,并描述了這個研究項目的倫理和未來方向。

軍事蜂群應用

無人駕駛飛行器被廣泛用于監視和偵查。無人機可以從上面捕捉到戰斗空間的狀況。這些智能體非常小,可以快速地去一些地方而不被發現。無人機有能力收集信息并回傳給蜂群的主機或電子中心。蜂群智能體可以使用信號情報和數據收集戰術從敵人那里收集信息。

美國軍方和世界各地的軍隊正在使用蜂群作為一種進攻性威脅。無人機、船只、甚至車輛都可以在無人駕駛的情況下運作,并作為一個單元進行蜂擁,以攻擊敵人。大量使用小型和廉價的智能體可以使小型軍隊在面對美國軍隊的力量時獲得優勢。例如,小船或無人機可以匯聚到一艘船上,并造成大量的損害,如摧毀船只的雷達。作為一種進攻性技術,蜂群是強大的資產,可以作為一種進攻性戰爭的方案來使用。

作為對進攻性蜂群技術的回應,各國軍隊開始研究并使用蜂群作為防御機制,以對付來襲的蜂群和其他威脅。其他的防御性武器系統并不是為了對抗大量的小型無人機而建造的,因此,發射反蜂群可能是對最新的蜂群戰術的一種可行的防御。蜂群也可用于防御單一實體對來襲的武器系統。研究人員正在創造新的方法來建造、武裝和訓練小型無人駕駛飛行器,以便它們能夠成為美國軍隊的可靠資產。

相關成果

介紹了最近在智能體群體和無人機群的強化學習方面的一些工作。

  • 1 用近似策略優化強化學習對四旋翼飛機進行智能控制

Cano Lopez等人使用當前的強化算法來訓練四旋翼無人機飛行、懸停和移動到指定地點[G. Cano Lopes 2018]。該系統使用了馬爾科夫決策過程,并實現了強化學習的演員評論法,在飛行模擬器中訓練智能體。這些強化學習方法與我們希望應用于無人機群戰術問題的方法類似。使用Coppelia機器人公司的虛擬實驗平臺(V-REP)作為模擬,訓練無人機飛行。他們的訓練策略能夠實現快速收斂。在訓練結束時,他們能夠保持飛行并移動到模擬中的不同位置。這項工作表明,強化學習是訓練無人機操作的一種有效方法。我們希望在這個項目中使用的方法可以用目前的技術來實現。我們將擴展本文的實驗,在類似的模擬中把RL算法應用于固定翼無人駕駛飛機。然而,我們不是只讓無人機飛行和移動,而是要訓練它們一起工作,并戰略性地計劃在哪里飛行和如何操作。

  • 2 多重空中交戰的協調

斯特里克蘭等人利用模擬來測試各種無人駕駛飛行器的戰術,并測試贏得戰斗的決定性因素可能是什么。他們對一個具有戰術的蜂群進行編程,并讓這個蜂群與敵人的蜂群作戰。智能體試圖使用圖8.1所示方法協調對敵方無人機的攻擊。只有當有兩架無人機對抗一架敵方無人機時,這些戰術比單槍匹馬射擊敵人更有效,而且它們與其他成對的無人機之間有足夠的空間。其次,一些特工會飛離敵人,作為保護自己的手段,從不對敵人使用任何攻擊性戰術。[Strickland 2019]

  • 3 多智能體交互中的涌現工具使用

這個項目使用PPO在一個捉迷藏的游戲中使用強化學習來訓練多個智能體。兩個紅色智能體是一個團隊,被指定為尋找者,兩個藍色智能體是一個團隊,被指定為隱藏者。如圖8.2所示,這些智能體在一個有幾面墻和一些積木的開放環境中游戲。智能體可以跑來跑去,對可移動的積木施加壓力。紅隊在看到藍隊時得到獎勵,藍隊在未被隱藏時得到獎勵。兩個智能體都是用自我發揮和策略優化算法進行訓練的。兩隊進行了數百萬次的訓練迭代競爭,并制定了戰術和技術來對付對方的行動。起初,兩個團隊都是漫無目的地跑來跑去,但他們最終發展出一些智能行為來幫助他們獲得獎勵。藍隊學會了如何堵住門,為自己創造庇護所,并從紅隊那里藏起其他物體。紅隊追趕藍隊特工,利用斜坡潛入他們的庇護所,跳到積木上面看墻。這些特工制定的一些戰術甚至比人類程序員指示他們做的更有創意。最重要的是,這些智能體教會了自己如何合作,并為每個智能體分配一個特定的角色,以完成團隊目標。這項研究的結果顯示了強化學習和自我發揮的學習方法的力量。兩個智能體都能發展出智能行為,因為它們之間存在競爭。我們將使用這個項目的框架來解決我們的無人機蜂群戰術問題。將捉迷藏游戲擴展到無人機群戰,將提高強化學習的能力。自我游戲技術在本項目未來工作的RL蜂群對戰部分有特色,該部分詳見第13.3節。[Baker 2018]

  • 4 用自主反蜂群應對無人機群的飽和攻擊

在這項研究中,研究人員利用計算機編程和強化學習模擬并測試了無人機群戰術。該小組創建了一個可能的蜂群戰術清單,包括一個簡單的射手,一個將敵人引向隊友的回避者,以及一個將敵人的蜂群分成子蜂群的牧羊人。研究人員隨后創建了一個模擬器來測試這些戰斗戰術。他們收集了關于哪些戰術最有效的數據,甚至在現實生活中的固定翼無人機上測試了這些算法。我們將在研究的第一階段實施其中的一些戰術,并擴大目前可編程蜂群戰術的理論。

這篇研究論文的第二個方面是實施強化學習方法,使智能體能夠制定自己的蜂群戰術。盟軍無人機在殺死敵方無人機時獲得正獎勵,被敵方殺死時獲得負獎勵。敵方蜂群是用研究第一階段的成功單人射手預先編程的。這個項目的目標是讓智能體制定對抗敵方蜂群的戰術。然而,盟軍的無人機學會了應該逃跑,干脆飛離敵人,以避免被殺死的負面獎勵。因為敵人太有效了,盟軍無人機無法獲得足夠的正向獎勵來學習如何攻擊敵人的蜂群。我們將使用強化學習以類似的方式來訓練智能體,然而我們希望獲得更多的結論性結果。為了防止盟軍無人機逃離敵人,我們將對攻擊和殺死敵人的智能體給予比死亡風險更多的獎勵。我們還可以對智能體進行編程,使其保衛像船只或基地這樣的資產。這個研究項目為我們所做的研究提供了一個良好的基礎。[Strickland, Day, et al. 2018]。

美國海軍學院先前的工作

該研究項目是近期強化學習和無人機群工作的延續。計算機科學領域一直在開發最先進的強化學習算法,如PPO和SAC,該項目旨在應用于當前的無人機群戰術的軍事問題。

MIDN 1/C Abramoff(2019級)研究了無人機蜂群戰術,并在Python中模擬了微型蜂群對蜂群戰斗。他創建了一個二維空間,用一個點代表蜂群中的每個特工。每個智能體可以向前射擊(在它移動和面對的方向)。被另一個智能體的 "子彈 "擊中的智能體被假定為死亡,并從模擬中刪除。阿布拉莫夫創建了蜂群,并編寫了一個蜂群算法,以便特工能夠作為一個整體蜂擁飛行,而不會發生碰撞、分離或破壞蜂群。一旦智能體真實地成群,阿布拉莫夫探索了各種無人機群戰術,如選擇-最近和分配-最近,并測試了它們對敵人群的有效性。選擇-最近 "允許每個特工瞄準離自己最近的敵人。當蜂群向對方移動時,智能體將根據每個時間點上哪個敵人的無人機最近而改變其目標。分配最近的任務給每個智能體一個任務,以消除一個不同的敵方無人機。任務是根據哪個敵方無人機離友軍蜂群最近來決定的,并在每一幀重新更新。阿布拉莫夫對兩個蜂群的模擬戰斗進行了實驗,以測試哪種蜂群戰術最有效。他還嘗試使用反蜂群戰術進行戰斗,如在蜂群前面派出一個 "兔子 "特工,并分成子蜂群。總之,阿布拉莫夫發現,在他的實驗中,"最近分配 "是最有效的,一些反蜂群戰術也很成功。這些結果不是結論性的,但顯示了在發展蜂群和反蜂群軍事戰術方面的進展。本研究提案將在MIDN 1/C Abramoff的工作基礎上進行擴展,創建一個3-D環境模擬,并改進智能體能力,以代表一個現實的無人機群戰。這個研究提案的環境將有一個更大的戰斗空間,智能體可以采取更多的行動,包括改變高度、武器瞄準和蜂群間的通信/團隊合作。

MIDN 1/C湯普森(2020級)建立了一個三維環境,他用來模擬更多戰術。這個環境比MIDN 1/C阿布拉莫夫使用的更真實地模擬了現實世界的戰斗空間。蜂群要在三維空間中自由移動,并根據現實世界的物理學原理采取相應的行動,即重力和高度以及飛機上可行的轉彎率。圖8.3顯示了湯普森的Python環境模擬。左上角的無人機群被染成藍色,代表盟軍的無人機群。右下角的無人機群為紅色,代表敵人的無人機群。盡管在二維顯示中,每架無人機周圍的圓圈代表高度。在圖8.3中,更大的圓圈顯示了更高的高度,這意味著敵人的蜂群比盟軍的蜂群要高。MIDN 1/C湯普森固定了環境的三維方面,并將無人機融入該空間。他還研究了每架無人機的轉彎率,以確保模擬符合現實生活中的無人機規格。

蜂群vs蜂群場景

模擬開始時有兩個由任何數量的無人機組成的蜂群。每隊的無人機都被初始化在比賽場地各自一側的隨機位置上。模擬開始時,兩隊都起飛了。每隊都執行給定的戰術,可以是預先編程的,也可以是智能體學習的。如果進行了多輪比賽,每隊的勝負和平局都會被計算在內。

艦艇攻擊和防御場景

模擬開始時有兩個任意數量的無人機群。防御隊被初始化在放置在比賽場地中心的飛船中心。這艘船是靜止的,不會還擊,但它會計算它所收到的無人機的數量。進攻隊被初始化在比賽場地的一個隨機位置,該位置距離飛船中心至少有200米。模擬開始時,兩隊都要起飛。每隊都執行給定的戰術,可以是預先編程的,也可以是智能體學習的。如果進行多輪比賽,每隊都要計算無人機擊中飛船的總次數和剩余的防御性無人機數量。

付費5元查看完整內容

對使用無人駕駛飛行器(UAV),即無人機,在不同的應用中,如包裹遞送、交通監測、搜索和救援行動以及軍事戰斗交戰,有越來越多的需求。在所有這些應用中,無人機被用來自主導航環境--沒有人的互動,執行特定的任務和避免障礙。自主的無人機導航通常是通過強化學習(RL)完成的,智能體作為一個領域的專家,在避開障礙物的同時導航環境。了解導航環境和算法限制在選擇適當的RL算法以有效解決導航問題中起著至關重要的作用。因此,本研究首先確定了主要的無人機導航任務并討論了導航框架和仿真軟件。接下來,根據環境、算法特點、能力和在不同無人機導航問題中的應用,對RL算法進行了分類和討論,這將有助于從業人員和研究人員為他們的無人機導航用例選擇合適的RL算法。此外,確定的差距和機會將推動無人機導航研究。

引言

自主系統(AS)是能夠在沒有人類干擾的情況下執行所需任務的系統,如機器人在沒有人類參與的情況下執行任務、自動駕駛汽車和無人機送貨。自主系統正在侵入不同的領域,以使操作更加有效,并減少人為因素產生的成本和風險。

無人駕駛航空器(UAV)是一種沒有人類飛行員的飛機,主要被稱為無人機。自主無人機由于其多樣化的應用而受到越來越多的關注,如向客戶交付包裹、應對交通事故以滿足傷員的醫療需求、追蹤軍事目標、協助搜索和救援行動,以及許多其他應用。

通常情況下,無人機配備有攝像頭和其他傳感器,可以收集周圍環境的信息,使無人機能夠自主地導航該環境。無人機導航訓練通常是在虛擬的三維環境中進行的,因為無人機的計算資源和電源有限,而且由于墜毀而更換無人機部件可能很昂貴。

不同的強化學習(RL)算法被用來訓練無人機自主導航的環境。強化學習可以解決各種問題,在這些問題中,代理人就像該領域的人類專家一樣。代理人通過處理環境的狀態與環境互動,用行動作出回應,并獲得獎勵。無人機相機和傳感器從環境中捕捉信息,用于表示狀態。代理人處理捕捉到的狀態并輸出一個行動,決定無人機的運動方向或控制螺旋槳的推力,如圖1所示。

圖1:使用深度強化智能體的無人機訓練

研究界對不同的無人機導航問題進行了回顧,如視覺無人機導航[1, 2]、無人機植群[3]和路徑規劃[4]。然而,據作者所知,目前還沒有與RL在無人機導航中的應用有關的調查。因此,本文旨在對各種RL算法在不同無人機自主導航問題上的應用進行全面系統的回顧。這項調查有以下貢獻:

  • 幫助從業人員和研究人員根據應用領域和環境類型,選擇正確的算法來解決手頭的問題。
  • 解釋各種RL算法的主要原理和特點,確定它們之間的關系,并根據環境類型對它們進行分類。
  • 根據問題領域,討論和分類不同的RL無人機導航框架。
  • 認識用于解決不同無人機自主導航問題的各種技術和用于執行無人機導航任務的不同仿真工具。

本文的其余部分組織如下: 第2節介紹了系統回顧過程,第3節介紹了RL,第4節全面回顧了各種RL算法和技術在無人機自主導航中的應用,第5節討論了無人機導航框架和仿真軟件,第6節對RL算法進行分類并討論了最突出的算法,第7節解釋了RL算法的選擇過程,第8節指出了挑戰和研究機會。最后,第9節對本文進行了總結。

付費5元查看完整內容

國防無人駕駛飛行器(UAV)的設計是以2008年以來重新興起的反恐戰爭為基礎的,因為2001年雙子塔被襲擊。這種環境有利于無人機的發展和使用,為所謂的馬賽克戰爭概念提供了基礎。這個概念是指導無人機設計和未來使用的主要載體。在這種情況下,新的無人機用戶界面的設計不是基于以前建立的航空顯示概念。原因是這些飛機不是傳統意義上的 "飛行",而是由地面控制站(GCS)中的飛行員/操作人員指揮的。這是一個必須理解的范式轉變,以提高操作能力和安全性。這種模式的核心是與適當的人機界面有關的問題,以提高態勢感知。本稿討論了這個問題,并研究了與飛行員自主性的適當級別有關的問題;人機界面對決策的影響;自適應界面的設計;使用創新技術進行人機互動;調查無人機與地面部隊和指揮與控制之間的互動。為了闡明這些問題,本稿件提出并描述了一個人機界面原型的構建,以模擬無人機系統在模擬戰斗環境中的操作。調查是基于這樣一個過程:定義場景和任務,建立不同方法的人機界面,設計和分析實驗,用生理傳感器測量人的表現,以便對適當的設計作出定量回答。基于這個過程,預計在關鍵的操作條件下,人的表現可以被評估,并產生最佳的人機界面解決方案,以減少工作量和提高態勢感知。

付費5元查看完整內容

COGLE(COmmon Ground Learning and Explanation)是一個可解釋人工智能(XAI)系統,自主無人機向山區的野外部隊運送物資。任務風險隨地形、飛行決定和任務目標而變化。這些任務由人類加人工智能團隊參與,用戶決定兩架人工智能控制的無人機中哪一架更適合執行任務。這篇文章報告了該項目的技術方法和發現,并反思了復雜的組合問題對用戶、機器學習、用戶研究和XAI系統的使用環境所帶來的挑戰。COGLE創建了多種模式的解釋。敘述性的 "What"解釋比較了每架無人機在任務中的表現,以及基于使用反事實實驗確定無人機能力的 "Why"。可視化的 "Where"解釋突出了地圖上的風險,以幫助用戶解釋飛行計劃。研究的一個分支是研究這些解釋是否有助于用戶預測無人機的性能。在這個分支中,一個模型歸納的用戶研究顯示,決策后的解釋在教用戶自己確定哪架無人機更適合執行任務方面只有很小的作用。隨后的思考表明,用決策前的解釋來支持人類加人工智能的決策是一個更好的背景,可以從組合任務的解釋中受益。

引言

COGLE(COmmon Ground Learning and Explanation)是一個可解釋的人工智能(XAI)系統,用于自主無人機向山區的野戰部隊運送物資。COGLE中的任務是在一個模擬的世界中進行的,其中有山區和森林環境、水體和結構。圖1顯示了一個任務地圖和人工智能控制的無人機的飛行計劃。黃色的棒狀圖顯示了徒步旅行者的位置。彎曲的箭頭顯示了無人機的飛行計劃。地圖下面的時間線顯示了無人機沿其飛行計劃的高度。地圖上的符號表示物體。尖尖的符號是太高的山,無法飛過。曲線頂的符號是低矮和高大的山麓。綠色區域是草地。樹木形狀的符號代表森林。

最初,我們使用ArduPilot SITL1,它可以高保真地模擬低空飛行器的動作。ArduPilot的詳細模擬所需的計算資源被證明是不方便的,對于任務的戰略規劃來說是不必要的。低空飛行控制在商業自動駕駛飛機和業余無人機中被廣泛實施。為了專注于任務規劃,我們開發了一個精度較低的模擬模型("ArduPilot Light"),在一個回合制的網格世界中,有五級高度和八個獨特方向。我們在ArduPilot SITL的API上模擬了ArduPilot Light的兼容編程接口(API)。圖2說明了COGLE的模擬網格世界的粗粒度,用于任務規劃。

圖 1 共同地面學習和解釋 (COgLE) 域中任務的示例地圖

圖 2 來自 COGLE 飛行學校的插圖展示了具有五個離散高度的模型以及當包裹從不同高度墜落時墜落區的擴大范圍

當無人機與處于同一高度或更高的障礙物飛得太近時,它們就會有墜毀的危險。如果無人機在森林、高山麓或水面上釋放其包裹,那么其包裹可能被損壞。包裹可能無法降落在河流、樹木或高山腳下。無人機飛得越高,其包裹在傘降過程中可能漂移得越遠。一個人工智能飛行員可能會在任務的開始、中間或結束時承擔風險。飛行員在任務中的早期決定會以微妙的方式與后來的決定產生互動。例如,在飛行計劃的早期,關于如何避開障礙物的選擇可能會導致在很晚的時候無法安全地接近選定的地點來投放包裹。

使用COGLE的早期版本,我們對用戶進行了自我解釋的研究,正如Gary Klein, Robert Hoffman, 和Shane Mueller等人所描述的。這樣的研究可以為參與者提供一個關于他們自己想要和使用的解釋種類的視角。用于無人機的人工智能飛行員是基于我們早期的深度強化學習者(RL)。他們在非常簡單的任務中表現出奇怪和次優的循環行為。研究參與者引用了無人機行為的觀察模式,指的是推斷的目標、效用和無人機的偏好。

在研究過程中,當被要求做出預測時,參與者經常的回答是 "我不知道"。研究參與者在自我解釋方面很有創意("它怕水!"),但他們沒有可靠的依據來確定他們的解釋是否正確。事實證明,我們早期的人工智能控制的無人機的奇怪行為是由于他們有限的訓練造成的。

付費5元查看完整內容

人工智能(AI)是一項具有廣泛用途的新興技術。《美國防戰略》強調了人工智能對軍事行動的重要性,以使美國保持對其近似競爭對手的優勢。為了充分實現這一優勢,不僅要在戰術層面,而且要在戰爭的作戰層面整合人工智能。人工智能可以最有效地融入作戰計劃的復雜任務,方法是將其細分為其組成部分的作戰功能,這些功能可以由狹義的人工智能來處理。這種組織方式將問題減少到可以由人工智能解析的規模,并保持人類對機器支持的決策的監督。

引言

人工智能是一套新興的、變革性的工具,有可能幫助軍事決策者。美國國家戰略將人工智能(AI)納入戰爭。《2020年國防授權法》11次提到了人工智能。國防戰略強調了利用人工智能和機器學習方面的商業突破的重要性。人工智能的軍事用途是保留國家安全的一個引人注目的方式。創造工具來支持戰術行動,如摧毀敵軍和從一個點導航到另一個點,具有顯著和可見的效果,使他們在資源有限的環境中在政治上可以接受。它們在訓練和測試方面的可重復性,使它們在采購過程中成為人工智能系統的快速贏家。然而,戰術行動的范圍和時間是有限的。僅在戰術層面上整合人工智能,忽視了在作戰層面上發生的決定性影響。

作戰,也就是實踐者將戰術行動轉化為戰略效果的層面,取決于領導者做出正確決策的能力。聯合部隊海事部分指揮官(JFMCC)的艱巨任務是制定計劃,將戰區戰略和聯合部隊指揮官(JFC)的目標結合起來,通過決定性的海軍交戰來塑造環境。在人工智能的快速認知能力的幫助下,JFMCC將能夠制定并更徹底地分析行動方案(COA)。這些品質對于未來的沖突是必要的。

人工智能必須在戰爭的各個層面進行整體集成,以充分實現其優勢。除了局部的、短期的戰斗,它還需要應用于主要的行動和戰役,涉及整個戰區的數月或數年。在戰爭的戰役(作戰)層面上的實施,放大了為實現戰略目標而進行的有序交戰和同步行動之間的協同作用。除了技術發展之外,行動上的整合將刺激政策和理論的建立,以使作戰人員有意愿使用人工智能。隨著使用人工智能的經驗的增加,其采用率也會增加。為協助海軍作戰計劃而實施的特定人工智能技術可能與那些用于計算射擊方案或在被拒絕的淺灘水域規劃路線的技術不同。然而,在作戰層面的接受度將推動戰術上的使用。

在JFMCC層面,人工智能系統網絡將為決策者提供決定性的優勢,將專注于作戰功能的獨立的人工狹義智能(ANI)單位統一起來將實現最顯著的好處。首先,人工智能解決方案比它們的通用人工智能(AGI)同行更適合于軍事問題的解決。其次,戰爭的性質促使有必要在作戰層面上整合人工智能。最后,雖然有許多方法可以整合,但沿著功能線這樣做會帶來最顯著的好處。不僅在技術意義上吸收人工智能,而且描述其在政策、理論和培訓中的使用,將使海軍能夠充分使用它,并在與我們的戰略競爭對手的競爭中獲得優勢。

如何在海戰領域整合人工智能?

目前人工智能在海上行動中的最佳應用是將復雜的海上行動問題分解成子問題,由人工智能來解決,并組合成COA建議。解決小問題的人工智能需要更少的訓練數據,有更直接的邏輯,并且可以連鎖起來解決更重要的問題。麻省理工學院人工智能實驗室前主任羅德尼-布魯克斯(Rodney Brooks)認為,創建動態環境的符號表示是困難的或不可能的。然而,特定任務的智能體可以利用足夠的傳感器數據智能地行動,更重要的是,可以連貫地互動。通過將簡單的活動連鎖起來,失敗的風險很低,更復雜的問題就可以得到解決。多個簡單的行動可以在低認知層平行運行,并將其輸出結合起來,為更高層次的復雜活動提供支持。這種結構的優點是允許軍事工程師開發和訓練人工智能,以首先解決可操作的問題。對人工智能開發者來說更具挑戰性的功能可以保留只由人類決定的方法,直到他們產生解決這些問題的專業知識。與其等待一個完整的系統,部分系統將提供一個臨時的邊際優勢。

鑒于人工智能可以通過將問題分解成更小的決策來最好地解決問題,問題仍然是如何劃分這些問題。重述作戰任務的一個模式是將它們分成作戰功能:指揮和控制(C2)、通信、情報、火力、運動和機動、保護和維持。這些作戰功能為開展有效行動提供了基礎。它們為一個行動提供了采用手段實現其目的的方法。因此,與決定如何實施這些功能以實現目標的決策者一起使用人工智能是很自然的。

如同應用于海上作戰戰爭,最低層的決策支持系統將由感知環境的活動組成:探測艦艇、飛機和潛艇;燃料水平;天氣;以及其他客觀的戰斗空間數據。通過將外部輸入限制在特定的、低層次的任務上,該系統將最大限度地減少對抗性例子或旨在消極操縱自動系統的數據的風險。中間層將把下層的輸出與作戰目標和因素結合起來,如時間、空間和力量的限制,以提供解決問題的方法和作戰功能。由于上層的對抗性數據注入的威脅較小,這些系統可以使用深度學習。深度學習是機器學習的一個子集,它不像其他形式那樣需要高度格式化的數據,但計算成本會更高,而且容易受到欺騙。深度學習將增加這一層的人類互動,并暴露出更復雜的關系。最高層將把C2流程應用于其他六個業務功能,以產生業務建議。中間層的每個功能人工智能將向其他功能人工智能和最高C2層提供建議。中間層的人工智能對復雜的數據和相鄰單位及C2功能的建議進行理解。

如果將中間層人工智能納入規劃和指導、收集、處理、分析和傳播的情報周期,將促進收集資產的更好分配。判斷對有限的收集資產的請求以滿足行動和戰術信息需求是JFMCC關注的一個問題。在收集計劃期間,人工智能可以使用已知的對手軌跡、地點、個人和組織來定義和優先考慮指定的利益區域(NAI)。在執行過程中,人工智能可以根據優先級驅動收集路線,就像企業用它來規劃送貨路線以減少勞動力、燃料和維護成本一樣。采集計劃者可以通過增加對手監視點的位置和范圍來減少反偵查的風險。在C2層面,指揮官和情報官員可以利用收集成果來證明更多的JFMCC收集資產和COA的修改。這種方法適用于其他功能。

人工智能可以在部隊部署不斷變化和對手存在不確定的環境中改善維持能力。相互沖突的要求使如何使用有限的后勤資產來滿足作戰人員的需求的決策變得復雜。后勤單位較低的生存能力促使人們決定是將它們帶入被對手防御系統拒絕的區域,還是將戰斗飛船引離目標。人工智能可以利用軍事和民用運輸的可用性、預先部署的庫存和供應商的響應能力來制定船舶和飛機需求的解決方案。企業利用人工智能準確預測需求,并分辨出影響運輸和倉儲的采購模式。維持型人工智能可以使用這個過程的一個變種,來計劃在高級后勤支持站點(ALSS)或前方后勤站點(FLS)的材料堆放。它可以決定如何以及何時使用穿梭船和站立船來運送到攻擊組。機器學習將使用燃料、食品和武器庫存、威脅環、戰備水平和維修時間來訓練維持人工智能。維持型人工智能可以提供比人類單獨完成的更有效的量化解決方案,并將其反饋給其他功能區和C2高層。

C2層將對來自下層的決定進行仲裁,并提供一個統一的建議。就像一個軍事組織的指揮官一樣,它將把其副手AI的建議合并起來。人工智能過程的早期階段使用傳感器數據和其他客觀信息來確定指揮官的方向;決定行動方案需要建立對戰斗空間的理解,這是一種更高層次的欣賞。戰斗空間的可變性和模糊性將使這一層的人工智能元素最難開發。最終,該系統將作為一個可信的智能體,壓縮指揮官負責的信息量。壓縮的信息減輕了時間有限的決策者工作時的疑慮負擔,使她能夠向下屬單位發出更及時的命令。

圖1說明了基于這些原則的系統的擬議架構。以對手預測為例,許多單一用途的ANI將在最低層結合原始傳感器和單位報告數據。它將評估敵方單位的最可能位置。公司分析評論、社交媒體和論壇發帖的情緒,以確定產品的滿意度。同樣地,這個系統將通過公開的言論和秘密的報告來確定對手的意圖。它將評估當前和歷史天氣模式,以評估氣候對敵人行動的影響。這三個輸入和其他信息將被功能情報ANI用來形成對敵方COA的評估。同樣,火力節點將使用敵人的組成、JFC的優先級和預測的彈藥可用性來產生目標指導。中間層節點將橫向傳遞他們的評估,以完善鄰近的建議,如部隊保護水平。獨立的功能建議也將直接反饋給C2層,以創建整體行動方案。

圖1. 海上人工智能系統的擬議架構

建議

首先,利用聯合人工智能資源的優勢,針對海軍的具體問題修改標準組件。擅長開發軍事人工智能系統的工程師的稀缺性將限制新系統的開發。美國防部的人工智能戰略具體規定了建立通用的工具、框架和標準,以便進行分散的開發和實驗。使用這些現成的組件,為人工智能決策網的所有子系統創建低級別的系統和標準接口。將海軍的資源集中于采購和實施用于海事具體決策的中層和高層系統。避免技術上令人著迷但無效的解決方案,并通過將職能領域的專家與設計團隊相結合來保持解決海事問題的目標。

第二,創建并維護可通過機器學習攝入的作戰數據數據庫,以訓練海軍人工智能。實施能夠在海上作戰中心(MOC)讀取和集中匯總基本作戰數據報告的技術和工藝,如燃料狀態、導彈裝載量。開發記錄和定性評分作戰決策結果的方法,如對手態勢的變化、傷亡修復率和公眾對行動的反應。將輸入與作戰決策和結果聯系起來的數據庫將加速開發符合現實世界標準的系統。

第三,將人工智能的使用納入政策和條令。條令應該編纂人工智能可以被整合到戰爭戰役層面決策中的領域。明確地說,關于情報、行動、火力、后勤、規劃和通信的海軍作戰出版物應說明人工智能在決策過程中產生優勢的地方和方式。描述海上聯合行動的聯合出版物應明確說明如何將JFC的要求解析為JFMCC的AI系統。如果國防部和海軍的政策對指揮官因整合人工智能的決策建議而產生的責任量進行了定性,那么他們在使用人工智能時就可以采取經過計算的風險。讓指揮官和作戰人員掌握使用人工智能的戰術、技術和程序將加速其在艦隊中的應用。

付費5元查看完整內容

目前,人工智能(AI)為改造許多軍事行動領域提供了巨大的機會,包括作戰、指揮與控制(C2)、后勤、安全和維護,以提高其整體作戰效率。空中和導彈防御(AMD)是一個特別復雜的任務領域,人工智能的應用至關重要。空中導彈防御任務指的是保衛國土、保護區、地面基地、地面部隊或艦艇免受敵對的空中或導彈威脅。AMD的威脅包括敵對的飛機、無人駕駛飛行器(UAV)或機載導彈。AMD行動的復雜性源于威脅的嚴重性、威脅的意外性、對形勢認識的不確定性以及事件的快速發展,因為作戰人員必須迅速評估形勢,制定適當的行動方案,并最好地利用他們的戰爭資產來應對。美國國防部(U.S. DOD)正在研究使用AI系統(或AI-enabled AMD[AI-AMD]系統)作為AMD作戰人員的自動決策輔助工具,以大大減少他們的認知負荷(Jones等人,2020),使AMD決策更快、更好。

人工智能的一個關鍵方面已經聚集了大量的研究興趣,那就是信任。信任是有效團隊的一個基本原則。它同時適用于人類和人機團隊。信任使團隊成員能夠很好地合作,是有效團隊表現的基礎(Lee and See 2004)。與人工智能系統的成功合作將需要人類對人工智能系統有一個校準的信任和依賴程度(泰勒等人,2016)。

隨著更先進和更快的空中和導彈威脅彈藥的發展和投入使用,操作人員更需要在AMD行動中迅速作出監測。不及時的決策和反應將導致災難性的后果。因此,人工智能是一個可能的解決方案,通過自動決策輔助工具加快和加強決策過程。這些AMD自動戰斗管理輔助工具可以幫助戰術操作人員應對更快的決策周期、大量的數據以及需要觀察的幾個系統或屏幕(Galdorisi 2019)。然而,為了有效地利用人工智能能力的潛力,需要操作員的高度信任。操作員對系統的信任程度低,可能會導致人工智能-AMD系統利用不足,受到不適當的監控,或者根本不使用(Floyd, Drinkwater, and Aha 2016)。這些問題中的任何一個都可能導致操作者的工作量不必要的增加,或者任務失敗的可能性。

論文對信任的定義、人機交互(HMI)的概念、信任因素以及包括AMD殺傷鏈模型、威脅場景、架構、模型和功能在內的概念模型進行了廣泛的回顧。有了這樣的認識,論文提出了人工智能-AMD系統的信任框架,對人機交互和人工智能-AMD系統信任因素的描述。論文最后提出了在人類操作者和AI-AMD系統之間實現校準信任的策略

信任框架始于對系統背景的分析。圖1顯示了AI-AMD指揮與控制(C2)系統(包括AI-AMD操作員和決策輔助工具)及其他與之互動的子系統的背景圖,這些子系統有助于操作員和AI-AMD決策輔助工具之間信任的發展。背景圖使我們能夠研究各系統之間的相互作用,以及它們對AI-AMD操作員和決策輔助工具之間信任動態的影響。

圖1. AI-AMD系統框架圖。

這篇論文將信任定義為操作者的態度,即AI-AMD決策輔助工具將有助于實現操作者的目標,即在一個以不確定性和脆弱性為特征的作戰環境中迅速摧毀來襲威脅的任務。這種信任的定義表明,它是對操作者相信或感知AI-AMD決策輔助工具的一種情感評估。為了積極地影響信任,操作者必須親自看到并感受到AI-AMD決策輔助行動的優勢。AI-AMD行動涉及很多不確定因素,以及天氣、電磁干擾和地形等環境因素以及不斷變化的威脅的性質所帶來的脆弱性。操作員將預期AI-AMD決策輔助系統按照 "合同 "執行,以處理這些不確定性和脆弱性。這些合同將是人工智能-AMD決策輔助工具應該執行的感知功能或任務,以及執行這些功能或任務的理想表現。

圖2說明了操作員和AI-AMD決策輔助工具之間的信任框架。y軸代表人類對AI-AMD決策輔助系統的信任程度,x軸代表AI-AMD決策輔助系統的能力。綠色的45°虛線表示最佳的信任水平或校準的信任線,其中的信任與AI-AMD的能力相對應,導致正確的利用(Lee and See 2004)。過度信任由最佳信任水平線以上的區域表示,此時的信任超過了系統能力,導致誤用。低于理想信任水平線的區域表示不信任,這時的信任沒有達到系統能力,導致濫用。假設存在一些默認的信任水平(如黃框所示),目標是制定一個策略,以提高AI-AMD輔助決策能力的信任。在使用該系統時,可能會發生違反信任的情況,從而降低操作員的信任。因此,信任修復行動必須被納入,以保持信任在最佳水平。

圖2. 人類操作員和AI-AMD決策輔助工具之間的信任。

基于功能分配的操作員和AI-AMD決策輔助工具之間的人機交互研究表明,操作員和AI-AMD決策輔助工具應該被設計成在大多數殺戮鏈功能中作為一個 "團隊"運作。這引導論文研究了單獨和集體考慮人類和決策輔助的信任因素。對操作員和人工智能-AMD決策之間的人機交互的研究還顯示,操作員的角色已經從手動控制器變成了監督控制器。因此,一個值得信賴的決策輔助工具是很重要的,因為操作者會期望系統的表現符合預期,以幫助操作者更好地履行他的角色。另外,為了進一步幫助減輕操作者的認知工作量,信息的外部表示、決策輔助工具的建議必須易于閱讀和理解。

關于信任因素,本論文提出了一個 "由外而內 "的框架,如圖3所示。論文首先考慮了與操作環境相關的因素,這些因素描述了AMD操作系統的背景。第二,它研究了與組織環境相關的因素,操作人員和人工智能-AMD系統得到了培訓和發展。第三,論文研究了操作人員和人工智能-AMD決策輔助工具之間的交互,以提出與操作人員、人工智能-AMD、單獨和集體相關的因素。

圖3. 建議的信任因素

圖4顯示了擬議的戰略銜接圖,以實現操作者和AI-AMD輔助決策之間的校準信任。對信任定義、人機界面和信任因素的審查表明,該戰略應關注三個關鍵領域:(1)人類對自動化技術和AI-AMD決策輔助系統的集體和個人感知;(2)增強操作員和AI-AMD決策輔助系統的團隊活力;(3)AI-AMD決策輔助系統的可信度,重點是系統開發。該戰略利用DOTMLPF-P框架提出了三個關鍵原則和五個支持原則。首先,軍事作戰人員需要被告知自動化技術的真正能力和局限性,特別是AI-AMD輔助決策。第二,操作員的培訓要求必須增加,以應對新的工作范圍和不斷變化的威脅。第三,必須在人工智能-AMD決策輔助系統的開發中加入新的要求,以提高系統的可感知的可信度。這三個關鍵原則得到了DOTMLPF-P框架其他方面的支持,如組織、領導、人員、設施和政策。

圖4. 實現操作員和人工智能-AMD決策輔助工具之間校準信任的戰略銜接圖

付費5元查看完整內容

在可視范圍內執行空戰,需要飛行員在接近1馬赫的飛行速度下,每秒鐘做出許多相互關聯的決定。戰斗機飛行員在訓練中花費數年時間學習戰術,以便在這些交戰中取得成功。然而,他們決策的速度和質量受到人類生物學的限制。自主無人駕駛戰斗飛行器(AUCAVs)的出現利用了這一限制,改變了空戰的基本原理。然而,最近的研究集中在一對一的交戰上,忽略了空戰的一個基本規則--永遠不要單獨飛行。我們制定了第一個廣義的空戰機動問題(ACMP),稱為MvN ACMP,其中M個友軍AUCAVs與N個敵軍AUCAVs交戰,開發一個馬爾可夫決策過程(MDP)模型來控制M個藍軍AUCAVs的團隊。該MDP模型利用一個5自由度的飛機狀態轉換模型,并制定了一個定向能量武器能力。狀態空間的連續和高維性質阻止了使用經典的動態規劃解決方法來確定最佳策略。相反,采用了近似動態規劃(ADP)方法,其中實施了一個近似策略迭代算法,以獲得相對于高性能基準策略的高質量近似策略。ADP算法利用多層神經網絡作為價值函數的近似回歸機制。構建了一對一和二對一的場景,以測試AUCAV是否能夠超越并摧毀一個優勢的敵方AUCAV。在進攻性、防御性和中立性開始時對性能進行評估,從而得出六個問題實例。在六個問題實例中的四個中,ADP策略的表現優于位置-能量基準策略。結果顯示,ADP方法模仿了某些基本的戰斗機機動和分段戰術。

付費5元查看完整內容

態勢感知是作戰人員的必需能力。一種常見的監視方法是利用傳感器。電子光學/紅外(EOIR)傳感器同時使用可見光和紅外傳感器,使其能夠在光照和黑暗(日/夜)情況下使用。這些系統經常被用來探測無人駕駛飛機系統(UAS)。識別天空中的這些物體需要監測該系統的人員開展大量工作。本報告的目的是研究在紅外數據上使用卷積神經網絡來識別天空中的無人機系統圖像的可行性。本項目使用的數據是由作戰能力發展司令部軍備中心的精確瞄準和集成小組提供的

該報告考慮了來自紅外傳感器的圖像數據。這些圖像被送入一個前饋卷積神經網絡,該網絡將圖像分類為有無無人機系統。卷積模型被證明是處理這些數據的第一次嘗試。本報告提供了一個未來的方向,以便在未來進行擴展。建議包括微調這個模型,以及在這個數據集上使用其他機器學習方法,如目標檢測和 YOLO算法。

付費5元查看完整內容
北京阿比特科技有限公司