無人機系統(UAS)是近期顛覆性技術的最佳范例之一,理所當然地成為無數新型軍事和民用應用的主力軍。無人機系統技術已經發展到這樣一個地步:從后勤角度看,部署成群的無人機系統是一項合理可行的活動。然而,完全自主和分布式地控制這些無人機蜂群仍然遙不可及。特別是,如果蜂群成員或它們所支持的其他網絡節點處于通信斷開狀態,那么蜂群的協調工作就會變得尤為困難。此類研發活動的高風險性質和潛在危險后果也使其實施極為罕見。此外,從自動化設計和部署的角度來看,算法的可擴展性問題依然存在。本論文旨在通過模擬和機器人現場實驗解決這些問題,利用生物啟發和強化學習方法為常見的無人機系統應用生成蜂群控制方案。
在論文的技術部分中,第 4 章至第 6 章提出了幾種新型蜂群控制算法,以支持通信和其他基于位置的任務。通過對由此產生的新興行為進行數學分析,可以深入了解協調是如何發生的。論文進一步研究了這些算法適應不同環境條件的方式,如通信連接、蜂群規模和角色要求。第 7 章和第 8 章從自動算法設計和實際通信的角度探討了蜂群的可擴展性問題。前者表明,通過多智能體強化學習架構生成的控制策略的移植取決于智能體觀察環境的方式;據作者所知,這是首個此類結果。這一結果允許部署大型蜂群,而無需訓練其所有成員。在后者中,隨著通信信道擁塞程度的增加,出現行為的崩潰也會隨之加劇,從而為衡量此類算法中的出現行為提供了新的衡量標準。
作為一項完整的工作,本論文通過模擬和數學分析,為推動自主蜂群控制的現狀做出了多項貢獻。在可行的情況下,還在真實系統上進行了實驗,以進一步驗證現實世界中的結果。這些貢獻的一個理想結果是提高了利用蜂群控制的系統的可信自主性。
目前,將人工智能技術融入美國軍隊的勢頭非常強勁。這包括將該技術用于指揮和控制目的。這些努力的前提是人工智能和機器學習能讓美國指揮官以更快的速度做出更好的決策。然而,人工智能不斷融入軍事決策過程,有望將決策要素從人類手中下放,這對強調果斷、直覺和大膽指揮官這一英雄原型的長期軍事傳統提出了挑戰。因此,本文試圖探討,面對這些相互競爭的觀點,將戰爭決策權下放給 "智能機器 "的前景是如何獲得目前的發展勢頭的?本文認為,可以通過關注二戰后時代出現的特殊戰爭愿景,特別是與美國軍事思想中的速度和知識主題相關的愿景,來解決這一難題。通過結合使用計算文本分析技術和系譜學方法,本文揭示了美國國防架構成員對速度和知識及其與戰爭關系的構想和優先次序的轉變。本文說明,在有關人工智能的優點及其在軍事決策中的作用的辯論中,這些變化充當了一種修辭資源,有助于鎖定與現代指揮相關的新含義和實踐并使之正規化。這些發現對于如何分析軍事文化、技術和戰爭實踐之間的關系具有重要意義;因此,這些發現指出了技術和戰爭的想象如何交織在一起,并對未來沖突如何展開產生了重大影響。
除了人工智能技術和軍事指揮實踐之外,本文還關注速度與知識這兩個主題之間的緊張關系。速度是戰爭不可或缺的要素,長期以來一直為實踐者、理論家和學者所強調。盡管如此,盡管速度作為戰爭中的一個關鍵因素經常被闡述,但其部署在不同時期和背景下并不完全一致。軍事思想經典都強調與速度有關的要素。例如,《孫子兵法》指出,"雖聞戰之愚急,而智不與久耽"。因此,孫子在指出行動過快的風險的同時,也指出了快速而巧妙的行動可能帶來的好處。不過,在這里,他也指出了與戰爭持續時間過長的風險有關的戰略計算。其中包括財政成本。不過,孫子也簡要提到了指揮官 "迅速 "決策的可能優勢,以及 "迅速 "行軍到意想不到的地點以達到戰術奇襲的目的。盡管如此,他在此也告誡人們不要無節制地追求快速、強行軍,因為這會造成組織混亂和供應鏈問題。從這個意義上說,對孫子來說,速度并不是統一的優勢。他建議 "疾如風,密如林",就是對這一觀點的總結。看來,對孫子而言,速度和維持軍隊組織的必要性都不是萬能的。
本文的論述過程如下。第二章評估了以往關于戰爭與技術關系的文獻。它指出了四種可能的替代解釋來源,并強調了每種方法如何無法提供適當的工具包來回答本論文的研究問題。在對文獻進行回顧之后,第三章提出了一套研究軍事實踐與技術之間關系的工具,將關系/實用主義社會理論和科技研究的元素與一種方法論相結合,既有譜系研究方法,又有計算文本分析方法。
第四章是 "鋪墊 "一章,從歷史技術軌跡的角度討論人工智能。本章旨在為讀者提供人工智能的基礎知識、該領域的技術歷史、當前發展情況,以及在軍事和非軍事環境中應用人工智能時仍然存在的基本問題。
第五章采用計算文本分析方法,追蹤二戰后美國軍事思想史中的速度與知識主題。它表明,在當今時代,速度的認知要素以及信息和知識在戰場上的重要性在軍事專業期刊的討論中處于相對高點。這些趨勢為我的論點提供了證據,即在美國國防架構中,新的 "成功 "戰爭方式正在被構建和討論。
第六章和第七章為計算結果提供了更多背景資料。依靠對美國國防和軍事相關文件的細讀,這兩章提供了二戰后速度(第六章)和知識(第七章)主題的譜系,展示了更廣泛的美國軍事思想中的特殊變異。這些變異和相對穩定是修辭資源的 "池塘"。然后,每一章都展示了這些修辭資源是如何在有關人工智能的辯論中被部署到指揮決策中的。
第八章的重點是,在美國對人工智能指揮的更廣泛理解中,速度和知識的配置是如何緊密聯系在一起的。此外,至關重要的是,本章說明了與人工智能和指揮決策相關技術傳統沖突所產生的修辭封閉性。相關的技術批判已被戰略性地歸入更廣泛的技術論述和戰爭表達中,其方式現在與人工智能聯系在一起。這種形式的修辭封閉性使人工智能指揮的支持者能夠超越反駁論點,從而在美國防部政策中鎖定一種特定形式的穩定關系,并日益制度化。最后,第九章就我們如何在人類與人工智能系統緊密結合的當代社會技術配置中構想軍事決策提出了一些結論和思考。
過去幾十年來,在安全、監視、情報收集和偵察等許多領域,對目標跟蹤(OT)應用的需求一直在增加。最近,對無人駕駛車輛新定義的要求提高了人們對 OT 的興趣。機器學習、數據分析和深度學習的進步為識別和跟蹤感興趣的目標提供了便利;然而,持續跟蹤目前是許多研究項目感興趣的問題。本文提出了一個系統,實現了一種持續跟蹤目標并根據其先前路徑預測其軌跡的方法,即使目標在一段時間內部分或完全被隱藏。該系統分為兩個階段:第一階段利用單個固定攝像機系統,第二階段由多個固定攝像機組成的網狀系統。第一階段系統由六個主要子系統組成:圖像處理、檢測算法、圖像減法器、圖像跟蹤、跟蹤預測器和反饋分析器。系統的第二階段增加了兩個主要子系統: 協調管理器和相機控制器管理器。這些系統結合在一起,可以在目標隱藏的情況下實現合理的物體連續性。
近年來,計算機視覺和機器學習系統有了顯著改善,這主要是基于深度學習系統的發展,從而在目標檢測任務上取得了令人印象深刻的性能。理解圖像內容則要困難得多。即使是簡單的情況,如 "握手"、"遛狗"、"打乒乓球 "或 "人們在等公交車",也會帶來巨大的挑戰。每種情況都由共同的目標組成,但既不能作為單一實體進行可靠的檢測,也不能通過其各部分的簡單共同出現進行檢測。
這篇論文將描述一個用于進行視覺情境識別的新型系統,其目標是開發能夠展示與理解相關特性的機器學習系統。該系統被稱為 Situate,它能在給出情況描述和少量標注訓練集的情況下,學習目標外觀模型以及捕捉情況預期空間關系的概率模型。給定一張新圖片后,Situate 會利用其學習到的模型和一系列智能體對輸入內容進行主動搜索,以找到情況模型與圖片內容之間最一致的對應關系。每個智能體都會開發模型與輸入內容之間可能存在的對應關系,而 Situate 會為智能體分配計算資源,以便盡早開發出有希望的解決方案,但也不會忽略其他對應關系。
將把 Situate 與更傳統的計算機視覺方法(該方法依賴于檢測情境中的組成目標)以及基于 "場景圖 "的相關圖像檢索系統進行比較。將在情境識別任務和圖像檢索中對每種方法進行評估。結果表明了圖像內容和該內容模型之間的反饋系統的價值。
過去幾十年來,在安全、監視、情報收集和偵察等許多領域,對目標跟蹤(OT)應用的需求一直在增加。最近,對無人系統新定義的要求提高了人們對 OT 的興趣。機器學習、數據分析和深度學習的進步為識別和跟蹤感興趣的目標提供了便利;然而,持續跟蹤目前是許多研究項目感興趣的問題。本論文提出了一個系統,實現了一種持續跟蹤目標并根據其先前路徑預測其軌跡的方法,即使該目標在一段時間內被部分或完全隱藏。該系統分為兩個階段: 第一階段利用單個固定攝像機系統,第二階段由多個固定攝像機組成的網狀系統。第一階段系統由六個主要子系統組成:圖像處理、檢測算法、圖像減法器、圖像跟蹤、跟蹤預測器和反饋分析器。系統的第二階段增加了兩個主要子系統:協調管理器和相機控制器管理器。這些系統結合在一起,可以在目標隱藏的情況下實現合理的目標跟蹤連續性。
美國潛在的和當前的對手正在購買和部署聯網的商用小型無人機群(sUAS)。這些蜂群可用于情報收集和偵察,也有可能被武器化。此外,民用無人機系統(無人機)操作人員的非法活動(但可能并非惡意)也日益受到關注。更具體地說,在港口過境等受限環境中,海軍資產面臨的風險增加,導航和武器化反應都是令人嚴重關切的問題。本論文以保護美國海軍驅逐艦進出港口為場景,在現有消防和反海盜技術的基礎上開發了一種無人機系統緩解程序。建議的程序包括一個通信計劃,幾乎可以利用現有的民用和軍用資產立即實施。此外,還提供了改進此類程序性能的其他建議。
無人駕駛航空系統(UAS)能力在商業領域的擴散對民用和軍用設施的傳統周邊防御構成了潛在的重大威脅。特別是現成的商用無人機系統,體積小、價格低、功能多,引起了愛好者越來越大的興趣,也增加了設施面臨的風險。因此,設施指揮官現在需要一種方法,對設施面臨的直接威脅進行快速評估和分析,以確定設施反無人機系統(CUAS)的有效性。按照系統工程方法,本研究提出了一種方法,提供了對設施進行評估和分析的逐步過程,并采用基于模型的系統工程(MBSE)工具來評估 CUAS 的有效性和局限性。該方法分析了 CUAS 的作戰環境以及 CUAS 可能對作戰區域內其他利益相關者(如相鄰的盟軍兵力、平民等)產生影響的方式。然后,我們確定優化 CUAS 性能的候選配置,以滿足利益相關者的要求。我們將對一個擁有現有 CUAS 的假設機場進行案例研究,以展示該方法的可用性,探索候選配置,并證明實施符合設施和利益相關者要求的候選配置是合理的。
近年來,無人機系統(UAS)技術突飛猛進,激發了業余愛好者對無人機系統的興趣,并促使他們將無人機系統用于娛樂用途。此外,每個國家或軍事組織都能負擔得起和使用無人機系統。雖然目前正在實施飛行法規,要求無人機系統運營商提供所有正在運行的無人機系統的歸屬信息,但許多業余愛好者仍然不提供此類信息,而且可以預計邪惡的行為者也不會提供無人機系統的來源標識。因此,僅僅要求識別無人機系統還不足以保護機場等大多數設施免受無人機系統的入侵。此外,如果設施無人看守,無人機系統入侵的后果可能是災難性的。例如,如果無人機系統在起飛過程中進入飛機發動機或撞上油箱,這種事件可能會造成人員傷亡,對運營造成巨大干擾,并對基礎設施或資產造成昂貴的維修費用。
無人機系統旨在執行對人類來說 "枯燥、骯臟或危險 "的各種任務[1]。無人機系統技術發展的主要能力驅動因素是,在執行情報、監視和偵察(ISR)、人道主義援助和救災(HADR)以及精確打擊等危險任務時,人們對軍事力量保存工作的興趣與日俱增。隨著無人機系統技術在過去幾十年的成熟,商業部門看到了將無人機系統應用于基礎設施檢查、交通監控、投遞和氣象等商業活動的機會。對軍事和商業部門都有利的是,在無人機系統領域實施開放式架構獲得了重大創新,從而不斷加快無人機系統的技術進步,使其具有革命性的潛力。商用現成(COTS)無人機系統或小型無人機系統通常提供攝影、攝像和自我組裝套件等功能,吸引著各個領域的愛好者將無人機系統用于娛樂目的[2]。然而,隨著無人機系統的技術發展和廣泛采用,軍事和商業部門都面臨著巨大的風險[3],[4]。
對設施、基地、機場、關鍵基礎設施和類似設施而言,非惡意無人機系統的主要風險是失控和碰撞。失控可能會對關鍵資產造成重大損壞或對人造成傷害,并可能產生高昂的成本來修復基礎設施損壞和治療嚴重傷害。例如,業余無人機系統操作員可能會嘗試拍攝停靠的客機視頻作為其業余愛好的一部分,但由于信號超出范圍問題而無意中失去控制,這可能會導致與即將起飛的客機相撞。由于大多數無人機系統的所有者都是業余愛好者,他們中的許多人在控制無人機系統方面沒有受過訓練或缺乏經驗。現有的法規和政策無法在允許業余愛好者駕駛較小的無人機系統之前跟蹤他們的操作熟練程度。雖然敏感區域周圍設有禁飛區,但由于業余愛好者可能不了解他們可能造成的損害,每年仍會發生少數事件。機場、軍營和基地、政府大樓和監獄等設施在應對無人機系統時已經遇到了上述安全困境[5]。此外,邪惡的無人機系統活動構成了更大的威脅,盡管迄今為止,在全球范圍內,除戰爭活躍地區外,此類事件相對較少。
各設施迫切需要采用反無人機系統(CUAS)來主動保護其資產和安全。為有效對抗無人機系統,CUAS 需要多個傳感器來探測、識別和分類無人機系統,然后再使用攔截器擊落無人機系統。然而,CUAS 系統的內部和外部存在多種因素,可能會削弱 CUAS 的有效性,設施指揮官必須采取相應的緩解措施[6]-[8]。設施指揮官面臨的一大挑戰是如何在與無人機系統的技術競賽中保持領先。
現有研究主要關注 CUAS 和 UAS 系統的技術能力,而沒有從更廣泛的系統工程角度進行研究。本論文的研究采用了系統工程視角,以支持設施指揮官了解設施在應對當前和新出現的無人機系統威脅時可能存在的薄弱環節,并平衡 CUAS 的能力與鄰近利益相關者的需求[9]。第 2 章中提出的方法允許設施指揮官通過評估和分析探索可能的 CUAS 空間,以確保 CUAS 針對快速出現的無人機系統威脅進行優化并具有相關性。
圖 擬議方法概述。該方法可用于設施指揮官分析現有 CUAS 系統的有效性,找出 CUAS 系統能力差距,提出 CUAS 系統升級建議,并提供 CUAS 系統設計審查。
最近無人駕駛飛行器(UAV)能力的進步導致對蜂群系統的研究越來越多。然而,無人機群的戰術應用將需要安全通信。不幸的是,到目前為止的努力還沒有產生可行的安全通信框架。此外,這些系統的特點是有限的處理能力和受限的網絡環境,這使得許多現有的安全群體通信協議無法使用。最近在安全群組通信方面的研究表明,消息層安全(MLS)協議可能為這些類型的系統提供一個有吸引力的選擇。這篇論文記錄了MLS與先進機器人系統工程實驗室(ARSENL)無人機群系統的整合情況。ARSENL的實施是為了證明MLS在安全蜂群通信中的功效,是一個概念驗證。實施的測試結果是在模擬環境中進行的實驗和用物理無人機進行的實驗。這些結果表明,MLS適用于蜂群,但需要注意的是,測試中沒有實施交付機制以確保數據包的可靠交付。對于未來的工作,如果要維持一個可靠的MLS系統,需要緩解不可靠的通信路徑。
目前,無人駕駛飛行器(UAVs)的進步已經導致了對蜂群能力的研究。目前,多無人機群已被建議或用于一系列廣泛的應用,包括但不限于: 1:
無人機群的戰術利用將取決于安全通信。不幸的是,單個蜂群平臺的處理能力有限,而且蜂群系統通常依賴于帶寬有限且可能不可靠的通信框架。這些限制使這些系統滿足安全要求的能力受到質疑。
以前的設備群通信安全方法不太可能適用于現有或設想中的蜂群系統。然而,最近對安全群組通信的研究表明,消息層安全(MLS)協議[10]可以提供一個有吸引力的選擇,其特點似乎特別適合這些類型的系統。該協議提供了一種有效的計算方法來實現異步安全的群體密鑰管理,但需要在現實的系統中進行實驗,以評估該協議在這些計算和通信有限的環境中的功能。這項工作是在海軍研究生院(NPS)高級機器人系統工程實驗室(ARSENL)的無人機群中實施MLS協議,以保護特定的信息流。
NPS ARSENL開發并利用了一個無人駕駛飛行器(UAV)群系統,該系統已經成功地演示了多達50個UAV[11]。盡管這種能力為軍事行動提供了巨大的潛力,但ARSENL系統缺乏最終在現實世界中使用所需的通信安全功能。本論文在ARSENL蜂群系統上實現了MLS,以評估其對此類系統更廣泛的適用性。
MLS提供了一些與多無人機系統特別相關的能力。MLS提供了一個動態添加和刪除成員的機制,同時不斷地在群組成員之間提供安全的通信。由于無人機群成員可能是高度動態的,添加和刪除群成員是很重要的能力。隨著蜂群規模的增加,群體安全協議必須有效地擴展。同樣有利的是,MLS協議有利于強制移除已經被劫持的、被破壞的或發生故障的無人機。在這些情況下,該協議為小組提供了更新通信密鑰的手段,以排除被破壞或故障的無人機。本論文旨在解決以下問題:
1.MLS協議能否適用于ARSENL無人機群的使用?
2.MLS對ARSENL無人機群的性能有何影響?
3.ARSENL無人機能否加入群組并與群組的其他成員安全地進行通信?
4.小組密鑰是否能夠通過不可靠的ARSENL蜂群網絡定期更新?
5.在出現紕漏或其他標準的情況下,是否可以將無人機從ARSENL群中移除,不再解密信息?
在本論文中,研究了在NPS ARSENL無人機群中使用MLS作為一個連續的組密鑰協議。來自MLS GitHub倉庫[12]的社區維護的C++代碼被調整為納入ARSENL蜂群系統代碼庫。特別是,MLS組的密鑰更新、成員添加和成員刪除等操作被實現和測試。該研究包括分析MLS協議的使用對ARSENL蜂群性能的影響。指標包括各個無人機之間的數據包傳輸和接收率、可擴展性和時間。
本文的其余部分分為四章。第二章提供了理解MLS和無人機群的必要背景信息。這包括討論多無人機群和常見的群組通信架構,ARSENL群組系統,以及潛在的安全通信方法,包括成對和分組協議。本章最后討論了MLS和它是如何工作的。
第三章描述了代碼開發過程。它首先總結了ARSENL機載軟件的機器人操作系統(ROS)框架和用于實現MLS功能的C++應用編程接口(API)。然后,本章討論了代碼的實現,包括代碼概述和討論將MLS集成到ARSENL蜂群中的經驗教訓。
第四章討論了MLS實現的實驗,并分析了它對各個ARSENL蜂群平臺的影響,這些影響受蜂群大小和密鑰更新率的影響。本章包括對測試過程的描述和對結果的描述。
最后,第5章提供了一個結論,包括本研究的意義和對未來工作的建議。
在過去十年中,美國空軍發布的幾乎所有愿景、戰略和飛行計劃都將下一代無人駕駛飛機、自主性和人工智能作為確保在未來戰區獲得決定性戰斗優勢的關鍵技術。空軍目前正在開發新的作戰概念,將有人駕駛的戰斗機和轟炸機與自主無人駕駛飛行器(UAV)組成團隊--稱為有人-無人編隊(MUM-T)--以執行打擊、反空、電子戰和其他任務。鑒于作戰人員和工程師之間經常存在的脫節,開發這種能力具有挑戰性。
目前,作戰人員沒有充分理解無人機需要什么樣的自主權和多少自主權來實現預期行為。另一方面,工程師們往往不完全了解如何分解作戰人員的操作性能要求,以使他們能夠快速部署有效的系統。最重要的是,期望的作戰效果和實現這些效果的技術途徑之間的聯系并不明確。因此,與之相關的愿景、戰略、飛行計劃、作戰概念、計劃以及自主飛行器(ATA)的無數研究和開發工作都沒有以一種清晰和一致的方式結合起來。
一個代表作戰人員和工程師觀點的框架將為這兩個群體在創建自主系統時提供一個結構和共同理解。"作戰人員觀點 "代表了作戰人員如何在戰斗空間中組織思維任務,可以整合不同層次的自主性。然后,"工程師觀點 "可以利用這些任務來開發必要的具體算法、技術和系統,以提供滿足作戰人員需求和期望的自主團隊飛機。本文提出了一個框架,以幫助空軍作戰人員、戰略家和政策制定者更好地理解自主技術,并幫助指導企業走向未來人工智能賦能的美國行動。
圖1. 一個由兩部分組成的框架概述,以提高作戰人員對自主性的理解,并將他們的要求傳達給開發和采購部門。
擬議的自主性框架中的 "作戰人員觀點 "有三個主要類別,每個類別又被細分為五個自主性級別。核心類、任務類和團隊類反映了飛行員的認知任務,旨在為作戰人員提供直觀的信息,幫助他們表達對自主系統應如何執行的要求。核心自主性類別包括飛行控制輸入和導航功能,這是飛機在沒有人類直接控制的情況下飛行所必需的。任務類包括完成與任務有關的任務所必需的功能,如管理傳感器操作、向目標釋放武器和執行其他戰術。協作類包括自主無人機與其他飛機(包括有人和無人)進行協作行動所必需的功能和特點。這三大類中的每一類又被細分為五個自主等級。第1級代表在執行任務時幾乎沒有自動化,第5級包括無人機完全自主執行的行動。
該框架的第二部分是工程師觀點。工程師視圖代表了作戰人員視圖的功能分解,將定義的類別和級別分解為功能、技術和數據。這種清晰的重點使工程師能夠將他們的開發工作與所需的車輛屬性和行為進行映射和優先排序。作戰人員關注的是宏觀層面的任務執行、操作行為和人類在行動中的作用,而工程師關注的是建立一個滿足作戰人員需求的自主系統所必需的基本功能、硬件、軟件和數據。換句話說,工程師觀點使航空航天工程師和技術專家能夠將作戰人員的要求解構為基礎技術和基本的自主要素。
這兩種觀點共同充當了作戰人員和工程師之間的連接組織和翻譯。值得注意的是,這個框架并不打算成為一個規范或標準。這類似于SAE的自動駕駛框架,它說該框架的預期目標是 "描述性和信息性,而不是規范性"。本著這一精神,擬議的雙視角自動駕駛框架的主要目的是使作戰人員和航空航天工程師能夠以結構化和一致的方式明確溝通和交流自主無人駕駛飛機的想法和要求。
圖6.作戰人員觀點:自主性類別和等級在作戰人員視圖中一起使用,形成一個描述無人駕駛飛機的操作行為和屬性的評分標準。
圖8. 工程師視圖從作戰人員視圖中獲取每個自主性類別所需的自主性水平,并提供一種結構化的方式,將自主性能力分解為必要的功能、技術和數據。在這個例子中,作戰人員視圖為核心飛行和導航類別分配了4級自主權,同時為任務分配了2級,為團隊分配了1級。
近年來,情報、監視和偵察(ISR)行動經歷了爆炸性的增長,導致收集的數據成倍增加。然而,盡管有如此豐富的ISR數據,個人、團隊和決策者往往無法開發出他們所需的個人和集體對作戰環境的態勢感知(SA)。增強現實(AR)技術為這種困境提供了一個潛在的解決方案。利用視覺、聽覺和觸覺的線索,AR技術有可能為合作和分析提供新的機會,這將提高個人和集體的安全意識。本文旨在為開發用于ISR行動中協作和分析的AR工具指明道路。它探討了AR技術的現狀,以澄清關鍵的定義、系統的分類和目前對有效使用的研究。它還研究了支撐情景意識的認知和學習理論,以了解AR在發展SA方面可以發揮什么作用(如果有的話)。這些理論被發現支持越來越多地使用AR技術來改善SA和協作,并確定了AR技術為促進SA必須解決的八個設計標準。如果這些設計標準得到尊重,可以預期AR技術會改善學習成績,提高用戶的積極性,并增強用戶的參與/互動和協作。此外,還可以預見在空間理解和長期記憶保持方面的收益。盡管有這樣的潛力,但在AR系統設計中必須適當地管理三個主要風險:引導注意力;系統管理中的分心;以及用戶定制。如果這些風險得到管理,設計標準得到尊重,那么用于ISR行動的協作和分析工具的開發者將能夠開啟AR所提供的光明前景。