亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本文的研究工作是為一個可擴展的圓柱形空投系統初步設計一個最佳導航控制器,該系統在平面運動中使用網格鰭進行控制。一系列軍事和人道主義任務都需要精確的空投能力。已投入使用的空投系統并未達到預期的性能目標,尤其是在精度方面。在過去的行動中,空投系統精度不高造成的后果包括財產損失、人身傷害甚至人員傷亡。如今的空投系統也主要是為從一個或兩個特定機身上投放大型有效載荷而建造的,這限制了操作的靈活性。本研究采用直接定位和分析方法來解決網格鰭控制精確空投系統的最優控制問題。優化控制問題包括兩個階段:控制下降和降落傘下降。計算了系統在不同風場下的最小和最大范圍,以限定計算出的空氣釋放點的允許誤差。假定可以實現最佳軌跡的實時計算,設計了控制法則算法和任務流程圖。最后,測試了所提出的完整方法對初始條件擾動的魯棒性。結果表明,分析方法的準確性和計算速度都很不錯。這些軌跡和控制可作為未來精確空投系統的基線,以提高在實際場景中空投的精確度。

圖 2:通用精確空投任務。

方法大綱

高層次方法如下:

1.為空投問題的兩個階段(控制下降和降落傘下降)建立系統模型,包括為系統的所有組件建立空氣動力學模型。此外,必須對模型進行求解或模擬,以確保其符合預期。

2.決定將哪些因素(如失誤距離、控制等)納入最優控制問題的成本函數中,并為相應的求解方法(直接或間接搭配法)建立最優控制問題,同時納入所有必要的邊界和路徑約束。

3.對每種求解方法進行初步評估,以確定是否適用于創建高層控制框架的整體問題,并隨后構建該控制框架。

4.針對初始條件中的各種擾動和各種風廓線,評估計算最佳參考軌跡的建議方法。評估標準是該方法與基準解決方案相比所需的計算時間和準確性。

本文件編排如下: 第二章介紹了精確空投、風、最優控制理論以及系統不同組成部分的空氣動力學建模的背景。第三章詳細介紹了所使用的方法,首先定義了動力學模型和軌跡求解方法,然后概述了具體的優化控制問題,最后概述了高級控制框架和用于驗證該控制框架的方法。第四章介紹了第三章中驗證方法的結果。最后,第五章回答了第 1.3 節中提出的研究問題,根據結果得出了進一步的結論,并對未來工作提出了建議,以繼續完善網格鰭控制精確空投系統。

付費5元查看完整內容

相關內容

本文旨在研究天基激光武器系統對抗高超音速滑翔飛行器的有效性。高超音速滑翔飛行器是一種新興的武器系統,兼具彈道導彈的射程和巡航導彈的機動性。這些系統對軍事資產構成了獨特的威脅,不僅因為其能力擴大,還因為缺乏有效的防御對策。天基激光武器系統可為這一問題提供解決方案。本文首先模擬了天基激光系統抵御高超音速滑翔飛行器的動力學過程。在假定點質量三自由度條件下,定義了兩個物體的空間軌道力學和大氣飛行力學的支配運動方程。交戰模型中的幾個變量允許變化,包括天基激光系統的真實異常和上升節點的赤經的初始條件,以及高超音速滑翔飛行器的速度比、攻擊角和地面目標的航向。每個物體的運動從初始條件開始向前傳播,分析視線沿線的相對運動和激光。然后將激光的預定攔截范圍與高超音速滑翔飛行器的飛行路徑進行比較,以確定何時成功攔截高超音速滑翔飛行器。最后,研究激光攔截高超音速滑翔飛行器的解集。結果表明,確實存在可用的解決方案集,天基激光系統可以防御高超音速滑翔飛行器對特定地面目標的攻擊。

付費5元查看完整內容

異構多智能體系統為解決農業、軍事、裝配和倉庫自動化等不同領域的復雜問題提供了可能,否則單個智能體是無法解決這些問題的。要有效部署異構多機器人團隊,研究必須解決不同抽象程度的四個問題:任務規劃(是什么)、運動規劃(如何)、任務分配(誰)和調度(何時)。這些問題高度相互依存,先前的工作已經證明,利用這些問題的單個解決方案之間的協同作用的系統可以提高多機器人協調的效率和效益。

本文研究了在多智能體組隊應用中使用基于特質的模型來表示單個智能體,以及如何利用基于特質的建模來實現更穩健、更高效的多智能體聯盟組建解決方案。具體來說,我們研究了如何在聯盟組建算法中使用這些技術來回答任務分配、調度、運動規劃和任務規劃這四個問題。

我們的研究表明,利用基于機器人和任務特質建模的算法可以在異構多機器人團隊中實現高效的協調,并且在時間進度、分配質量和計算效率方面優于現有方法。本論文的貢獻如下:

  • 創建一個建模框架,使現代任務分配算法能夠推理動態特征。通過使用基于轉換的建模框架,我們創建了對以往基于特質的建模技術的擴展,以更好地推理智能體的特質如何隨時間變化。

  • 為異構多機器人系統開發基于時間擴展特質的任務分配和路徑規劃統一框架。我們引入了一種基于搜索的方法,用于基于特質的時間擴展任務分配和運動規劃,命名為增量任務分配圖搜索(ITAGS)。

  • 整合任務規劃、任務分配、調度和運動規劃的新型多機器人協調問題的形式化和解決方案。我們形式化了一類新的多機器人協調問題,該問題融合了這些問題中的每一個,并提出了一種解決方案(圖形遞歸同步任務分配、規劃和調度(GRSTAPS))。

  • 為 ITAGS 的動態變體創建框架,該變體能夠進行基于特征的任務分配修復: 我們對 ITAGS 進行了擴展,使用基于特質的動態時間擴展任務分配算法,如果智能體的特質或任務要求在執行過程中發生變化,該算法可以修復任務分配。

  • 創建一個主動學習框架,用于學習多智能體任務分配問題的特質要求: 由于理解一個聯盟的特質與該聯盟在特定任務中的表現之間的關系可能具有挑戰性,因此我們提出了一種主動學習框架來學習任務與特質之間的關系。此外,我們還提供了一種新的時間擴展任務分配算法,該算法能夠優化學習到的質量模型。

圖 2.1: 顯示各種多機器人協調問題交叉點的維恩圖。

付費5元查看完整內容

近年來,對無人駕駛車輛等自主實體的研究開始給軍事和民用設備帶來革命性的變化。自主實體的一個重要研究重點是自主機器人群的協調問題。傳統上,機器人模型被用于考慮操作機器人群所需最低規格的算法。然而,這些理論模型也忽略了重要的實際細節。其中一些細節,如時間,以前也曾被考慮過(如執行的歷時)。在本論文中,將結合幾個問題來研究這些細節,并引入新的性能指標來捕捉實際細節。具體來說,我們引入了三個新指標:(1) 距離復雜度(反映機器人的耗電量和損耗),(2) 空間復雜度(反映算法運行所需的空間),(3) 局部計算復雜度(反映蜂群中每個機器人的計算要求)。

將這些指標應用于研究一些著名的重要問題,如完全可見性和任意模式形成。還引入并研究了一個新問題--"門道出口",它抓住了機器人群在受限空間中導航的本質。首先,研究了一類完全可見性算法所使用的距離和空間復雜性。其次,提供了整數平面上的完全可見性算法,包括一些在時間、距離復雜度和空間復雜度方面漸近最優的算法。第三,介紹了門道出口問題,并為各種機器人群模型提供了不同最優性的算法。最后,還提供了網格上任意圖案形成的最優算法。

付費5元查看完整內容

隨著傳感器技術和由此產生的傳感器分辨率的不斷進步,傳統的基于點的目標跟蹤算法已顯得力不從心,尤其是在使用高分辨率傳感器的自動駕駛汽車、視覺跟蹤和監控等應用領域。這重新激發了人們對擴展目標(ET)跟蹤的興趣,其目的不僅在于跟蹤目標的中心點,還在于跟蹤目標隨時間變化的形狀和大小。

本論文探討了 ET 跟蹤應用領域中最具挑戰性的三個問題。研究的第一個難題是,在非高斯噪聲存在的情況下,需要對具有任意未知星凸形狀的 ET 目標進行精確的形狀和中心估計。提出的方法基于 Student's-t 過程回歸算法,該算法在遞歸框架中定義,適用于在線跟蹤問題。

第二個問題試圖通過定義一種新穎的隨機多面體形狀描述符來放松在估計過程中施加在 ET 目標形狀上的任何約束,包括星凸約束。此外,所提出的解決方案還引入了一種方法,以減輕在 ET 跟蹤應用中因自閉塞而造成的麻煩,因為忽視自閉塞可能會導致 ET 狀態估計出現災難性的偏差。

最后,研究了在雜波和遮擋情況下跟蹤多個 ET 目標的框架,并提出了解決方案。所提出的方法可以在現實場景中估計 ET 目標的中心和形狀,同時考慮到自閉和互閉的挑戰。所提出的方法為每個 ET 定義了一個隨時間變化的狀態檢測概率,即使在相互遮擋造成的不利條件下,也能延長軌跡。此外,建議的算法使用集合成員不確定性模型來約束被遮擋 ET 的關聯和目標形狀不確定性,從而獲得更準確的 ET 目標狀態和形狀估計。

所提方法的性能在自閉和互閉的真實模擬場景中進行了量化,其結果與現有的最先進的 ET 跟蹤應用方法進行了比較。

圖 1.1: 點目標和擴展目標的并排比較。(a): 點目標的單一測量源和生成的測量結果。(b): 多個散射點和 ET 生成的測量結果。

付費5元查看完整內容

過去幾十年來,在安全、監視、情報收集和偵察等許多領域,對目標跟蹤(OT)應用的需求一直在增加。最近,對無人駕駛車輛新定義的要求提高了人們對 OT 的興趣。機器學習、數據分析和深度學習的進步為識別和跟蹤感興趣的目標提供了便利;然而,持續跟蹤目前是許多研究項目感興趣的問題。本文提出了一個系統,實現了一種持續跟蹤目標并根據其先前路徑預測其軌跡的方法,即使目標在一段時間內部分或完全被隱藏。該系統分為兩個階段:第一階段利用單個固定攝像機系統,第二階段由多個固定攝像機組成的網狀系統。第一階段系統由六個主要子系統組成:圖像處理、檢測算法、圖像減法器、圖像跟蹤、跟蹤預測器和反饋分析器。系統的第二階段增加了兩個主要子系統: 協調管理器和相機控制器管理器。這些系統結合在一起,可以在目標隱藏的情況下實現合理的物體連續性。

付費5元查看完整內容

印太地區的大國競爭對美國來說并不陌生。西太平洋對后勤工作提出了獨特的挑戰,尤其是在海上領域。即使按照今天的標準,當前的海上后勤平臺也屬于傳統設備;它們缺乏能力和容量,是美國在對抗性海上環境中維持聯合部隊的關鍵弱點。然而,新興技術可以在短期內彌補這些差距。

人工智能可以協助人類制定航線和裝載計劃,提供船只控制,并以競爭激烈的戰場節奏實現快速數據匯總和決策。通過在各后傾節點之間自動進行兵力分配和供應動態分配,人工智能將使關鍵物資在正確的時間和地點到達。INDOPACOM 地區的地理距離自上一次大國競爭以來一直未變;增強指揮和決策速度對于實現和保持競爭節奏至關重要。

海上和陸地/海洋的自動化貨物運輸既能降低風險,又能提高效率。通過用自動化系統取代人類操作員來執行常規的、高強度的實際操作,指揮官可以控制部隊的風險。無人駕駛船只可以在沒有外部支持的情況下在海上運行數周。自動起重機和車輛可以不知疲倦地高效裝卸貨物。

戰化的彈性系統意味著作戰人員可以信賴它們的持續性。推進器和貨物裝卸設備等關鍵系統的冗余可確保長途航行不會白費。零部件的通用性、自動維護操作和現成的商用解決方案避免了交付流程中的瓶頸,并實現了有利的齒尾比。以可承受的價格生產后勤平臺,意味著可以在行動開始時安裝更多的系統,并在需要時增加更多的能力。最后,擁有足夠多的成本效益高、易于保養、維修和相對容易更換的船只,有助于提高系統的彈性。

當前的技術可以彌補海事后勤的不足,而更全面的解決方案則可以解決體制上的缺陷。采用人工智能、自動化設備和彈性系統可以有效地使聯合部隊指揮官控制作戰區域內的后勤工作。

圖:人工智能支持的在途可視化

付費5元查看完整內容

本文探討了自主無人機系統(UAS)的制導和控制。具體而言,研究了基于模型參考自適應控制(MRAC)的尾翼無人機系統,以及用于戰術機動和覆蓋的多旋翼無人機系統的制導和控制。調查了當前和潛在的應用,并找出了現有技術的差距。

為了解決四旋翼無人機這一特殊類別的尾翼無人機系統的控制問題,研究人員開發了兩種方法,以解決建模不確定性、未建模有效載荷、陣風以及執行器故障和失靈等問題。在第一種方法中,尾翼無人機系統的縱向動力學采用 MRAC 法進行調節,以在新穎的控制架構中實現規定性能和輸出跟蹤。用于規定性能和輸出跟蹤的 MRAC 法則結合了線性二次調節器 (LQR) 基線控制器,使用積分反饋互連。利用障礙 Lyapunov 函數對軌跡跟蹤誤差進行約束,并通過采用軌跡跟蹤誤差瞬態動態參考模型來保證用戶定義的軌跡跟蹤誤差收斂速率。在該控制系統中,平移和旋轉動力學分別分為外環和內環,以考慮到四旋翼雙翼飛行器的動力不足問題。在外環中,氣動力的估計值和 MRAC 法則用于穩定平移動力學。此外 此外,還推導出參考俯仰角,使飛行器的總推力永遠不會指向地球,以確保安全,并避免通常用于確定方向的帶符號反正切函數固有的不連續性。在內環中,氣動力矩的估計值和 MRAC 法則用于穩定旋轉動力學。此外,還提出了一種用于確定所需總推力的法則,該法則可確保如果飛行器的方位與所需方位足夠接近,則會施加適當的推力。還提出了一種控制分配方案,以確保始終實現所需的推力力矩,并滿足對執行器產生的推力的非負約束。仿真驗證了針對規定性能和輸出信號跟蹤采用 MRAC 的控制架構,并將規定性能 MRAC 法與經典 MRAC 法進行了比較。

在第二種方法中,提出了一種基于 MRAC 的統一控制架構,該架構沒有將縱向和橫向動力學分開。平移和旋轉動力學分別被分離為外環和內環,以解決尾翼無人機系統的動力不足問題。由于預計飛行器會發生較大的旋轉,因此使用無奇異性的四元數來捕捉尾翼的方向。此外,還通過使用障壁 Lyapunov 函數來解決卷揚現象,以確保跟蹤誤差四元數的第一個分量為正,從而按照最短的旋轉將飛行器的當前方位驅動到參考方位。在外環中,利用對空氣動力的估計和 MRAC 法則確定所需的推力。參考方位是根據正交普羅克斯特問題的解確定的,該問題可找到從當前推力方位到所需推力方位的最小旋轉。由于正交普羅克里斯特問題的不連續性質,角速度和加速度無法通過對正交普羅克里斯特問題解的時間導數來推導。奇異值分解的不連續性。因此,我們使用兩次連續可微分函數--球面線性插值,來尋找連接捕捉車輛當前方位的單元四元數和捕捉參考方位的單元四元數的大地線。一個有趣的結果是,角速度和加速度只取決于參數化球面線性插值函數的標量值函數的一階導數和二階導數;實際函數并不重要。然而,確定該函數的形狀并非易事,因此采用了受模型預測控制啟發的方法。在內環中,使用氣動力矩估計值和 MRAC 法來穩定旋轉動力學,并將推力分配給各個螺旋槳。建議的控制方案的有效性通過仿真得到了驗證。

提出了一種用于自主無人機系統的集成制導和控制系統,可在未知、動態和潛在的敵對環境中,按照用戶規定的不計后果或戰術方式進行機動。在該制導和控制系統中,戰術操縱是通過在飛行器接近目標時利用環境中的障礙物來實現的。不計后果的機動是通過在向目標前進時忽略附近障礙物的存在,同時保持不發生碰撞來實現的。魯莽行為和戰術行為的劃分受到生物啟發,因為動物或地面部隊都會使用這些戰術。制導系統融合了路徑規劃器、避免碰撞算法、基于視覺的導航系統和軌跡規劃器。路徑規劃器以 A? 搜索算法為基礎,并提出了可定制調整的 "到達成本"(cost-to-come)和啟發式函數,通過降低底層圖中捕獲靠近障礙物集的節點的邊的權重,利用障礙物集進行躲避。啟發式的一致性已經確定,因此,搜索算法將返回最優解,而不會多次擴展節點。在現實場景中,需要快速重新規劃,以確保系統實現所需的行為,并且不會與障礙物發生碰撞。軌跡規劃器基于快速模型預測控制(fMPC),因此可以實時執行。此外,還采用了一個自定義的可調成本函數,該函數權衡了與障礙物集的接近程度和與目標的接近程度的重要性,為實現戰術行為提供了另一種機制。新穎的避免碰撞算法是基于解決一類特殊的半有限編程問題,即二次辨別問題。避撞算法通過尋找將無人機系統與障礙物集分隔開來的橢球體,生成無人機系統附近自由空間的凸集。凸集在 fMPC 框架中用作不等式約束。避撞算法的計算負擔是根據經驗確定的,并證明比文獻中的兩種類似算法更快。上述模塊被集成到一個單一的制導系統中,該系統為任意控制系統提供參考軌跡,并在多次模擬和飛行測試中展示了所提方法的有效性。此外,還提出了飛行行為分類法,以了解可調參數如何影響最終軌跡的魯莽性或隱蔽性。

最后,介紹了用于自主無人機系統的綜合制導和控制系統,該系統可在未知、動態和潛在敵對環境中,按照用戶的要求,以不計后果或戰術的方式執行戰術覆蓋。覆蓋的制導問題涉及收集環境信息的策略和路線規劃。收集未知環境信息的目的是幫助服務組織和第一反應人員了解態勢和制定計劃。為解決這一問題,需要綜合考慮目標選擇、路徑規劃、避免碰撞和軌跡規劃。我們提出了一種基于八叉樹數據結構的新型目標選擇算法,用于為路徑規劃器自主確定目標點。在該算法中,由導航系統推導出的體素地圖捕捉了環境中各區域的占用和探索狀態,并被分割成捕捉大面積未探索區域和大面積已探索區域的分區。大面積未探索區域被用作候選目標點。目標點的可行性通過采用貪婪 A? 技術來確定。該算法擁有可調參數,允許用戶在確定目標點序列時指定貪婪或系統行為。這種技術的計算負擔是根據經驗確定的,并證明可在現實場景中實時使用。路徑規劃器基于終身規劃 A?(LP A?)搜索算法,與 A?技術相比,該算法更具優勢。此外,還提出了一種可自定義調整的成本-歸宿和啟發式函數,以實現戰術或魯莽的路徑規劃。提出了一種新的避免碰撞算法,作為上述避免碰撞算法的改進版本,改進了所產生的約束集的體積,從而使更多的自由空間被凸集捕獲,因此,軌跡規劃者可以利用更多的環境進行戰術機動。該算法基于半定量編程和快速近似凸殼算法。軌跡規劃器以 fMPC 為基礎,采用自定義成本函數,通過滑行障礙物表面實現戰術機動,并將所需加速度作為與掩體距離的函數進行調節;采用障礙函數約束飛行器的姿態并確保推力正向性;采用四旋翼無人機系統的輸出反饋線性化運動方程作為微分約束,以實現積極的機動。利用定制的 C++ 模擬器驗證了所提系統的功效。

本論文將探討在海洋環境中運行的自主無人機系統在制導和控制算法方面存在的一些不足。

付費5元查看完整內容

過去幾十年來,在安全、監視、情報收集和偵察等許多領域,對目標跟蹤(OT)應用的需求一直在增加。最近,對無人系統新定義的要求提高了人們對 OT 的興趣。機器學習、數據分析和深度學習的進步為識別和跟蹤感興趣的目標提供了便利;然而,持續跟蹤目前是許多研究項目感興趣的問題。本論文提出了一個系統,實現了一種持續跟蹤目標并根據其先前路徑預測其軌跡的方法,即使該目標在一段時間內被部分或完全隱藏。該系統分為兩個階段: 第一階段利用單個固定攝像機系統,第二階段由多個固定攝像機組成的網狀系統。第一階段系統由六個主要子系統組成:圖像處理、檢測算法、圖像減法器、圖像跟蹤、跟蹤預測器和反饋分析器。系統的第二階段增加了兩個主要子系統:協調管理器和相機控制器管理器。這些系統結合在一起,可以在目標隱藏的情況下實現合理的目標跟蹤連續性。

付費5元查看完整內容

無人機系統(UAS)是近期顛覆性技術的最佳范例之一,理所當然地成為無數新型軍事和民用應用的主力軍。無人機系統技術已經發展到這樣一個地步:從后勤角度看,部署成群的無人機系統是一項合理可行的活動。然而,完全自主和分布式地控制這些無人機蜂群仍然遙不可及。特別是,如果蜂群成員或它們所支持的其他網絡節點處于通信斷開狀態,那么蜂群的協調工作就會變得尤為困難。此類研發活動的高風險性質和潛在危險后果也使其實施極為罕見。此外,從自動化設計和部署的角度來看,算法的可擴展性問題依然存在。本論文旨在通過模擬和機器人現場實驗解決這些問題,利用生物啟發和強化學習方法為常見的無人機系統應用生成蜂群控制方案。

在論文的技術部分中,第 4 章至第 6 章提出了幾種新型蜂群控制算法,以支持通信和其他基于位置的任務。通過對由此產生的新興行為進行數學分析,可以深入了解協調是如何發生的。論文進一步研究了這些算法適應不同環境條件的方式,如通信連接、蜂群規模和角色要求。第 7 章和第 8 章從自動算法設計和實際通信的角度探討了蜂群的可擴展性問題。前者表明,通過多智能體強化學習架構生成的控制策略的移植取決于智能體觀察環境的方式;據作者所知,這是首個此類結果。這一結果允許部署大型蜂群,而無需訓練其所有成員。在后者中,隨著通信信道擁塞程度的增加,出現行為的崩潰也會隨之加劇,從而為衡量此類算法中的出現行為提供了新的衡量標準。

作為一項完整的工作,本論文通過模擬和數學分析,為推動自主蜂群控制的現狀做出了多項貢獻。在可行的情況下,還在真實系統上進行了實驗,以進一步驗證現實世界中的結果。這些貢獻的一個理想結果是提高了利用蜂群控制的系統的可信自主性。

付費5元查看完整內容

軍用飛機推進系統是噴氣發動機設計中最具挑戰性的領域之一: 在受飛機空氣動力學影響極大的多變環境中工作時,這些發動機應在不影響可靠性和運行成本的前提下,以盡可能小的體積提供大的推力輸出。此外,軍用飛機運行的多學科性質經常會引入相互矛盾的性能目標,很難將其納入發動機設計中。所有這些因素再加上發動機開發成本非常高,因此有必要在設計階段的早期進行適當的選擇,以確保開發過程的成功和新發動機概念的可行性。

盡管該領域的研究數量巨大,但也許是由于所涉及數據的敏感性,迄今為止發表的研究都集中在相當具體的主題上,而沒有涉及完整的多學科飛機推進系統集成問題。為此,需要結合不同研究領域的內容和貢獻,建立新的綜合方法。

本項目研究開發一種新方法,將發動機初步設計與飛機運行要求相互聯系起來。在此范圍內,構建了通用軍用機身的表示方法,并將其與發動機性能模型和仿真工具相結合,以研究推進系統對飛機任務性能和生存能力的影響。更具體地說,該項目在軍用飛機推進系統集成領域的貢獻主要集中在三個方面:

  • 新的軍用飛機表示法,模擬飛機與推進系統之間相互作用的關鍵方面: 飛機空氣動力學、機身/推進系統空氣動力學干擾、紅外和噪聲特征。該模型計算要求低,適合用于大規模參數研究和軌跡優化案例。

  • 基于模擬的新技術,用于估計爬升性能和評估飛機/發動機配置在現實任務場景中的任務能力。所開發方法的創新點包括爬升軌跡問題的多目標表述、高度-機械跟蹤技術、能量-機動性(E-M)技術的擴展,允許同時優化飛機軌跡和發動機計劃,以及為軍用飛機引入最小噪音和紅外軌跡。

  • 考慮到飛機的紅外特征和飛機/導彈的運動性能,量化推進系統對飛機生存能力的影響。這是通過將飛機紅外模型與導彈對飛機和飛機對飛機的運動模擬相結合來實現的,這些模擬用于測量飛機易受攻擊的程度,以及飛機自身攻擊機動目標的能力。

上述方法是利用已公布的數據開發和驗證的,并在一系列測試案例中用于研究飛機的性能趨勢,在這些案例中,不同的推進系統設計在各種模擬任務中的有效性得到了評估。結果成功證明了所開發的方法能夠量化飛機性能與發動機設計之間的關系,為理解采用不同推進系統配置所產生的性能權衡提供了基礎,從而最大限度地提高動力裝置設計過程的效率。

付費5元查看完整內容
北京阿比特科技有限公司