低成本的物聯網(IoT)分布式電力監測可以對電網的穩定性、可靠性和復原力產生有利影響。然而,隨著物聯網設備的發展速度,需要一個外部的物理校準設備,以確保性能在更新期間不受不利影響。本報告介紹了一種小尺寸、低重量、低功率和成本(SWaP-C)的校準設備,可用于生成一系列測試波形,并確保電壓和電流感應電能表的正常運行。該校準裝置足夠小,可用于現場測試和現場調試的便攜式。此外,該校準器既能取電,又能通過USB進行串行通信,允許被測物聯網設備托管它,并根據需要循環使用校準波形。
這些校準序列包括測試電力系統波形的:
該裝置是圍繞著一個低成本的基于ATmega32u4微控制器的開發板建立的,它在數字輸出引腳上產生一個脈沖寬度調制波形。這個數字輸出可以被低通濾波(LPFed)或直接傳遞給美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)自主實時電場和磁場綜合傳感器(ARTEMIS)單元,板載濾波將低通測試信號。測試音是用查找表(LUTs)產生的,它提供了一個容易實現的波形,但不能產生一個任意的音。本系統包括的波形是針對60-Hz電力系統的,但也可以擴展到其他電網頻率。
一般來說,這些功能和它們所描述的測試用例由以下內容給出:
機器人是一個具有挑戰性的領域,需要軟件和硬件的融合來完成所需的自主任務。任何工作流程的關鍵是在部署到生產環境之前對軟件進行自動構建和測試。本報告討論了美國陸軍作戰能力發展司令部陸軍研究實驗室(ARL)的無人自主車輛軟件研究平臺MAVericks的軟件開發過程中使用的持續集成/持續交付工具的重要性和創建情況。這個工具在ARL進行的快速研究和開發中起著至關重要的作用--包括模擬和嵌入式硬件目標的自動構建測試,以及驗證軟件在環模擬中的預期行為。
持續集成/持續交付(CI/CD)是軟件開發中常用的工具,用于自動構建、測試和部署代碼。這個工具對于提高研究的速度和效率至關重要,同時確保在增加或改變新功能時功能不受阻礙。在CI/CD之前,軟件開發過程是具有挑戰性的,隨著越來越多的合作者修改代碼庫,任何新的開發都有可能破壞現有的功能--比如代碼不再構建,自主行為和故障保護裝置不再按預期工作。
本報告重點關注美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)的MAVericks無人自主飛行器(UAV)軟件平臺的CI/CD集成,該平臺建立在開源平臺ROS2和PX4之上。ROS2是一套用于構建機器人應用的軟件庫和工具,而PX4是一個強大的無人機飛行控制軟件。利用這兩個平臺,MAVericks是一個專注于敏捷飛行的大型合作項目,在模擬和機器人平臺上都能發揮作用。MAVericks的目標是在ModalAI的VOXL和RB5硬件平臺上運行,因為它提供了尺寸、重量和功率,同時也是藍色無人機項目的合作伙伴,這意味著他們得到了國防創新部門的資助,以符合2020年國防授權法第848條的規定。
合作者包括美國軍事學院的西點軍校,作為分布式和協作式智能系統和技術項目的一部分;加州大學伯克利分校,作為規模化和穩健的自治項目的一部分;以及馬里蘭大學的人工智能和多代理系統的自治項目--而且這個名單一直在增加。此外,ARL一直在尋求提高其算法的穩健性和成熟的能力,以過渡到DEVCOM和國防部的其他組織。隨著許多合作者加入MAVericks,重要的是要確保每次修改后有最低限度的可用功能,以鼓勵快速加入和貢獻。MAVericks是一個由一百多個軟件包組成的大型研究平臺,重要的是每個軟件包都能可靠地構建和運行。通常情況下,合作者只關心幾個軟件包,他們可以很容易地進行修改和添加,而不需要對不相關的問題進行排查,這一點至關重要。由于這種不斷增長的社區,很容易偶然地引入錯誤或破壞不相關的功能。因此,CI/CD是一個很好的解決方案,它將為不同的用戶群體提高平臺的可靠性和可用性。
CI/CD管道實現了許多簡化開發的功能。它可以完全構建整個平臺,確保新用戶的依賴性安裝成功,在模擬環境中運行和測試平臺,以確保自主行為正常工作,并快速構建壓縮的工作空間,以防止在無人機上構建。
在自主系統的軟件開發中,一個有問題的情況是,用戶修改了幾個包,但只構建和測試了一個特定包。這樣,代碼就被合并到了生產中,而沒有驗證它對其他人是否有效。如果未經測試的修改被合并,依賴這些修改的包可能不再構建或通過所有的測試案例。
從用戶的角度來看,CI/CD是由用戶創建代碼合并請求(MR)來觸發的,將他們的修改添加到主分支。這就啟動了CI/CD,建立了一個管道。該管道包括四個階段:構建-依賴、構建-完整、測試和部署。對于每個階段,可以并行地運行多個作業來完成該階段。在每個作業中,流水線首先將合并后的變化復制到一個新的環境中,并完成一個特定的任務。在流水線的最后,一個完全構建的版本被上傳,并準備在無人機上閃現。如果任何步驟失敗,其余的管道階段將被中止,并通知用戶到底是什么地方出了問題,以便他們能夠解決任何問題。管線的概述見圖1。
在本報告中,描述了MAVericks CI/CD的基礎,然后詳細介紹了管道中的每個階段,以及所克服的幾個挑戰。
在有環境因素的城市區域內安全有效地使用四旋翼飛行器,對美國軍事和民用部門具有巨大的重要性。本技術報告探討了一個高度適應性的模擬設置,其中有一個包含學習元素的非線性控制器。其他模型因素--如無人機的幾何形狀、權重和風的力量--在所提出的框架內很容易被修改。用虛幻引擎進行的模擬,可以結合現實世界的城市數據、現實的風和現有的開源軟件。
無人系統和無人駕駛航空系統(UAS)的使用在全世界的軍隊中激增,在通信、監視、偵察和戰斗中都有應用(Nacouzi等人,2018)。在敵對地區,無人機系統將受到多種威脅,包括網絡和物理威脅,以及環境危害。生存和任務的成功往往取決于以最小的通信或依賴全球導航衛星系統(GNSS)的能力,如GPS(Guvenc等人,2018;Sathyamoorthy等人,2020;Fan等人,2022)。例如,無人機系統的通信可用于檢測和獲得無人機系統的位置,而基于衛星的導航很容易被欺騙或干擾,因為信號非常弱。其他傳感器也經常被用來增強GNSS的位置分析,并可以用來取代它,如光學系統--包括照相機、雷達、光探測和測距(LiDAR)系統和慣性測量單元(IMU)(Angelino等人,2012)。這些都提出了自己的挑戰。慣性測量單元是標準設備,但只能檢測線性和角加速度,同時通過檢測地球的局部磁場來確定方向(共9個自由度)。因此,位置誤差,即測量的加速度的第二個時間積分,會隨著時間的推移而累積。在使用IMU進行UAS導航時,其他令人擔憂的來源包括環境影響(即風或降水)。 UAS結構的物理變化,如增加一個傳感器或武器包,包括武器發射后的變化,使工作進一步復雜化。這種質量和質量分布的變化改變了UAS的質量中心和慣性張量。光學傳感器、雷達和LiDAR系統增加了重量,并經常發射射頻或光,使它們更容易被探測到和/或需要處理資源。增加的重量和/或處理可能對電池壽命產生不利影響,從而影響運行時間和整體可靠性。
為了解決這些問題,我們正在研究在大風環境中使用控制算法,以了解IMU信號如何在控制中被用來考慮(和/或改變)UAS的位置計算。再加上不確定性措施,這些最終可用于檢測UAS飛行性能的變化,或對GNSS信號的欺騙。
城市環境是安全和可靠的無人機系統運行的第二個關注領域(Watkins 2020)。它們被認為是國防部行動的一個挑戰領域,也是政府和商業服務的一個巨大的技術增長領域。在這份報告中,我們展示了一個模擬空間,我們正在建立專門用于模擬城市環境中的無人機系統,以解決自主和半自主控制的問題,重點是環境的相互作用,包括風和靜態碰撞威脅。物理學和控制的關鍵部分直接用C++實現。除此之外,在可能的情況下,我們正在利用當前的免費和開源資源(即軟件、軟件框架和數據),但要注意的是,我們包括使用一些在產品商業化成功后需要付費的工具。我們采取了一種模塊化的方法,隨著其他軟件框架和系統的成熟,將能夠靈活地過渡到其他軟件框架和系統。我們目前的系統已經基于用于小型無人機系統的PX4控制器庫和實時發布-訂閱(RTPS)數據傳輸協議。RTPS應能使我們的發展在其他工具成熟時過渡到其他工具,并使用通用的應用編程接口(即API)過渡到其他工具和數據,如計算的風數據。對于圖形和用戶界面,我們使用虛幻引擎(UE)(Matej 2016),這是一個游戲引擎,提供最先進的圖形功能和我們的模型中使用的一些物理學--最重要的是無人機系統和其環境之間的碰撞檢測。
第2-4節詳細介紹了整個模擬的主要計算部分:納入現實世界的城市數據,生成現實的風模型,無人機的幾何和物理建模,以及線性和非線性控制。我們對整體模擬的這些主要部分中的每一個都依賴開源軟件,如UE、OpenStreetMap(OSM)(Anderson等人,2019年)、Mapbox和AirSim(Shah等人,2017年),并根據需要詳細說明(見圖1;例如,真實城市的模型導入游戲引擎中)。第5節和第6節提供了樣本結果和結語。
圖1 將城市數據納入UE進行大規模模擬的兩個例子。伊利諾伊州的芝加哥(上);弗吉尼亞州的水晶城(下)。這兩張圖片都是使用開源工具創建的,將開源的Mapbox城市數據導入UE中。
射頻片上系統,或稱RFSoC,是射頻工程中的一個新興模式。具體來說,它將嵌入式處理能力的靈活性與單芯片上緊密耦合的射頻模數轉換器(ADC)和數模轉換器(DAC)相結合。這大大降低了實現射頻收發器的設計復雜性,并普遍降低了尺寸、重量和功率要求。RFSoC有多種形式和不同程度的復雜性;有些是為最初的實驗室演示和原型設計的,有些是縮小了外形尺寸,為可部署或生產應用設計的。總的來說,RFSoC大大加快了軟件定義無線電(SDR)的市場,SDR是具有射頻功能的計算設備,可以在不同的抽象層進行重新編程和重新配置,從工廠到實驗室,到生產車間,甚至最終用戶。
使用SDR實現雷達,無論是獨立的還是作為多功能射頻的一部分,都是一個不斷增長的趨勢,并且可以在RFSoC中有效實現。特別是,使用線性頻率調制(LFM)或 "FM啁啾"的先進雷達波形,正在成為雷達脈沖的行業標準,因為它們的返回可以通過數字信號處理進行可靠的處理,以實現高度精確的范圍分辨率。
波形設計,特別是數字合成的雷達波形,是一個活躍的研究領域。一個能夠以高頻率發射多個復雜波形,并能以極低的延遲在多個波形之間切換的設計,應該利用完全在RFSoC(即硬件)的可編程邏輯(PL)部分實現波形的更高速度和處理能力。因此,探索波形數字合成的廣泛架構選擇是有益的。
在這項研究中,我們設計并實現了兩個定制的數字合成器:一個線性頻率調制發生器(LFMGEN)和一個可變直接數字合成器(VARDDS)。合成器是用極高速集成電路硬件描述語言(VHDL)設計的,采用了寄存器傳輸級(RTL)方法,并封裝在賽靈思高級可擴展接口(AXI)標準包裝器中,以方便它們在Vivado知識產權(IP)集成器中使用。每個設計都與輕量級硬件抽象層和一組軟件驅動器配對,以包含在Xilinx Vitis C應用項目中。合成器被集成到基于賽靈思第一代(Gen)RFSoC ZCU111評估平臺的測試平臺中,由此產生的射頻波形可以在實驗室環境中生成和分析。合成器是針對各種最大瞬時帶寬(IBW)實現的(后置和路由結果),并對其在波形生成、負載和交換延遲、資源使用、時間限制和功耗方面的相對優勢和劣勢進行比較。這項工作的貢獻如下:
在現代戰爭中,槍聲往往是士兵對敵人存在和即將發生的交戰的第一個警告。因此,槍聲定位問題對國防和民事執法行業至關重要,因為它可以應用于狙擊手和敵人的交戰檢測、被動犯罪檢測以及非洲的反盜獵工作等等[1]-[3] 。目前正在對這一問題進行大量研究。在軍事應用中,槍擊檢測技術在交戰或反狙擊行動的初始階段可能是一個決定性因素。對槍擊的快速和準確的到達方向(DoA)的確定直接有助于對戰斗空間的認識,允許快速、有效和可操作的決定和部署反措施,這將增加以最小的傷亡完成任務的可能性。
實際上,存在各種槍擊確定方法,包括非聲學和聲學手段。非聲學手段主要是對槍擊的閃光和/或槍支或敵方攻擊者身體發出的熱量進行電光探測[4]。另一個來源是步槍瞄準鏡上的逆反射光[5]。所有這些都可以通過各種成像技術進行搜索,如普通的日光相機和更有可能的紅外成像設備。定位可以通過一個單一的成像設備或此類設備的陣列來實現。電子光學方法的一個關鍵限制是需要從傳感器到熱源的直接視線,因為光在熱不透明物體周圍的衍射很小。其他限制包括可能隱藏定位所需特征的背景輻射[4], [5],以及當前成像方法的狹窄視野,要求傳感器指向正確的方向。盡管許多電光探測系統可用于探測和定位各種戰場相關物體,在許多任務中發揮著關鍵作用,但聲學探測更適合于槍擊探測和定位。
聲學是確定槍擊DoA的一種更常見的方法,也是最近許多研究工作的重點,正如第2章中所討論的。許多商業系統也存在,包括雷神公司的Boomerang III,它目前正被部署在戰斗空間,以支持和保護我們的部隊[6]。聲學系統有幾個優點,最大的優點是它們能夠探測和定位來自任何方向的槍聲,即使槍源被遮擋在障礙物后面[7]。在戰場上,這種全方位的探測是至關重要的,因為傳感器系統不可能因為碰巧指向不同的方向而錯過一槍。這允許一個容易設置和忘記的系統,它將被動地在后臺工作,不需要額外的海軍陸戰隊來控制和指揮。
目前的聲學系統幾乎完全依賴全向麥克風陣列,如第二章所述。全向傳聲器很容易獲得,并提供前面討論的被動的360度聆聽能力。因此,它們似乎是確定DoA應用的明顯選擇。不幸的是,它們的全向性正是使它們無法單獨確定入射方向的原因。因此,必須將多個全向型麥克風連接成一個分布式陣列,以實現DoA測定功能。有多種方法可用于確定聲音在傳聲器陣列上的入射角,如相位動力轉向,但最常見和最容易實現的是所謂的到達時間差算法。應用這種技術需要傳聲器在空間上的分布。不幸的是,這導致了槍擊DoA測定系統相對較大、繁瑣,而且往往太重或不切實際,無法由單個戰斗人員攜帶,而是需要固定地點或車輛安裝。雖然它們仍然是能力驚人的系統,但一個較小的士兵運輸系統,提供同樣的覆蓋范圍和能力,將非常有利于提高戰場上的戰斗空間意識、指揮和控制,以及生存能力。
在海軍研究生院(NPS),研究人員目前正致力于開發這樣一個系統。該系統依賴于受寄生蠅Ormia Ochracea啟發的微機電系統(MEMS)傳感器。這些MEMS傳感器顯示出有希望能夠檢測到傳來的槍聲的方位角,只需兩個拼在一起的Ormia Ochracea啟發的傳感器和一個商業MEMS全向麥克風。這意味著,與目前商業系統的分布式陣列不同,這個確定方位的系統將是小而輕的,并且容易被地面上的個人作為步槍/頭盔附件或單獨的手持設備攜帶。
在這種情況下,本論文的目標是利用兩個Ormia啟發的MEMS傳感器和一個商業MEMS麥克風的組合,開發計算槍擊DoA的方法,并評估其在研究環境和實地的各種槍擊刺激下的性能。
這一發展包括:
了解Ormia啟發的傳感器的頻率響應,它們的差異和限制。
研究和調整DoA測定算法以及。
應用糾正性信號處理來提高精確度。
該研究的問題是:
1.搭配的傳感器組合能否用于提供360度DoA測定?
2.能否在頻域中確定DoA,以便應用更多的處理技術?
3.能否在頻域中修正不同的傳感器反應以提高DoA算法的準確性?
4.假設問題提供了肯定的答案,那么系統的可實現的精度是多少?
本報告描述了北約STO RTG IST-149無人地面系統和C2內互操作性能力概念演示器的研究和實驗工作。無人地面車輛(UGVs)在現代戰斗空間中正變得越來越重要。這些系統可以攜帶大量的傳感器套件,從前線提供前所未有的數據流。另一方面,這些系統在大多數情況下仍然需要遠程操作。重要的是要認識到,如果沒有適當的方式在聯盟伙伴之間交換信息和/或將其納入C2系統,ISR數據在很大程度上將是無用的。該小組的主要目的是找到改善這種情況的方法,更具體地說,調查從操作員控制單元(OCU)控制UGV和接收數據的可能標準,并在現實世界的場景中測試它們。
該項目的努力有兩個方面。比利時的貢獻是在歐盟項目ICARUS中所做的工作。這個項目涉及一個用于搜索和救援的輔助性無人駕駛空中、地面和海上車輛團隊。互操作性在幾個不同的實驗中得到了驗證。ICARUS聯盟由幾個國際合作伙伴組成,其中比利時是這個小組的鏈接。第二項工作是該小組的聯合努力,在小組內進行實驗,展示UGV和OCU之間的互操作性。該小組于2018年在挪威的Rena進行了最后的演示。
這兩項工作都使用了無人系統聯合架構(JAUS)和互操作性配置文件(IOP),以成功實現系統間的互操作性。試驗表明,有可能相當容易地擴展系統,并在相對較短的時間內實現與部分標準的兼容。弗勞恩霍夫FKIE和TARDEC都開發了軟件,將信息從IOP域傳遞到機器人操作系統(ROS),并從該系統中獲取信息。ROS是一個廣泛使用的軟件,用于開發UGV和其他類型機器人的自主性,并被該小組的許多合作伙伴所使用。Fraunhofer FKIE和TARDEC提供的軟件對試驗的成功至關重要。
報告還討論了如何在采購前利用IOP標準來定義系統的要求。該標準本身定義了一套屬性,可以在采購新系統時作為要求來指定,可以是強制性要求,也可以是選擇性要求。這使得采購部門更容易定義要求,供應商也更容易符合要求,同時也明確了OCU在連接到系統時,在控制系統和可視化系統中的數據方面需要具備哪些能力。
該小組2018年在挪威瑞納的試驗重點是對UGV進行遠程操作,以及接收UGV的位置和視頻反饋。由于這是一次成功的試驗,下一步將是使用更高層次的控制輸入和反饋來測試互操作性,例如,向UGVs發送航點,并根據系統的感知接收系統周圍環境的地圖。
無人系統(UMS)在北約軍事行動中發揮著越來越重要的作用,并將是構成未來戰斗力很大的一部分。然而,由于UMS使用的技術發展迅速,在如何衡量UMS的性能方面,很少有標準存在。這在自主性能方面尤其如此。這種缺乏商定的定義和測試方法的情況,極大地阻礙了UMS在北約全面行動中的使用。因此,迫切需要為用戶提供一種工具,不僅可以定義UMS的自主性水平,而且可以定量測量自主性對UMS任務性能的影響。
認識到這一需求,北約成立了AVT-175-RTG:無人系統(UMS)平臺技術和自主運行的性能。這個RTG定義了影響自主性和自主性能的技術,全面介紹了北約國家目前正在使用的潛在軍事應用的UMS系統,并對目前使用的測試方法、標準、自主性定義和自主性能評估工具進行了詳盡的審查。AVT-175的工作范圍在一定程度上受到了限制,因為缺乏與更高自主水平的全面行動有關的數據,因為自主的UMS還沒有被廣泛地用于北約任務。
根據技術、測試方法和自主性能方法的審查,AVT-175開發了一個新的工具,用于預測評估背景自主性能,即任務性能潛力(MPP)。目前的努力,即AVT-255 "無人系統自主運行任務性能潛力",試圖在軟件中實現MPP,并利用自主UMS運行的現場測試驗證代碼。
然而,AVT-255即使延長了一年,也沒能實現其目標。
AVT-255項目未能成功完成的原因有三個。
1)主要的代碼開發人員不得不退出這項工作。
2)驗證性的現場測試被取消了。
3)AVT-255的研究逐漸過時。
本備忘錄對AVT-255的時間表和有限的結果進行了詳細的解釋,并接著對自主UMS的測試和評估提出了下一步的建議。
全球信息網絡架構(GINA)是一個語義建模框架,旨在促進特設傳感器資產和指揮與控制系統的整合,因為它們可以通過被稱為矢量關系數據建模的實施方式提供給戰斗空間中的操作人員。為了評估GINA的互操作性和推理能力,開發了一個概念驗證評估,并在真實世界的傳感器數據上進行測試。
正如美國陸軍的多域作戰(MDO)概念所指出的,美國的對手試圖通過在政治、軍事和經濟領域的分層對峙來實現他們的戰略目標,而不是通過沖突來對抗美國軍隊和聯盟伙伴。此外,MDO概念指出,對手可能采用多層跨域對峙--跨越陸地、海洋、空中、太空和網絡空間,在時間、空間和功能上威脅美國和聯盟部隊。反擊這些戰略的中心思想是快速和持續地整合所有領域的戰爭(即融合),跨越時間、空間和能力,以戰勝敵人。
為了實現MDO的執行,聯合軍種、政府機構和多國伙伴之間的互操作性是一個關鍵要求。戰術行動已經越來越依賴于信息網絡的傳感、通信、協調、情報和指揮與控制(C2)。因此,美國陸軍不斷尋求提高其整合網絡系統的能力,并在不同的作戰節奏水平上實現同步效果。從歷史上看,由于沒有足夠的能力來支持現有的和新興的技術和進程,這種整合在以無處不在的物聯網(IoT)和軍事C2系統為特征的不斷發展的網絡化戰斗空間中帶來了技術挑戰。這種限制因不同系統的孤島而進一步加劇,限制了戰術、技術和程序的跨系統使用,以及支持硬件和軟件組件。這些限制使作戰人員面臨不一致和缺失的關鍵任務數據,促使作戰功能在孤立中運作。例如,行動和情報之間的數據交換是有限的,范圍也受到限制,增加了指揮官決策過程中的風險和延誤。
為了實現陸軍網絡現代化,陸軍未來司令部網絡跨職能小組(N-CFT)正在調查通過創新、整體和適應性的信息技術解決方案來實現網絡互操作性的顛覆性方法,以滿足既定的C2互操作性挑戰。根據NCFT的指示,美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)的研究人員評估了一項名為全球信息網絡架構(GINA)的技術,作為多源傳感器數據融合的系統解決方案,以支持決策。 根據其軟件規格,GINA的目的是減少在互操作和集成方面存在的技術挑戰,并支持及時的共同情報/作戰圖景和決策的情報分析。
目前,語義互操作是一個活躍的研究領域;近十年來,已經開發了一些軍事技術解決方案。語義互操作提供了促進快速整合來自臨時傳感器資產和異質C2系統的信息的手段,因為它們為戰斗空間中的操作人員所了解。這項初步評估表明,GINA能夠整合不同的傳感器系統,并對數據進行同質化和協調,以便在本次評估的實驗場景下提供解釋、分析和推理。在這一評估的基礎上,在與MDO的規模和復雜性相匹配的實地演習或實驗中進行進一步的評估可能是有意義的。具體來說,進一步評估的能力是:1)來自多個部門的傳感器和通信設備之間及時的互操作性;2)連接來自不同結構和標準的盟國、合作伙伴或商業數據流系統;3)豐富、數據分析、推理或增強其他決策支持C2系統;以及4)與其他技術解決方案的比較。
這項評估的綜合分析已經在DEVCOM ARL技術報告ARL-TR-9100中記錄和公布。
美國海軍希望開發和采購三種類型的大型無人航行器(UV),稱為大型無人水面航行器(LUSV)、中型無人水面航行器(MUSV)和超大型無人水下航行器(XLUUVs)。海軍2023財年擬議預算要求為這些大型UV和LUSV/MUSV啟用技術提供5.493億美元的研究和開發資金,并為XLUUV和其他海軍UUV的核心技術提供6070萬美元的額外資金。
海軍希望獲得這些大型UVs,作為將海軍轉移到一個更加分布式艦隊架構的一部分工作,這意味著一種艦艇組合,將海軍的能力分散到更多的平臺上,并避免將艦隊整體能力的很大一部分集中到相對較少的高價值艦艇上(即一種避免 "把太多雞蛋放在一個籃子里 "的艦艇組合)。海軍和國防部(DOD)自2019年以來一直在努力制定一個新的海軍部隊目標,以反映這種新的艦隊組合。2022年4月20日發布的海軍2023財年開始30年(2023財年-2052財年)的造艦計劃,總結了對新的兵力目標進行的研究結果。這些研究概述了潛在的未來艦隊擁有27至153艘大型USV和18至51艘大型UUV。
海軍設想LUSV的長度為200英尺到300英尺,滿載排水量為1,000噸到2,000噸,這將使它們達到輕巡洋艦的大小(即比巡邏艇大,比護衛艦小的艦艇)。海軍希望LUSV是低成本、高端耐力、可重新配置的艦艇,有足夠的能力攜帶各種模塊化有效載荷--特別是反水面戰(ASuW)和打擊有效載荷,主要是指反艦導彈和對陸攻擊導彈。每艘LUSV可以配備一個垂直發射系統(VLS),有16到32個導彈發射管。盡管被稱為UV,LUSV可能被更準確地描述為選擇性或輕度載人的艦艇,因為它們有時可能有一些船員,特別是在近期內,當海軍制定LUSV的啟用技術和作戰概念時。根據海軍2023財政年度的五年(2023-2027財政年度)造艦計劃,海軍采購LUSV的計劃將在2025財政年度開始。
海軍將MUSV定義為45英尺到190英尺長,排水量大約為500噸,這將使它們與巡邏艇的尺寸相當。海軍希望MUSV和LUSV一樣,是低成本、高端耐力、可重新配置的船只,可以容納各種有效載荷。MUSV的初始有效載荷將是情報、監視和偵察(ISR)有效載荷和電子戰(EW)系統。海軍2023財年開始的五年(2023-2027財年)造艦計劃不涵蓋2023-2027財年期間采購MUSV的計劃。
XLUUV的大小大致與地鐵車廂相當。首批5艘XLUUV在2019財政年度獲得資助,正在由波音公司建造。海軍希望使用XLUUV秘密部署Hammerhead水雷,這種水雷將被拴在海底,并配備反潛魚雷,大致類似于海軍冷戰時期的CAPTOR(封裝式魚雷)。根據海軍2023財年開始的五年(2023-2027財年)造艦計劃,通過其他采購,海軍(OPN)計劃在2024財年開始采購額外的XLUUV。
在對海軍2020-2022財年的擬議預算進行標記時,國會國防委員會對海軍的采購戰略是否提供足夠的時間來充分開發這些大型UV,特別是LUSV的作戰概念和關鍵技術表示關注,并包括旨在解決這些問題的立法規定。作為對這些標記的回應,海軍已經重組了LUSV項目的采購戰略,以便遵守這些立法規定,并在進入可部署單位的批量生產之前提供更多的時間來開發作戰概念和關鍵技術。
圖1. 支持LUSV和MUSV計劃的原型機
本文件是北約 IST-151 研究任務組 (RTG) 活動的最終報告,題為“軍事系統的網絡安全”。該 RTG 專注于研究軍事系統和平臺的網絡安全風險評估方法。 RTG 的目標如下:
? 協作評估軍事系統的網絡安全,并在 RTG 的北約成員國之間共享訪問權限;
? 在 RTG 的北約成員國之間共享風險評估方法和結果;
? 將 RTG 的北約成員國使用的評估方法整合到一個連貫的網絡安全風險評估方法中,以使北約國家受益。
軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。他們大量使用數據總線,如 MIL-STD-1553A/B、CAN/MilCAN、RS-422/RS-485、AFDX 甚至普通以太網,以及戰術通信的舊標準,如 MIL-STD-188C 和 Link 16。此外,捕獲器、傳感器、執行器和許多嵌入式系統是擴展攻擊面的額外無人保護的潛在輸入。結果是增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務的成功和公共安全至關重要。
軍事系統和平臺是網絡攻擊的首選目標,不是因為它們像消費電子產品那樣普遍,而是因為它們潛在的戰略影響。一旦受到影響,就可以實現各種短期和長期影響,從拒絕能力到秘密降低其有效性或效率。因此,軍隊必須在各個層面解決網絡安全問題:戰略層面,同時獲取平臺和系統;作戰層面,同時規劃軍事任務和戰術。
北約國家擁有大量可能面臨網絡攻擊的軍事平臺和系統。因此,北約將受益于利用當前的流程和方法來設計更安全的系統并評估當前系統的網絡安全。
本報告介紹了針對軍事系統和平臺量身定制的網絡安全評估方法,該方法由 RTG 團隊成員合作開發,并建立在他們的經驗和專業知識之上。團隊成員已經使用的流程被共享、分析、集成和擴充,以產生本報告中描述的流程。本報告的目標受眾是愿意評估和減輕其軍事系統的網絡安全風險的決策者。
圖一:網絡安全評估過程的五個主要步驟。
第 2 節介紹了 RTG 團隊在其存在的三年中用于開發流程的方法。第 3 節列出了可以應用該過程的系統的一些特征。最后,第 4 節描述了評估流程,而第 5 節總結本報告。
軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。這導致增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務和公共安全的成功至關重要。
絕對的網絡安全是不存在的。必須通過迭代風險評估持續管理網絡安全。傳統 IT 系統存在許多網絡安全風險管理框架和流程。然而,在軍事平臺和系統方面,情況遠非如此。本文檔介紹了針對軍事系統量身定制的網絡安全風險評估流程。該流程由北約 IST-151 研究任務組 (RTG) 活動的團隊成員開發,該活動名為“軍事系統的網絡安全”。該過程可以應用于傳統的 IT 和基于固件的嵌入式系統,這些系統在軍事平臺和系統中無處不在。