亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

傳感器信息推薦系統是一個概念驗證應用程序,用于測試強化學習算法在推薦軍事分析員當時可選擇的正確信息源方面的有效性。該系統有多種方式向用戶傳播數據并向推薦服務器提供反饋。本報告介紹了傳感器信息推薦系統,該系統由數據源、推薦服務器、戰術突擊工具包服務器和安卓團隊感知工具包實例組成。本報告介紹了在獨立環境中部署這些組件以進行測試和開發的步驟。

系統組件

系統架構如圖 1 所示。推薦服務器從部署的傳感器接收數據,并通過 TAK 服務器將傳感器推薦的信息對象發送給 ATAK。

圖 1 傳感器信息推薦系統工作流程中的 TAK 服務器

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

本報告介紹了美國陸軍研究實驗室內容理解處的研究人員在 2023 財年為采用增強型戰術推理(ETI)框架所做的工作。ETI 的開發旨在支持多智能體環境(數據源智能體、推理模型智能體和決策者智能體)中人工推理研究的實驗和演示。在本報告中,ETI 被用于在跨現實環境中演示基于不確定性的決策推薦功能。從模擬場景的數據開始,再加上額外的外部環境,ETI 智能體對態勢感知信息中的不確定性進行推理,為決策者提供建議選擇。最后,ETI 的產品被轉化為跨現實可視化,以探索新的人機交互模式。

增強戰術推理(ETI)框架的設計和創建是為了支持人工推理研究的實驗和演示。ETI 目前的結構包括三個主要智能體:數據源智能體、推理模型智能體和決策者智能體。數據源智能體分為幾大類:信息(圖像、音頻、文本)、設備、網絡和可視化。數據源智能體可以捕獲數據并將數據傳輸給其他智能體。其他信息系統也可以向這些智能體提供數據。推理模型智能體執行不同方面和不同層次的推理。推理智能體的輸出將有助于生成建議的決策。決策者智能體負責做出最終決策。這些 ETI 智能體可以是模塊化的,允許串行或并行處理,以及獨立或相互依存。在這項工作中,ETI 發揮著決策輔助工具的作用。主要的推理模型是信息不確定性(UoI)模塊。該 UoI 模塊可在決策建議中考慮任何信息的不確定性。ETI 的另一項功能是實現與人類的互動,包括未來的可視化和協作環境。我們在跨現實(XR)環境--運籌、研究與分析加速用戶推理(AURORA)中進行了演示。與 AURORA 等系統集成后,可以探索智能系統與人類交互的新模式。在本報告中,將詳細介紹我們的演示開發過程,包括將模擬環境中的數據映射到可視化環境中,將決策點和 ETI 建議納入行動方案中,以及用 "假設 "情況來增強場景,以探索基于推理的框架的影響。

這項研究的目標是開發、整合和演示基于推理的決策框架。ETI 框架的決策建議被用于師演習訓練和審查系統(DXTRS)中的模擬場景,并在 XR 環境 AURORA 中實現可視化。下文將介紹 DXTRS、場景和 AURORA 可視化的背景情況。

  • DXTRS場景

在該場景中,藍軍(BLUFOR)的目標是向東推進,穿過阿塞拜疆名為阿格達姆區的地區,同時與部署在河東的對方部隊(OPFOR)交戰并將其消滅。(見圖 1)

隨著任務的展開,BLUFOR 將遇到一條阻礙他們前進的河流,他們需要在那里進行濕空隙穿越。(見圖 2)

  • AURORA跨現實共同作戰圖 (XRCOP)

為了探索可視化和與 ETI 的交互,DXTRS 場景和相關的 ETI 推理信息在 XR 環境中顯示。該環境由美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)開發,名為 AURORA。AURORA 為安全、聯網、多設備跨現實信息調解和交互提供了一個通用作戰框架。為了便于可視化,將場景數據集合映射為 AURORA 可以處理的目標光標(CoT)信息。本報告第 3 部分將詳細解釋映射過程。圖 3 和圖 4 顯示了AURORA環境中的場景截圖。

  • ETI 決策建議

如前所述,ETI 的設計是利用各種推理模型作為模塊,允許不同的推理配置。本次工作的推理模型是用戶體驗模塊。UoI 的概念包括產生或捕捉一個值,并用描述符對不確定值進行分類。這為決策者提供了不確定性的上下文信息,并支持對由此產生的建議進行推理。描述符基于格申論文中提出的不完全信息的性質。目前,該分類法包括不一致、損壞、不連貫、不完整、不精確、復雜和可疑。它們共同描述了特定信息源不確定性的原因和類型。

當前版本的UoI表達式是一個加權和,如式1所示。

公式 1. UoI 計算,其中 dp 為決策點,D 為變量,表示可能是任務關鍵因素的決策組成部分,W 為與這些組成部分的重要性相關的權重,T 為分類權重類別(相當于 G),S 為數據來源類別。UoI 值表示數據源和因素對所分類的不確定性的貢獻。

以下是分類法中七個術語的描述:

  • 不一致: 由于來源不同或不一致而導致的不確定性。
  • 錯誤: 因數據源含有錯誤而導致的不確定性。
  • 可疑: 由于信息來源缺乏信息或信息來源可疑而導致的不確定性。
  • 不連貫: 由于信息來源缺乏連貫性或組織性而造成的不確定性。
  • 不完整: 由于信息來源未完成或不完整而造成的不確定性。
  • 不準確: 由于信息來源不準確或不詳細而造成的不確定性。
  • 復雜: 由于信息來源錯綜復雜或令人困惑而造成的不確定性。
付費5元查看完整內容

利用無人地面飛行器(UGV)進行自主導航和未知環境探索極具挑戰性。本報告研究了一種利用小尺寸、低重量、低功耗和低成本有效載荷的測繪和探索解決方案。本文介紹的平臺利用同步定位和繪圖功能,通過尋找可導航路線來有效探索未知區域。該解決方案利用多種傳感器有效載荷,包括輪子編碼器、三維激光雷達、紅-綠-藍相機和深度相機。這項工作的主要目標是利用 UGV 的路徑規劃和導航功能進行測繪和探索,從而生成精確的 3D 地圖。所提供的解決方案還利用了機器人操作系統。

付費5元查看完整內容

本報告概述了我們在基于模型的自適應目標跟蹤以及識別來自電磁干擾(EMI)源的衛星欺騙和干擾攻擊方面所做的研究工作。我們假設可以利用不同電磁干擾源的射頻(RF)特征來識別和跟蹤主動和被動電磁干擾源。射頻信號被輸入一個基于模型的深度神經網絡(DNN),該網絡可對不同物體進行分類和跟蹤。

我們的初步結果表明,對于有源電磁干擾源,即使用不同調制方案發射射頻信號的源,使用 DNN 識別電磁干擾源射頻調制方案的準確性在很大程度上取決于射頻信號的質量,而射頻信號的質量又是信道的函數。特別是,如果信道是視距信道,且信噪比(SNR)較大,則調制類型的分類準確率很高(> 95%)。另一方面,如果信道參數未知和/或波動較大,信噪比較低,則分類準確率較低(< 60%)。調制類型識別的性能使我們得出結論,在現實世界中基于調制類型的目標跟蹤將非常困難。因此,這項研究的主要工作集中在使用有源雷達對無源信號源進行分類,并以人員計數系統為原型。

我們沒有使用模擬,而是在實驗室建立了一個小規模的測試環境來驗證假設。我們提出的人員計數系統使用多個發射天線,通過發送毫米波雷達啁啾掃描環境。物體反彈回來的信號由多個接收天線接收、處理并存儲到數字數據庫中。然后,我們對數字數據進行特征提取,并將特征輸入卷積神經網絡,以進行物體分類和跟蹤。在這些實驗中,我們將行走的人視為移動物體。我們的初步結果表明,在有限的環境中(如實驗室環境),卷積神經網絡可以利用射頻信號準確識別不同的物體(> 95%)。

圖 4. 從射頻信號中提取特征。特征/物體包含已識別物體的數量、其多普勒速度、其 x、y、z 位置和相對信噪比。

付費5元查看完整內容

作者正在研究分布式雷達在穿墻感應中的應用。這項技術的預期操作場景是在建筑物外的(安全)遠程距離內探測和識別建筑物內的人員和武器裝備。本研究使用的雷達結構和信號處理算法類似于美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)實施的埋藏和隱蔽表面目標探測的設計;目前的雷達發射和接收頻率更高。

在這項研究中,實驗是在ARL的阿德爾菲實驗中心(ALC)507號樓("沙盒 "區域)進行的,使用的是室內低金屬兩層夾板結構。用來測試分布式雷達的受控環境與用來測試ARL針對電子目標的諧波雷達的低金屬環境相同。

圖1 步進頻率雷達收發器:(a)賽靈思的RFSoC與Alion/HII的雷達固件,以及(b)定制的發射器/接收器(Tx/Rx)濾波器和放大器PCB,由28VDC供電

結論及后續工作

本研究中收集的數據表明,在低矮的金屬建筑中,相互成直角的天線對能夠探測到多個移動目標,而這些目標從建筑外是看不到的。隨時間變化的距離圖顯示了目標所遵循的路徑;在一個頻道中跟蹤的目標路徑的模糊性可以通過在另一個頻道中跟蹤同一目標來緩解。仍需努力將同時收集的數據的IQ振幅一致地結合起來,以解決多個目標。一個目標是在二維(下行和上行)圖像上繪制目標位置,也許是以視頻動畫的形式疊加在場景的俯視圖上(即被成像的建筑物的典型平面圖)。在對移動目標進行成像時,發射器和接收器天線的雙穩態配對是否具有優勢(與標準的單穩態發射器天線配對相比)還有待確定。

付費5元查看完整內容

《空軍全球未來報告: 2040年的聯合職能》通過美國條令中的七種聯合職能--火力、防護、運動和機動、信息、情報、指揮和控制(C2)以及維持--的視角,探討了四種情況,或未來的作戰環境。

本報告通過對2040年未來的持續增長、轉型、受限和崩潰的描述,制定了四種備選的未來作戰環境(FOE)。這些全球性的場景來自于環境掃描和問題分析,發現了新出現的微弱信號、當前的趨勢和長期存在的結構性力量,它們將共同塑造未來。鑒于時間跨度較長,且存在干擾事件,沒有辦法準確預測未來;本報告反而提供了對潛在FOE的分析評估,并通過比較分析,提出了進一步研究的關鍵問題。利用這四個視角,"空軍的未來 "研究了聯合功能,以展示新出現的信號、趨勢和力量如何影響整個美國空軍和國防部的核心業務。

  • 持續增長: 大國競爭者繼續試圖增加對美國的影響力并削弱其優勢。全球化仍然是主導的經濟因素,推動了更多的相互聯系和相互依賴。競爭對手做出審慎的經濟選擇,破壞美國的聯盟和伙伴關系,限制美國獲得關鍵資源和市場。一些競爭對手利用道德上的不對稱來掏空關鍵條約和國際規范。潛在的對手利用代理戰爭來測試轉基因士兵、先進的化學和生物武器以及核武器的能力。現代技術消除了避難所,特別是當無處不在的傳感器納入人工智能和機器學習(AI/ML)時。

  • 轉型: 前所未有的技術進步及其廣泛傳播,以以前認為不可能的規模重塑了全球權力動態。基因編輯和空間能力的革命性突破--由自主性、人工智能/機器學習、原產地制造、量子計算和定向能源的進步進一步促成--破壞了全球安全環境,并導致了能夠瞬間改變世界的武器的發展。

  • 受限: 中俄協調繼續使兩國在新技術、戰略和關鍵礦產以及資源的大規模生產和分配等各個方面受益。這種合作增強了兩國的經濟,同時削弱或破壞了被認為是競爭對手的經濟。新的權力集團利用灰區戰術和新的戰略來避免大國風險,并尋找機會來增加自己的權力。美國及其盟國和伙伴在這個支離破碎的世界秩序中掙扎。

  • 崩潰: 自然和人為的危機推動了全球范圍內的孤立主義和民族主義傾向。相對較強的國家以犧牲其他國家的利益來保護自己的利益。較弱的國家則努力維持秩序,提供基本服務。技術擴散與量子、自主、人工智能/ML和定向能源的進步一起改變了戰爭,同時也瓦解了20世紀中期建立的世界秩序。自然和人道主義災難的增加加劇了緊張局勢,強大的暴力極端主義組織(VEO)的重新出現也加劇了緊張局勢,它們進入了權力真空。美國國防預算的減少導致軍隊規模和作戰范圍的縮減。機會主義的競爭者采取行動,以實現民族主義的優先事項,破壞基于規則的世界秩序。分裂和保護主義促使各國加強資源建設,并對社會進行奧威爾式的控制。

報告提出了6方面啟示

1.計算能力轉型。AI/ML、自動化、自主系統和量子有可能在未來二十年內改寫世界。這些趨勢在每個聯合功能和場景中都持續出現。對下一代計算能力的競爭可能對全球力量平衡產生重大影響。

2.無所遁形。如果沒有有效的應對措施,傳感器和互聯武器系統的進步,使目標防御更加難上加難。它將有可能在暗中產生大規模的破壞性影響。這使得美國本土防御更加困難。

3.認知型軟目標。人工智能/ML、神經科學和信息操作方面的進展,將導致認知層面的攻擊面擴大。它將有可能更準確地感知世界,并以微妙但具有破壞性的方式被欺騙。了解世界和更快地做出正確決定的能力,同時抑制對手的決策周期,是戰略優勢的關鍵,強國將加大這方面的投資。

4.力量倍增器。技術上的突破,將在其他趨勢類別中產生連帶效應。包括,但不限于:人工智能/ML,量子計算,定向能源,能源網,傳感器的普遍性,以及空間操作。

5.經濟的相互聯系。全球化增加了經濟和軟實力機會,同時也增加了攻擊面和漏洞。同時,非全球化使貿易和智力合作發生斷裂。地緣戰略上的相互聯系與不同集團之間的平衡決定了未來20年的發展。

6.生命科學的崩潰。商業和國防部門的未來能力,可以讓行為者有目的地或無意地終止生命的基本要素。生物功能需要關鍵的資源,其中許多資源是稀缺的,而且變得越來越稀缺。美軍將被要求支持突發事件,同時也會受到生物學中斷的影響。

付費5元查看完整內容

各軍種和部門的指揮官總是盡其所能獲得信息并與他們的部隊共享,因為信息是戰爭經濟中的資本。隨著陸軍內部、聯合部隊和商業部門的技術不斷發展,一個清晰的網絡架構有利于與其他網絡的有效整合,避免通信工作的脫節。本專著通過組織、訓練和理論以及設備的角度研究了無線電在第一次世界大戰期間在美國陸軍中的實施情況,以評估美國陸軍如何整合一項新的信息技術。為了更好地理解無線電在第一次世界大戰期間和戰間時期的實施,本專著還借鑒了兩位理論家丹尼爾-卡尼曼和赫爾南多-德索托的作品。隨著信息技術在民用社會中越來越普遍,假定對民用系統的熟悉可以轉化為操作人員天生就懂得如何整合和操作軍事系統是很危險的。整個聯合部隊共享信息的速度越快,效率越高,軍隊在戰場上發揮所有資源的效率就越高。為了充分利用不斷發展的通信技術來實現高效的信息共享,美國國防部(DOD)應該實施并保持一個慎重的過程,使整個聯合部隊的網絡架構、政策和理論標準化,以指導操作人員的培訓并為系統開發提供依據。

付費5元查看完整內容

本報告總結了迄今為止在路線偵察領域的本體開發的進展,重點是空間抽象。我們的重點是一個簡單的機器人,一個能夠感知并在其環境中導航的自主系統。該機器人的任務是路線偵察:通過觀察和推理,獲得有關條件、障礙物、關鍵地形特征和指定路線上的敵人的必要信息。路線偵察通常是由一個排的騎兵和非騎兵進行的。這項研究探討了機器人執行部分或全部必要任務的合理性,包括與指揮官進行溝通。

1.1 背景與動機

這是一項具有挑戰性的對抗性任務,即地形穿越加上信息收集和解釋。偵察的解釋方面需要考慮語義學--確定相關的信息和確定它如何相關(即有意義)。語義信息在本質上是定性的:例如,危險是一個定性的概念。為了將危險與某些特定的區域聯系起來,我們需要一種方法來指代該區域。這意味著至少能夠給空間的某些部分附上定性的標簽。

Kuipers在他的空間語義層次的早期工作中指出了空間的定性表示對機器人探索的重要性。例如,層次結構的拓撲層次包含了 "地方、路徑和區域的本體",歸納產生了對較低層次的因果模式的解釋。

最近,Izmirlioglu和Erdem為定性空間概念在機器人技術中的應用提供了以下理由:

  • 各種任務,如導航到一個目的地或描述一個物體的位置,涉及處理物體的空間屬性和關系。......或某些應用(如探索未知環境),由于對環境的不完全了解,可能并不總是有定量的數據。......可理解的相互作用和可接受的解釋往往比高精確度更可取(Kuipers 1983)。對于這些應用,定性的空間關系似乎更適合。

對于負責路線偵察的無人地面車輛(UGV)來說,其架構中的不同模塊將消費和產生語義信息:負責語義感知和目標識別、計劃和執行、自然語言對話等的模塊,加上主要負責維護信息的語義世界模型。例如,在美國陸軍作戰能力發展司令部陸軍研究實驗室的自主架構中,語義/符號世界模型被用來 "實現符號目標(例如,去接近一個特定的物體)",*其中接近是一個語義概念。

一個關鍵問題是如何在世界模型和其他模塊之間分配維護和處理不同類型語義信息的責任。從語義世界模型的角度來看,這取決于有多少符號推理是合適的。例如,假設要接近的物體位于一個給定區域的某個位置,而不是靠近該區域的外部邊界。一旦機器人靠近物體,就可以推斷出機器人在物體的位置附近,而且也在同一區域內。如果有公制信息,就可以用幾何例程得出這個結論。在沒有公制信息的情況下,是否會出現在純粹的定性空間中推斷有用的情況?

本報告不涉及這個問題。我們的目標是確定什么應該被代表,而把如何代表和在哪里代表留給未來的工作。

1.2 路線偵察

以下片段取自FM7-92中對路線偵察的描述。空間表達是彩色的,周圍有一些文字作為背景。

  • 路線偵察的重點是獲得關于一條指定路線和敵人可能影響沿該路線移動的所有地形的信息。路線偵察的方向可以是一條道路、一條狹窄的軸線(如滲透通道),或一個總的攻擊方向......防御陣地。......部隊可以機動的可用空間......所有障礙物的位置和類型以及任何可用的繞道位置。障礙物可包括雷區、障礙物、陡峭的峽谷、沼澤地或核生化污染 ......沿途和鄰近地形的觀察和火力范圍 ......沿途提供良好掩護和隱蔽的地點 ......。橋梁的結構類型、尺寸和分類。著陸區和接駁區。與路線相交或穿越的道路和小徑。. . 如果建議路線的全部或部分是道路,則該排認為該道路是一個危險區域。它使用有掩護和隱蔽的路線與道路平行移動。當需要時,偵察和安全小組靠近道路,以偵察關鍵區域。

路線偵察的結果是一份報告,以圖表的形式,并附有文字說明。FM7-92給出了一個例子,我們可以從中提取一些更必要的概念:

  • 網格參考。磁性北方箭頭..道路彎道..陡峭的坡度..道路寬度的限制(橋梁,隧道等)..岔道的位置..隧道..

讓我們把這段關于路線偵察的描述中提到的概念建立一個綜合清單,重點放在空間概念上,并盡可能地保留軍事術語:

1)必須指定環境中的位置、路線、區域和感興趣的物體。稱這些為 "實體"。

2)這些實體之間的空間關系是相關的(例如,一個地點在另一個地點的北邊)。值得注意的是,不同類型的實體之間的關系是被指定的。

a. 物體(例如,障礙物)在位置或區域。

b. 一些地點在空間上與路線有關(例如,沿著路線,毗鄰,或靠近道路)。

c. 地點可能代表更大的區域(例如,雷區的位置)。

d. 道路和小徑可以與路線相關:它們可能相交、重疊(部分疊加),或平行運行。

  1. 一些實體對路線具有戰術價值,無論是進攻還是防御(例如,雷區)。

a. 一些地點相對于其他地點或區域有方向性的定位(例如,一個防御性的位置)。

b. 有些區域是由其與另一個區域或地點的關系來定義的,這可能不是一種局部的關系(例如,觀察和火力場是由一個潛在的遠程位置來定義的,該位置有一條通往路線上的一個區域的線路)。

4)路線可能被障礙物阻擋,障礙物可能是明確的物體或更大的區域(例如,一個障礙物與一個雷區)。

  1. 路線和地形的三維幾何特性是相關的:道路上的急轉彎,陡峭的坡度,等等。

6)有時,描述物理基礎設施(如道路、橋梁)及其屬性是很重要的。

1.3 路線偵察抽象

路線偵查收集和解釋不同種類和不同來源的信息:

  • 背景知識。這包括關于環境特征的類型和預期成為任務一部分的物體的信息,包括道路、障礙物、溝壑、橋梁等等。

  • 任務規范。確定偵查的區域和路線,以及當時可獲得的任何信息。

  • 環境。通過空間分析(包括幾何學、拓撲學等)、感知、地圖衛星數據的離線圖像處理和其他類型的分析,確定環境的相關特征。

  • 任務執行期間的通信。我們假設指揮官或人類操作員在偵察過程中可以向UGV提出詢問或命令,提供新信息或集中注意力。

  • 如前所述,一份報告。

原則上,所有這些信息都以某種抽象的形式組合在一個語義世界模型中。我們把環境的物理屬性和特征稱為 "實體"。把我們用來表示這些實體和它們之間關系的抽象概念稱為 "概念"。

不同類型的實體的概念。層次結構在語義表征中很常見,用來捕捉關于世界上遇到的實體類型的一般知識。一個類型就是一個概念,類型被組織在一個層次中:MRZR是一種輕型的、戰術性的、全地形的車輛,它是一種輪式地面車輛,它是一種地面車輛的類型,等等。屬性和關系可以與一個給定的概念相關聯,而下級概念則繼承這些屬性。在路線偵察中,如果有信息說某一地區有一條道路,但沒有更多的細節,仍然可以從道路的概念中推斷出它的預期屬性:它比它的寬度長得多;它在人們感興趣的地點之間通向;在其他條件相同的情況下,它可能比周圍的地形行駛得快。從實用的角度來看,這意味著如果有可能將某物歸類為一個已知的概念,那么語義世界模型就不需要記錄關于該物的每一條相關信息。

用于實體的目的和用途的概念。一個代表道路典型用途的概念可以進一步區分其長度和寬度的語義,這反過來又導致了跨越和沿途、穿越和跟隨等概念之間的區別。這將使UGV能夠以不同的方式對待 "偵察道路對面的區域 "和 "偵察前方的道路 "的命令。前方的道路也是一個語義概念:它取決于對過去去過的地方的了解。

代表部分信息的概念。有時可能會有定性的信息。想象一下,任務規范的一部分是關于雷區在計劃路線上存在的信息,但不知道具體位置,或者知道雷區的位置,但不知道其范圍。這種無知可以很容易地在代表實體的概念中得到體現。

新概念適用于新環境。另一個交流的例子可能是信息性的。想象一下,當一輛UGV穿越一條東西走向的道路時,它與遠程指揮官進行交流,指揮官問道:"道路北側是什么?"* 需要識別的物體可能不在道路和地形的邊界上(與 "建筑物的一側 "形成對比),而是在以道路邊緣為界的某個感興趣的區域內,距離UGV的位置向北不遠,向東和向西也有一些距離。這個區域可能沒有事先作為一個概念被劃定;相反,它是在當前的背景下構建或推斷出來的。這是一個有趣的例子,一個概念不是從公制數據中抽象出來的,而是被強加在公制數據上的。

背景中的概念的適應和組合。想象一下,對一張地圖的分析產生了對代表區域、道路等等的概念的分解。這些概念可能直接適用于某些目的。例如,與道路相聯系的概念在推理兩點之間的導航時是有用的。然而,在其他情況下,這些概念可能需要調整或與其他概念相結合。例如,如果一條道路被指定為 "危險區域",那么這個區域的概念可能會超出道路的邊界,延伸到周圍的地形。

付費5元查看完整內容

網絡物理系統(CPS)由相互作用的計算和物理組件組成。該項目旨在開發創新的驗證技術以保證網絡物理系統的安全行為。混合系統[5]是一個富有表現力的數學模型,有助于描述涉及連續和離散狀態及其演變的復雜動態過程,這使得它們特別適合于為CPS建模。在這個項目中,我們專注于開發混合系統可達性分析的新技術,即自動探索給定動態系統的狀態空間并計算系統軌跡的包絡,給定其不確定參數的邊界的技術。為了減輕系統的復雜性,我們的目標是發展組合方法,即把系統分析分解為各部分的分析方法。考慮到這一總體目標,我們在這個項目中的活動可以大致分為以下幾個研究方向:

以線性微分方程為特征的系統的可達性方法。雖然現代線性代數軟件包對數萬維的矩陣是有效的,但基于集合的圖像計算卻僅限于幾百維。在[9]中,我們提出了分解到達集的計算,使集的操作在低維度上進行,而像指數化這樣的矩陣操作則在全維度上進行。我們的方法適用于密集型和離散型的設置。對于一組標準的基準,它顯示出與各自的最先進的工具相比,速度提高了兩個數量級,而在精度上只有少量的損失。對于密集時間的情況,我們展示了一個超過10,000個變量的實驗,大約比以前的方法高兩個數量級。這些算法為JuliaReach[10]奠定了基礎,JuliaReach是一個用于基于集合的動態系統可達性分析的工具箱。JuliaReach由兩個主要包組成。Reachability,包含連續和混合系統的可達性算法的實現,以及LazySets,一個獨立的庫,實現最先進的凸集計算算法。該庫同時提供了具體的和懶惰的集合表示,后者代表了將集合計算延遲到需要時才進行的能力。我們擴展了[8]中的這些結果,增加了對任意大小分區和任意低維集合表示的支持。在一個相關的工作中[11],我們沿著復雜度的不同維度擴展了這些結果,即提出了一種有效處理混合系統離散轉換的組合方式。

偽造方法。混合系統的證偽是與驗證相對應的,目的是找到違反給定安全屬性的軌跡。這是一個具有挑戰性的問題,目前偽造算法的實際適用性仍然受制于其高時間復雜性。在[13]中,我們試圖利用我們已經開發的可達性算法的力量來提高偽造技術的可擴展性。特別是,我們從現有的偽造問題的編碼作為一個非線性優化問題開始[25],并提出了一個擴展,通過增加用可達性算法獲得的線性狀態約束來減少優化問題的搜索空間。我們在一些標準的混合系統基準上展示了我們方法的效率,證明了在速度和可偽造實例數量上的性能提升。在[12]中,我們通過將非線性優化問題分解為兩個更簡單的優化問題,并以交替的方式解決它們來增強這種算法。

并行方法。如上所述,可達性分析技術是目前驗證網絡物理系統安全屬性的最先進技術的核心。在這個主旨中,我們研究了如何利用現代CPU中強大的并行多核架構來擴展此類技術。在文獻[18]中,我們首次提出了一套并行狀態空間探索算法,利用多核CPU,能夠對CPS的線性連續和混合自動機模型進行可達性分析,從而解決了這一限制。為了證明在多核處理器上實現的性能加速,我們在幾個基準上對所提出的并行算法進行了實證評估,比較其關鍵性能指標。

庫普曼算子理論。非線性動力系統的可達性分析是一項具有挑戰性和計算成本的任務。同時,如上所述,計算線性系統的可達狀態,通常可以在高維度上有效地完成。在[6]中,我們探討了利用這兩類系統之間的聯系的驗證方法,該方法基于Koopman算子的概念[23]。Koopman算子將非線性系統的行為與嵌入高維空間的線性系統聯系在一起,并增加了一組所謂的可觀察變量。盡管新的動態系統有線性微分方程,但初始狀態集是用非線性約束條件定義的。由于這個原因,現有的線性系統可達性方法不能直接使用。我們提出了第一個可達性算法,以處理這種未曾探索過的可達性問題的類型。我們的評估考察了幾種優化方法,并表明所提出的工作流程是驗證非線性系統行為的一個很有前途的途徑。

可達性分析的混合方法。這些方法[7]通過用較簡單的動力學(如常數或仿生動力學)來近似非線性動力學。這一步使我們有可能利用現有的線性動力學混合系統的算法的力量。在[20]中,我們提出了基于動力學比例模型轉換的混合方法的改進。該轉換旨在減少線性化域的大小,從而減少超近似誤差。我們在一些非線性基準實例上展示了我們方法的效率。

在線驗證。在這個研究方向中,我們的目標是將可達性分析應用于在線環境中。換句話說,我們考慮的環境是,可達性分析所提供的信息被實時用于指導自主系統的控制算法。這反過來又對可達性分析的性能效率提出了特別嚴格的時間限制。在[14]中,我們提出了一種方法,利用深度神經網絡在有限的時間內對可達集進行保守的近似。我們提供了基于統計模型檢查方法的概率性保證。該方法被評估為自主車輛在模擬環境中幾個動作的彈性安全架構的一部分。我們的評估表明,可達性分析可以在幾分之一秒內完成,并且比傳統的非線性可達性工具要好兩個數量級。我們還提出了另一種方法[1],通過將障礙證書[22]的計算泛化到動態變化的初始條件,以及在運行時使用生成的安全集來對抗先前未知的、可能與時間有關的不安全集,從而有效地進行實時可達性分析。這些方法得到了[15]的補充,在那里我們探討了如何將可達性分析作為模型預測控制[17]的一部分來支持動態避障。

通過驗證進行規劃。在我們的早期工作[16]中,我們通過提供從PDDL+(一種描述規劃領域的形式主義)到混合系統的轉換方案,在彌合混合自動機的規劃和驗證領域之間的差距方面邁出了第一步。這使得模型檢驗工具能夠在混合規劃領域得到應用。通過這種方式,我們可以解決最先進規劃器范圍之外的PDDL+領域。在這個項目中,我們將[19]中的這些想法改編為時態規劃,并將我們的方法納入到細化循環中。我們還提出了一個基于抽象的放松[21],用于推理線性數字規劃問題。

混合系統的Event-B。在這個研究方向上,我們考慮了Event-B[2]和混合系統之間的協同作用。我們在這一領域的成果包括開發了一個通用的混合鐵路信號系統模型[3],該模型可以進一步完善,以捕捉特定的鐵路信號系統。另外,在[4]中,我們提出了一種網絡物理系統的多元開發方法,該方法建立在基于細化和證明的建模語言Event-B及其對混合系統建模的擴展。為了提高該方法中所產生的Event-B模型的低演繹驗證自動化程度,這項工作描述了一種在證明過程中整合可達性分析的新方法。此外,為了提供更全面的網絡物理系統開發和基于仿真的驗證,我們描述了將網絡物理系統Event-B模型轉化為Simulink的機制。

隨機常微分方程(RODEs)。顧名思義,這些是在其向量場函數中包含隨機過程的常微分方程(ODEs)。它們已經在廣泛的應用中使用了很多年,但一直是隨機微分方程(SDEs)的影子存在,盡管能夠對更廣泛的、通常在物理上更充分的干擾進行建模。在[24]中,我們研究了包含維納過程的RODEs在有限時間跨度和無限時間跨度上的安全驗證問題。更詳細地說,我們研究了p-安全問題,其中我們確定了滿足安全規范的概率至少為p的初始狀態集。基于確定概率測量大于p的樣本路徑集,我們提出了一種將ODEs的隨機可達性減少為對抗性可達性的方法,以解決有限時間范圍內的p-安全問題。這種方法允許將擾動的ODEs的可達性計算方法有效地提升到RODEs。在這個方法中,有限時間范圍內的p-安全問題被簡化為具有時間變化的擾動輸入的ODEs的內部逼近魯棒的后向可達集問題。然后,我們將該方法擴展到無限時間跨度的p-安全問題。最后,我們在幾個例子上演示了我們的方法。

付費5元查看完整內容

自動化使系統能夠執行通常需要人類投入的任務。英國政府認為自動化對保持軍事優勢至關重要。本論文討論了當前和未來全球自動化的應用,以及它對軍事組織和沖突的影響。同時還研究了技術、法律和道德方面的挑戰。

關鍵要點

  • 在軍事行動中部署自動化技術可以提高有效性并減少人員的風險。
  • 在英國和國際上,自動化正被用于情報收集、數據分析和武器系統。
  • 英國政府正在開發自動化系統;技術挑戰包括數據管理、網絡安全以及系統測試和評估。
  • 軍事自動化的法律和道德影響受到高度爭議,特別是在武器系統和目標選擇方面。

背景

許多軍事系統都有自動化的特點,包括執行物理任務的機器人系統,以及完全基于軟件的系統,用于數據分析等任務。自動化可以提高某些現有軍事任務的效率和效力,并可以減輕人員的 "枯燥、骯臟和危險 "的活動。 許多專家認為,自動化和自主性是與系統的人類監督水平有關的,盡管對一些系統的定位存在爭議,而且對系統是否應被描述為 "自動化 "或 "自主 "可能存在分歧。英國防部在其 "自主性譜系框架 "中概述了5個廣泛的自主性水平,從 "人類操作 "到 "高度自主"。一個系統可能在不同的情況下有不同的操作模式,需要不同程度的人力投入,而且只有某些功能是自動化的。方框1概述了本公告中使用的定義。

方框1:該領域的術語并不一致,關鍵術語有時可以互換使用。

  • 自動化系統。自動系統是指在人類設定的參數范圍內,被指示自動執行一組特定的任務或一系列的任務。這可能包括基本或重復的任務。

  • 自主系統。國防科學與技術實驗室(Dstl)將自主系統定義為能夠表現出自主性的系統。自主性沒有公認的定義,但Dstl將其定義為 "系統利用人工智能通過自己的決定來決定自己的行動路線的特點"。自主系統可以對沒有預先編程的情況作出反應。

  • 無人駕駛車輛。朝著更高水平的自主性發展,使得 "無人駕駛 "的車輛得以開發,車上沒有飛行員或司機。有些是通過遠程控制進行操作,有些則包括不同程度的自主性。最成熟的無人駕駛軍事系統是無人駕駛航空器,或稱 "無人機",其用途十分廣泛。

  • 人工智能。人工智能沒有普遍認同的定義,但它通常是指一套廣泛的計算技術,可以執行通常需要人類智慧的任務(POSTnote 637)。人工智能是實現更高水平的自主性的一項技術。

  • 機器學習:(ML,POSTnote 633)是人工智能的一個分支,是具有自主能力的技術的最新進展的基礎。

英國政府已經認識到自主系統和人工智能(AI,方框1)的軍事優勢以及它們在未來國防中可能發揮的不可或缺的作用。在其2021年綜合審查和2020年綜合作戰概念中,它表示致力于擁抱新的和新興的技術,包括自主系統和人工智能。2022年6月,英國防部發布了《國防人工智能戰略》,提出了采用和利用人工智能的計劃:自動化將是一個關鍵應用。在全球范圍內,英國、美國、中國和以色列擁有一些最先進的自主和基于AI的軍事能力。方框2中給出了英國和全球活動的概述。

方框2:英國和全球活動

  • 英國 英國政府已表明其投資、開發和部署用于陸、海、空和網絡領域軍事應用的自主和人工智能系統的雄心。最近的投資項目包括NELSON項目,該項目旨在將數據科學整合到海軍行動中;以及未來戰斗航空系統,該系統將為皇家空軍提供一個有人員、無人員和自主系統的組合。在2021年綜合審查發表后,政府成立了國防人工智能中心(DAIC),以協調英國的人工智能國防技術的發展。這包括促進與學術界和工業界的合作,并在紐卡斯爾大學和埃克塞特大學以及艾倫-圖靈研究所建立研究中心。

  • 全球背景 對自主軍事技術的投資有一個全球性的趨勢:25個北約國家已經在其軍隊中使用一些人工智能和自主系統。有限的公開信息給評估軍隊的自主能力帶來了困難,但已知擁有先進系統的國家包括。

    • 美國。美國國防部2021年預算撥款17億美元用于自主研發,以及20億美元用于人工智能計劃。
    • 以色列。國有的以色列航空航天工業公司生產先進的自主系統,包括無人駕駛的空中和陸地車輛以及防空系統。
    • 中國。據估計,中國在國防人工智能方面的支出與美國類似。 分析師認為,這包括對情報分析和自主車輛的人工智能的投資。

俄羅斯和韓國也在大力投資于這些技術。在俄羅斯,機器人技術是最近成立的高級研究基金會的一個重點,該基金會2021年的預算為6300萬美元。

應用

自主系統可以被設計成具有多種能力,并可用于一系列的應用。本節概述了正在使用或開發的軍事應用系統,包括情報、監視和偵察、數據分析和武器系統。

情報、監視和偵察

自動化正越來越多地被應用于情報、監視和偵察(ISR),通常使用無人駕駛的車輛(方框1)。無人駕駛的陸上、空中和海上車輛配備了傳感器,可以獲得數據,如音頻、視頻、熱圖像和雷達信號,并將其反饋給人類操作員。一些系統可以自主導航,或自主識別和跟蹤潛在的攻擊目標。英國有幾架ISR無人機在服役,還有一些正在試用中。這些無人機的范圍從非常小的 "迷你 "無人機(其重量與智能手機相似)到可以飛行數千英里的大型固定翼系統。英國正在試用的一個系統是一個被稱為 "幽靈 "無人機的迷你直升機,它可以自主飛行,并使用圖像分析算法來識別和跟蹤目標。無人駕駛的水下航行器被用于包括地雷和潛艇探測的應用,使用船上的聲納進行自主導航。這些車輛還可能配備了一種技術,使其能夠解除地雷。

數據分析

許多軍事系統收集了大量的數據,這些數據需要分析以支持操作和決策。人工智能可用于分析非常大的數據集,并分辨出人類分析員可能無法觀察到的模式。這可能會越來越多地應用于實地,為戰術決策提供信息,例如,提供有關周圍環境的信息,識別目標,或預測敵人的行動。英國軍隊在2021年愛沙尼亞的 "春季風暴 "演習中部署了人工智能以提高態勢感知。美國的Maven項目旨在利用人工智能改善圖像和視頻片段的分析,英國也有一個類似的項目,利用人工智能支持衛星圖像分析。

武器系統

以自動化為特征的武器系統已被開發用于防御和進攻。這些系統包括從自動響應外部輸入的系統到更復雜的基于人工智能的系統。

  • 防御系統。自動防空系統可以識別和應對來襲的空中威脅,其反應時間比人類操作員更快。這種系統已經使用了20多年;一份報告估計有89個國家在使用這種系統。目前使用的系統可以從海上或陸地發射彈藥,用于應對來襲的導彈或飛機。英國使用Phalanx CIWS防空系統。雖然沒有在全球范圍內廣泛采用,但以色列將固定的無機組人員火炮系統用于邊境防御,并在韓國進行了試驗。這些系統能夠自動瞄準并向接近的人或車輛開火。

  • 導向導彈。正在使用的進攻性導彈能夠在飛行中改變其路徑,以達到目標,而不需要人類的輸入。英國的雙模式 "硫磺石"(DMB)導彈于2009年首次在阿富汗作戰中使用,它可以預先設定搜索特定區域,利用傳感器數據識別、跟蹤和打擊車輛。

  • 用于武器投送的無人平臺。為武器投送而設計的無人空中、海上和陸地運載工具可以以高度的自主性運行。這些系統可以自主地搜索、識別和跟蹤目標。大多數發展都是在空中領域。英國唯一能夠自主飛行的武裝無人機是MQ-9 "收割者",但有幾個正在開發中。英國防部還在開發 "蜂群 "無人機(方框3)。雖然存在技術能力,但無人駕駛的進攻性武器并不用于在沒有人類授權的情況下做出射擊決定;報告的例外情況很少,而且有爭議。 自主系統在識別目標和作出射擊決定方面的作用,是廣泛的倫理辯論的主題(見下文)。

方框3:無人機蜂群

無人機蜂群是指部署多個能夠相互溝通和協調的無人機和人員,以實現一個目標。在軍事環境中,蜂群可能被用來監視一個地區,傳遞信息,或攻擊目標。2020年,英國皇家空軍試驗了一個由一名操作員控制的20架無人機群,作為Dstl的 "許多無人機做輕活 "項目的一部分。蜂群技術還沒有廣泛部署。據報道,以色列國防軍于2021年首次在戰斗中使用無人機蜂群。

影響

自動化技術和人工智能的擴散將對英國軍隊產生各種影響,包括與成本和軍事人員的角色和技能要求有關的影響。對全球和平與穩定也可能有影響。

財務影響

一些專家表示,從長遠來看,軍事自動化系統和人工智能可能會通過提高效率和減少對人員的需求來降低成本。然而,估計成本影響是具有挑戰性的。開發成本可能很高,而且回報也不確定。提高自動化和人工智能方面的專業知識可能需要從提供高薪的行業中招聘。軍隊可能不得不提高工資以進行競爭,英國防部將此稱為 "人工智能工資溢價"。

軍事人員的作用和技能

自動化可能會減少從事危險或重復性任務的軍事人員數量。然而,一些軍事任務或流程,如高層戰略制定,不太適合自動化。在許多領域,自主系統預計將發揮對人類的支持功能,或在 "人機團隊 "中與人類合作。專家們強調,工作人員必須能夠信任與他們合作的系統。一些角色的性質也可能會受到自動化的影響,所需的技能也是如此。例如,對具有相關技術知識的自主系統開發者和操作者的需求可能會增加。英國防部已經強調需要提高整個軍隊對人工智能的理解,并承諾開發一個 "人工智能技能框架",以確定未來國防的技能要求。一些利益相關者對自動化對軍事人員福祉的影響表示擔憂,因為它可能會限制他們的個人自主權或破壞他們的身份和文化感。

人員對自動化的態度:

關于軍事人員對自動化的態度的研究是有限的。2019年對197名英國防部人員的研究發現,34%的人對武裝部隊使用可以使用ML做出自己的決定的機器人有普遍積極的看法,37%的人有普遍消極的態度。有報道稱,人們對某些自主武器系統缺乏信任,包括在2020年對澳大利亞軍事人員的調查中。在這項研究中,30%的受訪者說他們不愿意與 "潛在的致命機器人 "一起部署,這些機器人在沒有人類直接監督的情況下決定如何在預定的區域使用武力。安全和目標識別的準確性被認為是兩個最大的風險。有證據表明,信任程度取決于文化和熟悉程度。

升級和擴散

一些專家提出了這樣的擔憂:在武器系統中越來越多地使用自主權,有可能使沖突升級,因為它使人類離開了戰場,減少了使用武力的猶豫性。蘭德公司最近的一份戰爭游戲報告(上演了一個涉及美國、中國、日本、韓國和朝鮮的沖突場景)發現,廣泛的人工智能和自主系統可能導致無意中的沖突升級和危機不穩定。這部分是由于人工智能支持的決策速度提高了。升級也可能是由自動系統的非預期行為造成的。

還有人擔心,由于自動化和基于人工智能的技術變得更便宜和更豐富,非國家行為者更容易獲得這種技術。這些團體也可能獲得廉價的商業無人機,并使用開放源碼的人工智能對其進行改造,以創建 "自制 "武器系統。關于非國家行為者使用自主系統的報告是有限的和有爭議的。然而,非國家團體確實使用了武裝無人機,而且人們擔心人工智能會使這種系統更加有效。

技術挑戰

正在進行的包括機器人和人工智能在內的技術研究,主要是由商業驅動的,預計將增加自動化系統的應用范圍和采用程度。該領域的一些關鍵技術挑戰概述如下。一個更普遍的挑戰是,相對于數字技術的快速發展,軍事技術的發展速度緩慢,有可能在部署前或部署后不久組件就會過時。

數據傳輸

無人駕駛的車輛和機器人經常需要向人員傳輸數據或從人員那里接收數據。這可以讓人類監督和指導它們的運作或接收它們收集的數據。在某些情況下,系統也可能需要相互通信,如在無人機群中(方框3)。軍方通常使用無線電波在陸地上傳輸數據,其帶寬(頻率的可用性)可能有限。在傳輸大量數據,如高分辨率圖像時,這可能是個問題。5G技術(POSTbrief 32)可能會促進野外更有效的無線通信。系統之間的無線電通信可以被檢測到,提醒對手注意秘密行動。對手也可能試圖阻止或破壞系統的通信數據傳輸。目前正在研究如何最大限度地減少所需的數據傳輸和優化數據傳輸的方法。更多的 "板載 "或 "邊緣 "處理(POSTnote 631)可以減少傳輸數據的需要。然而,減少通信需要系統在沒有監控的情況下表現得像預期的那樣。

數據處理

具有更高水平的自主性的更復雜的系統通常在運行時在船上進行更多的數據處理和分析。這要求系統有足夠的計算能力。一般來說,一個系統能做多少嵌入式數據處理是有限制的,因為硬件會占用空間并需要額外的電力來運行。這可能會限制需要電池供電運行的系統的敏捷性和范圍。然而,人工智能的進步也可能使系統更有效地運行,減少計算要求。由于未來軟件、算法和計算機芯片技術的進步,計算機的處理能力也有望提高。

訓練數據

創建和整理與軍事應用相關的大型數據集,對生產可靠的人工智能自主系統非常重要。機器學習(ML,方框1)依賴于大型數據集來訓練其基礎算法,這些數據可以從現實世界中收集,或者在某些情況下,使用模擬生成。一般來說,用于訓練ML系統的數據越有代表性、越準確、越完整,它就越有可能按要求發揮作用。準備訓練數據(分類并確保其格式一致)通常需要手動完成,并且是資源密集型的。

數據隱私:

一些人工智能系統可能會在民用數據上進行訓練。人們普遍認為,如果使用與個人有關的數據,他們的隱私必須得到保護。這可以通過對個人數據進行匿名化處理或只分享經過訓練的人工智能系統來實現。

網絡安全

由計算機軟件支撐的系統數量的增加增加了網絡攻擊的機會。網絡攻擊者可能試圖控制一個系統,破壞其運作,或收集機密信息。基于人工智能的系統也可以通過篡改用于開發這些系統的數據而遭到破壞。英國防部在2016年成立了網絡安全行動中心,專注于網絡防御。在英國,2021年成立的國防人工智能中心,有助于促進行業伙伴或其他合作者對高度機密數據的訪問。

測試和評估

重要的是,軍事系統要可靠、安全地運行,并符合法律和法規的規定。人工智能和自動化給傳統軟件系統帶來了不同的測試和保證挑戰。 進一步的挑戰來自于ML的形式,它可能不可能完全理解輸出是如何產生的(POSTnote 633)。人工智能軟件可能還需要持續監測和維護。利益相關者已經強調缺乏適合的測試工具和流程,并正在開發新的工具和指南。英國政府的國防人工智能戰略致力于建立創新的測試、保證、認證和監管方法。

倫理、政策和立法

目前的準則和立法

目前還沒有專門針對將自動化或人工智能用于軍事應用的立法。雖然它們在戰爭中的使用受現有的國際人道主義法的約束,但這與新技術的關系是有爭議的。在國家和國際層面上有許多關于人工智能更普遍使用的準則,這些準則可以適用于自動化系統。然而,2021年數據倫理與創新中心(CDEI)的人工智能晴雨表研究發現,工業界很難將一般的法規適應于特定的環境。2022年,英國防部與CDEI合作發布了在國防中使用人工智能的道德原則。

責任感

一些利益相關者強調,如果自主系統的行為不合法或不符合預期,那么它的責任是不明確的。這可能導致系統及其決定與設計或操作它的人類之間出現 "責任差距",使法律和道德責任變得復雜。英國防部的原則說,在人工智能系統的整個設計和實施過程中,應該有明確的責任。國防人工智能戰略為供應商設定了類似的期望。

圍繞自主武器系統的辯論

這一領域的大部分法律和道德辯論都集中在武器系統上。然而,某些非武裝系統(例如,基于軟件的決策支持工具)可能在識別目標方面發揮關鍵作用,因此提出了許多與那些同時部署武器的系統相同的道德問題。

國際上對 "致命性自主武器系統"(LAWS)的使用存在著具體的爭論。這個術語沒有普遍認同的定義,它被用來指代具有不同自主能力的廣泛的武器。關于使用致命性自主武器系統的報告存在很大爭議,例如,由于系統使用模式的不確定性。 聯合國《特定常規武器公約》(CCW)自2014年以來一直在討論致命性自主武器系統的可能立法。它在2019年發布了指導原則,但這些原則沒有約束力,也沒有達成進一步的共識。雖然大多數參加《特定常規武器公約》的國家支持對致命性自主武器進行新的監管,但包括英國、美國和俄羅斯在內的其他國家認為,現有的國際人道主義法已經足夠。根據運動組織 "阻止殺手機器人"(SKR)的說法,83個國家支持關于自主武器系統的具有法律約束力的文書,12個國家不支持。

許多利益相關者認為,必須保持人類對武器和瞄準系統的某種形式的控制,才能在法律和道德上被接受。某些組織,如SKR,呼吁禁止不能由 "有意義的人類控制 "的自主武器系統,并禁止所有以人類為目標的系統。他們還呼吁制定法規,確保在實踐中保持足夠的人為控制。在其2022年國防人工智能戰略中,英國政府表示,識別、選擇和攻擊目標的武器必須有 "適當的人類參與"。作為回應,一些呼吁監管的非政府組織表示,需要更加明確如何評估或理解 "適當的人類參與"。包括英國政府在內的利益相關者建議的維持人類控制的潛在措施包括限制部署的時間和地理范圍。被認為會破壞人類控制的因素包括人類做出決定的有限時間和 "自動化偏見",即個人可能會過度依賴自動化系統,而不太可能考慮其他信息。

公眾對該技術的態度

大多數關于軍事自動化的公眾意見調查都集中在自主武器系統上。SKR委托對28個國家的19,000人進行了民意調查。62%的受訪者反對使用致命性武器系統;這一數字在英國是56%。關于公眾對人工智能、數據和更廣泛的自動化的態度的研究發現,公眾關注的主要問題包括數據安全、隱私和失業。然而,公眾的觀點會因系統的功能和使用環境的不同而有很大差異。

付費5元查看完整內容

機器人是一個具有挑戰性的領域,需要軟件和硬件的融合來完成所需的自主任務。任何工作流程的關鍵是在部署到生產環境之前對軟件進行自動構建和測試。本報告討論了美國陸軍作戰能力發展司令部陸軍研究實驗室(ARL)的無人自主車輛軟件研究平臺MAVericks的軟件開發過程中使用的持續集成/持續交付工具的重要性和創建情況。這個工具在ARL進行的快速研究和開發中起著至關重要的作用--包括模擬和嵌入式硬件目標的自動構建測試,以及驗證軟件在環模擬中的預期行為。

持續集成/持續交付(CI/CD)是軟件開發中常用的工具,用于自動構建、測試和部署代碼。這個工具對于提高研究的速度和效率至關重要,同時確保在增加或改變新功能時功能不受阻礙。在CI/CD之前,軟件開發過程是具有挑戰性的,隨著越來越多的合作者修改代碼庫,任何新的開發都有可能破壞現有的功能--比如代碼不再構建,自主行為和故障保護裝置不再按預期工作。

本報告重點關注美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)的MAVericks無人自主飛行器(UAV)軟件平臺的CI/CD集成,該平臺建立在開源平臺ROS2和PX4之上。ROS2是一套用于構建機器人應用的軟件庫和工具,而PX4是一個強大的無人機飛行控制軟件。利用這兩個平臺,MAVericks是一個專注于敏捷飛行的大型合作項目,在模擬和機器人平臺上都能發揮作用。MAVericks的目標是在ModalAI的VOXL和RB5硬件平臺上運行,因為它提供了尺寸、重量和功率,同時也是藍色無人機項目的合作伙伴,這意味著他們得到了國防創新部門的資助,以符合2020年國防授權法第848條的規定。

合作者包括美國軍事學院的西點軍校,作為分布式和協作式智能系統和技術項目的一部分;加州大學伯克利分校,作為規模化和穩健的自治項目的一部分;以及馬里蘭大學的人工智能和多代理系統的自治項目--而且這個名單一直在增加。此外,ARL一直在尋求提高其算法的穩健性和成熟的能力,以過渡到DEVCOM和國防部的其他組織。隨著許多合作者加入MAVericks,重要的是要確保每次修改后有最低限度的可用功能,以鼓勵快速加入和貢獻。MAVericks是一個由一百多個軟件包組成的大型研究平臺,重要的是每個軟件包都能可靠地構建和運行。通常情況下,合作者只關心幾個軟件包,他們可以很容易地進行修改和添加,而不需要對不相關的問題進行排查,這一點至關重要。由于這種不斷增長的社區,很容易偶然地引入錯誤或破壞不相關的功能。因此,CI/CD是一個很好的解決方案,它將為不同的用戶群體提高平臺的可靠性和可用性。

CI/CD管道實現了許多簡化開發的功能。它可以完全構建整個平臺,確保新用戶的依賴性安裝成功,在模擬環境中運行和測試平臺,以確保自主行為正常工作,并快速構建壓縮的工作空間,以防止在無人機上構建。

在自主系統的軟件開發中,一個有問題的情況是,用戶修改了幾個包,但只構建和測試了一個特定包。這樣,代碼就被合并到了生產中,而沒有驗證它對其他人是否有效。如果未經測試的修改被合并,依賴這些修改的包可能不再構建或通過所有的測試案例。

從用戶的角度來看,CI/CD是由用戶創建代碼合并請求(MR)來觸發的,將他們的修改添加到主分支。這就啟動了CI/CD,建立了一個管道。該管道包括四個階段:構建-依賴、構建-完整、測試和部署。對于每個階段,可以并行地運行多個作業來完成該階段。在每個作業中,流水線首先將合并后的變化復制到一個新的環境中,并完成一個特定的任務。在流水線的最后,一個完全構建的版本被上傳,并準備在無人機上閃現。如果任何步驟失敗,其余的管道階段將被中止,并通知用戶到底是什么地方出了問題,以便他們能夠解決任何問題。管線的概述見圖1。

在本報告中,描述了MAVericks CI/CD的基礎,然后詳細介紹了管道中的每個階段,以及所克服的幾個挑戰。

付費5元查看完整內容
北京阿比特科技有限公司