亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

簡介:

梯度爆炸和消失的問題一直是阻礙神經網絡有效訓練的長期障礙。盡管在實踐中采用了各種技巧和技術來緩解該問題,但仍然缺少令人滿意的理論或可證明的解決方案。在本文中,我們從高維概率論的角度解決了這個問題。我們提供了嚴格的結果,表明在一定條件下,如果神經網絡具有足夠的寬度,則爆炸/消失梯度問題將很可能消失。我們的主要思想是通過一類新的激活函數(即高斯-龐加萊歸一化函數和正交權重矩陣)來限制非線性神經網絡中的正向和反向信號傳播。在數據實驗都可以驗證理論,并在實際應用中將其有效性確認在非常深的神經網絡上。

付費5元查看完整內容

相關內容

誤差梯度是神經網絡訓練過程中計算的方向和數量,用于以正確的方向和合適的量更新網絡權重。 在深層網絡或循環神經網絡中,誤差梯度可在更新中累積,變成非常大的梯度,然后導致網絡權重的大幅更新,并因此使網絡變得不穩定。在極端情況下,權重的值變得非常大,以至于溢出,導致NaN值。網絡層之間的梯度(值大于 1.0)重復相乘導致的指數級增長會產生梯度爆炸。

題目:

Con?dence-Aware Learning for Deep Neural Networks

簡介:

盡管深度神經網絡可以執行多種任務,但過分一致的預測問題限制了它們在許多安全關鍵型應用中的實際應用。已經提出了許多新的工作來減輕這個問題,但是大多數工作需要在訓練和/或推理階段增加計算成本,或者需要定制的體系結構來分別輸出置信估計。在本文中,我們提出了一種使用新的損失函數訓練深度神經網絡的方法,稱為正確排名損失,該方法將類別概率顯式規范化,以便根據依據的有序等級更好地進行置信估計。所提出的方法易于實現,并且無需進行任何修改即可應用于現有體系結構。而且,它的訓練計算成本幾乎與傳統的深度分類器相同,并且通過一次推斷就可以輸出可靠的預測。在分類基準數據集上的大量實驗結果表明,所提出的方法有助于網絡產生排列良好的置信度估計。我們還證明,它對于與置信估計,分布外檢測和主動學習密切相關的任務十分有效。

付費5元查看完整內容

題目: Stochastic Graph Neural Networks

簡介:

圖神經網絡(GNN)對圖數據中的非線性表示進行建模,并在分布式智能體協調,控制和規劃等方面進行了應用。當前的GNN架構假設理想情況,并且忽略由于環境,人為因素或外部攻擊而發生的波動。在這些情況下,如果未考慮拓撲隨機性,則GNN無法解決其分布式任務。為了克服這個問題,我們提出了隨機圖神經網絡(SGNN)模型:一種GNN,其中分布式圖卷積模塊解決了隨機網絡的變化。由于隨機性引入了新的學習范式,因此我們對SGNN輸出方差進行統計分析,以識別學習濾波器為實現向擾動場景的魯棒轉移而應滿足的條件,最終揭示隨機鏈路損耗的顯式影響。我們進一步為SGNN開發了基于隨機梯度下降(SGD)的學習過程,并推導了學習速率收斂的條件,在該條件下該學習過程收斂于平穩點。數值結果證實了我們的理論研究,并將SGNN魯棒與傳統GNN的優勢進行了比較,后者在學習過程中忽略了圖形擾動。

付費5元查看完整內容

主題: TOPOLOGY OF DEEP NEURAL NETWORKS

摘要: 我們研究數據集M=Ma∪Mb?Rd的拓撲結構如何表示二進制分類問題中的兩個類別a和b,如何通過經過良好訓練的神經網絡的層而發生變化,即在訓練集和接近零的泛化誤差(≈0.01%)。目的是揭示深層神經網絡的兩個奧秘:(i)像ReLU這樣的非平滑激活函數要優于像雙曲正切這樣的平滑函數; (ii)成功的神經網絡架構依賴于多層結構,即使淺層網絡可以很好地近似任意函數。我們對大量點云數據集的持久同源性進行了廣泛的實驗,無論是真實的還是模擬的。結果一致地證明了以下幾點:(1)神經網絡通過更改拓撲結構來運行,將拓撲復雜的數據集在穿過各層時轉換為拓撲簡單的數據集。無論M的拓撲多么復雜,當通過訓練有素的神經網絡f:Rd→Rp時,Ma和Mb的貝蒂數都會大大減少;實際上,它們幾乎總是減小到可能的最低值:對于k≥1和β0(f(Mi))= 1,i = a,b,βk(f(Mi))= 0。此外,(2)ReLU激活的Betti數減少比雙曲線切線激活快得多,因為前者定義了改變拓撲的非同胚映射,而后者定義了保留拓撲的同胚映射。最后,(3)淺層和深層網絡以不同的方式轉換數據集-淺層網絡主要通過更改幾何結構并僅在其最終層中更改拓撲來運行,而深層網絡則將拓撲變化更均勻地分布在所有層中。

付費5元查看完整內容

題目

二值神經網絡綜述,Binary Neural Networks: A Survey

關鍵詞

二進制神經網絡,深度學習,模型壓縮,網絡量化,模型加速

簡介

二進制神經網絡在很大程度上節省了存儲和計算成本,是一種在資源有限的設備上部署深度模型的有前途的技術。 然而,二值化不可避免地導致嚴重的信息丟失,甚至更糟的是,其不連續性給深度網絡的優化帶來了困難。 為了解決這些問題,近年來提出了多種算法,并取得了令人滿意的進展。 在本文中,我們對這些算法進行了全面的概述,主要分為直接進行二值化的本機解決方案,以及使用使量化誤差最小化,改善網絡損耗函數和減小梯度誤差等技術進行優化的解決方案。 我們還將研究二進制神經網絡的其他實用方面,例如硬件友好的設計和訓練技巧。 然后,我們對不同的任務進行了評估和討論,包括圖像分類,對象檢測和語義分割。 最后,展望了未來研究可能面臨的挑戰。

作者

Haotong Qina , Ruihao Gonga , Xianglong Liu?a,b, Xiao Baie , Jingkuan Songc , Nicu Sebe

付費5元查看完整內容

題目: MEMORY-BASED GRAPH NETWORKS

摘 要:

圖神經網絡是一類對任意拓撲結構的數據進行操作的深度模型。我們為GNNs引入了一個有效的記憶層,它可以聯合學習節點表示并對圖進行粗化。在此基礎上,我們還引入了兩個新的網絡:基于記憶的GNN (MemGNN)和可以學習層次圖表示的圖存儲網絡(GMN)。實驗結果表明,所提出的模型在9個圖分類和回歸基準中有8個達到了最新的結果。我們也證明了這些表示學習可以對應于分子數據中的化學特征。

付費5元查看完整內容

內容簡介: 采用NLP預訓練模型Bert的訓練數據如果少的話,那么不足以訓練復雜的網絡;并且如果采用bert進行預訓練則可以加快訓練的速度;在運用預訓練時,首先對參數進行初始化,找到一個好的初始點,那么對后續的優化將會產生巨大的影響。

說到利用深度學習來進行自然語言處理,必然繞不開的一個問題就是“Word Embedding”也 就是將詞轉換為計算機能夠處理的向量,隨之而來的人們也碰到到了一個根本性的問題,我們通常會面臨這樣的一個問題,同一個單詞在不同語 境中的一詞多義問題,研究人員對此也想到了對應的解決方案,例如在大語料上訓練語境表示,從而得到不同的上下文情況的 不同向量表示。

Bert在模型層面上并沒有新的突破,準確來說它更像是NLP領域 近期優秀模型的集大成者,Bert相比其他神經網絡模型,同時具備了特征提取能力與語境表達能力,這是其他比如OPEN AI與ELMo所不能達到的。為了解決雙向編碼器循環過程中出現的間接“窺見”自己的問題,Bert采用了一個masked語言模型,將其他模型的思想恰到好處的融合起來了。

付費5元查看完整內容
北京阿比特科技有限公司