首先介紹了美軍和北約數據鏈系統的發展情況,然后將未來智能數據鏈的發展趨勢歸納為集成化、通用化、多功能化和高安全性。提出了基于全局作戰云的單元級作戰系統架構,能夠實現全局作戰資源的靈活調度和整體作戰效能的最大化。智能數據鏈是該方案的重要組成部分,為未來城市單元級作戰提供了強有力的信息支撐。
基于上述思考,我們聚焦城市單元作戰場景,提出了基于數據鏈支撐的全球作戰云的單元級系統架構,整體結構如圖 2 所示。
整個架構處于典型的單元級城市作戰場景,由地面無人協同單元、各類無人飛行器、機載高低軌衛星組成的星鏈、全球作戰云組成。在單元內部,各作戰單元通過自組網、現有5G/6G基站、星鏈等方式構建單元網絡,不同網絡鏈之間優勢互補、冗余備份、信息互通,共同構建單元級通信互聯網絡。
云的特點是資源虛擬化、管理彈性化、共享靈活化,將作戰資源有機聚合成作戰資源池,成為作戰云。本架構中的全局作戰云是一種云資源池,包含各類戰場信息、作戰資源和服務。具體來說,全局作戰云包含整個戰場的全局態勢信息、指揮員完成的實時決策信息、通信網絡資源、運算資源、基礎數據資源以及可調用的各類服務等。
在該架構中,每個作戰單元都是作戰云的一部分,將自身的作戰資源(包括武器裝備資源、戰場態勢感知等)上傳到作戰云構成資源池,同時還能夠通過作戰云實時了解戰場其他區域的實時態勢和可用資源,實現對戰場態勢的全局全知。更進一步,各作戰單元能夠通過作戰云調用所需的服務,如火力打擊支援、更高的通信帶寬資源等。因此,基于作戰云的架構,每個作戰單元都能獨立完成偵察、指揮、打擊中的一項或多項功能,最終實現群體智能實現作戰目標。
為了實現上述架構,需要一些關鍵技術。例如,整體作戰管理系統的設計、架構內通信網絡的構建、不同軍種作戰能力的整合方法等。其中,通信系統作為整體構架的通信保障和信息基礎,是構架作戰效能不可或缺的條件。
智能數據鏈作為通信系統的組成部分,在上述作戰云系統中發揮著非常重要的作用。各作戰單元與作戰云之間的裝藥信息、彈藥信息、打擊結果等作戰資源信息的傳輸,都將通過數據鏈完成。因此,數據鏈路系統必須順應未來智能化戰爭發展的趨勢和需求,形成空地融合、功能豐富、安全可靠的通信鏈路。
本文介紹了一種為戰場環境量身定制的動態三維場景感知創新系統,該系統利用配備雙目視覺和慣性測量單元(IMU)的無人智能體。該系統處理雙目視頻流和 IMU 數據,部署先進的深度學習技術,包括實例分割和密集光流預測,并通過專門策劃的目標數據集加以輔助。通過集成 ResNet101+FPN 骨干進行模型訓練,作戰單元類型識別準確率達到 91.8%,平均交叉比聯合(mIoU)為 0.808,平均精度(mAP)為 0.6064。動態場景定位和感知模塊利用這些深度學習輸出來完善姿態估計,并通過克服通常與 SLAM 方法相關的環境復雜性和運動引起的誤差來提高定位精度。
在模擬戰場元環境中進行的應用測試表明,與傳統的 ORB-SLAM2 立體方法相比,自定位精度提高了 44.2%。該系統能有效地跟蹤和注釋動態和靜態戰場元素,并利用智能體姿勢和目標移動的精確數據不斷更新全局地圖。這項工作不僅解決了戰場場景中的動態復雜性和潛在信息丟失問題,還為未來增強網絡能力和環境重建方法奠定了基礎框架。未來的發展將側重于作戰單元模型的精確識別、多代理協作以及三維場景感知的應用,以推進聯合作戰場景中的實時決策和戰術規劃。這種方法在豐富戰場元宇宙、促進深度人機交互和指導實際軍事應用方面具有巨大潛力。
本文探討了在實際戰場場景中增強態勢感知的聯合通信和傳感技術。特別是,提出了一種空中可重構智能表面(ARIS)輔助綜合傳感與通信(ISAC)系統,該系統由單個接入點(AP)、ARIS、多個用戶和一個傳感目標組成。通過深度強化學習(DRL),在信號干擾比(SINR)約束條件下聯合優化了接入點的發射波束成形、RIS 相移和 ARIS 的軌跡。數值結果表明,通過抑制自干擾和雜波回波信號或優化 RIS 相移,所提出的技術優于傳統的基準方案。
隨著設備種類的增加,戰場環境變得更加復雜多變,對先進無線傳感與通信技術的需求也在不斷增加。最近,綜合傳感與通信(ISAC)被認為是未來使用毫米波(mmWave)等高頻段無線網絡的一項有前途的技術[1]。特別是,由于雷達傳感和無線通信共享相同的頻譜和硬件設施,ISAC 有可能提高戰場上的整體作戰效率[2]。
ISAC 下行鏈路系統的整體流程一般是由接入點(AP)向用戶發射 ISAC 信號,并處理目標反射的回波信號。然而,由于鏈路的主要視距(LoS)信道特性,軍事場景中的 ISAC 無法避免被各種障礙物(如山脈)阻擋的問題,并隨著通信距離的增加而造成嚴重的路徑損耗[3]。為了克服 LoS 信道的物理限制,可重構智能表面(RIS)作為一種關鍵技術應運而生,它通過調整相移來重新配置信號傳播,從而擴大目標探測和通信范圍[4],[5]。作者在文獻[5]中提出了 RIS 輔助單目標多用戶 ISAC 系統中的聯合發射和接收波束成形技術。然而,在接入點和地面節點之間部署地面 RIS 在動態戰場環境中提供足夠的服務質量(QoS)方面存在局限性。另一方面,將 RIS 安裝在無人飛行器(UAV)上的空中 RIS(ARIS)可利用移動性在動態戰場環境中提供更有效的感知和通信性能[6]。文獻[7]考慮了由 ARIS 輔助的 ISAC 系統,以重新配置傳播環境,靈活對抗惡意干擾。
之前的研究[6]、[7]中針對傳感或通信網絡的 ARIS 系統的解決方案大多是通過凸優化提供的,無法快速應用于戰場場景。深度強化學習(DRL)方法因其在通過深度神經網絡與環境交互的同時制定策略的優勢,已被積極采用,作為傳統優化方法的替代方案。在 DRL 算法中,眾所周知,深度確定性策略梯度(DDPG)在連續行動空間(如 ARIS 軌跡)中收斂和運行良好[8]。文獻[9]的作者提出了一種基于 DRL 的 ARIS 軌跡設計,用于與車輛進行通信和定位。然而,從實際角度來看,當 AP 工作在全雙工模式時,自干擾問題 [10] 不可忽視,而且還需要一種抑制雜波回波信號的方法 [3]。
這項工作的重點是軍事場景中基于 DRL 的 ARIS 輔助 ISAC 系統,其中多天線 AP 為地面用戶提供服務并探測目標。我們的目標是通過聯合優化發射波束成形、RIS 相移和 ARIS 軌跡,使目標定位的 Cramer-Rao 約束(CRB)[11] 最小化。此外,為了應對自干擾和雜波回波信號帶來的挑戰,我們采用了一種基于無效空間投影(NSP)的接收波束成形方案[12]來抑制這些信號。為了應對所提問題的非凸性,我們提出了一種基于 DDPG 的算法,在與環境交互的同時尋找最優策略。通過模擬驗證,所提出的方法優于其他基準方法,如固定 RIS 相移或不應用基于 NSP 的接收波束成形方案。
本文的其余部分安排如下: 第二節介紹系統模型,包括 ARIS 輔助 ISAC 系統的信道、通信和雷達傳感模型。第三節介紹了所提出的基于 DRL 的算法,該算法旨在最小化整個系統的 CRB。第四節展示了數值結果,第五節為本文的結論。
為了真實地再現軍事行動,嚴肅的戰斗模擬要求建模實體具有合理的戰術行為。因此,必須定義作戰戰術、條令、交戰規則和行動概念。事實證明,強化學習可以在相關實體的行為邊界內生成廣泛的戰術行動。在多智能體地面作戰場景中,本文展示了人工智能(AI)應用如何制定戰略并向附屬單元提供命令,同時相應地執行任務。我們提出了一種將人類知識和責任與人工智能系統相結合的方法。為了在共同層面上進行交流,人工智能以自然語言下達命令和行動。這樣,人類操作員就可以扮演 "人在回路中 "的角色,對人工智能的推理進行驗證和評估。本文展示了自然語言與強化學習過程的成功整合。
為了獲得模型架構的靈感,我們研究了 DeepMind 的 AlphaStar 架構,因為它被認為是復雜 RL 問題領域的最先進架構。通過我們的架構(如圖 2 所示),我們提出了一種靈活、可擴展的行動空間與深度神經網絡相結合的適應性新方法。觀察空間的設計基于如何準備戰場的軍事經驗。通常使用地圖和可用部隊表。因此,模擬觀測被分為標量數據(如可用坦克數量及其彈藥)。同時,基于地圖的輸入作為視覺輸入提供給空間編碼器。
標量數據用于向人工智能提供幾乎所有場景細節的建議。其中包括有關自身部隊及其平臺的數據,以及有關敵方部隊的部分信息。輸入并非以絕對數字給出,而是采用歸一化方法來提高訓練效果。編碼器可以很容易地寫成多層感知器(MLP);不過,使用多頭注意力網絡可以大大提高訓練后智能體的質量,因此應予以采用(Vaswani 等人,2017 年)。
為了理解地理地形、距離和海拔高度的含義,人工智能會被輸入一個帶有實體編碼的地圖視覺表示。顏色方案基于三通道圖像,這使我們能夠輕松地將數據可視化。雖然使用更多通道會給人類的圖形顯示帶來問題,但人工智能能夠理解更多通道。不同的字段類型和實體會用特殊的顏色進行編碼,以便始終能夠區分。這種所謂的空間編碼器由多個卷積層組成。最初,我們嘗試使用 ResNet-50 (He 和 Zhang,2016 年)和 MobileNetV3 (Howard 等,2019 年)等著名架構,甚至使用預先訓練的權重。然而,這并沒有帶來可接受的訓練性能。因此,我們用自己的架構縮小了卷積神經網絡(CNN)的規模。
為了測試和優化這一架構,我們使用了一個自動編碼器設置,并使用了模擬中的真實樣本。我們能夠將參數數量從大約 200 萬減少到大約 47000。此外,我們還生成了一個預訓練模型,該模型已與模擬的真實觀測數據相匹配。這一步極大地幫助我們加快了 RL 進程。
一個可選元素是添加語言輸入,為人工智能定義任務。雖然一般的戰略人工智能不使用這一元素,但計劃將其用于下屬智能體。這些智能體將以自然語言接收來自戰略人工智能的任務,并使用雙向門控遞歸單元(GRU)編碼器對其進行處理。
視覺數據、任務數據和標量數據的編碼值被合并并輸入核心網絡。根據 Hochreiter 和 Schmidhuber(1997 年)的介紹,核心主要是一個擁有 768 個單元的長短期記憶(LSTM)組件。在軍事場景中,指揮官必須了解高價值資產的長期戰略規劃。在本模擬中,人工智能可以請求戰斗支援要素,這些要素在影響戰場之前需要長達 15 分鐘的時間。因此,人工智能必須了解未來任務的時間安排和規劃。在 RL 中使用 LSTM 網絡相當困難,因為它需要大量的訓練時間,而且會導致上面各層的梯度消失。因此,我們決定在 LSTM 上添加一個跳過連接,以盡量減少新增層的負面影響。
動作頭由一個自然語言處理(NLP)模型組成。這是一個非常簡化的動作頭模型,包含一個小型 LSTM 和一個額外的密集層,共有約 340000 個參數。其結果是一個尺寸為 8 x 125 的多離散動作空間。
除主模型外,還有一個單獨的價值網絡部分。價值網絡使用核心 LSTM 的輸出,并將對手信息串聯起來傳遞給 MLP。然后,MLP 可以精確預測價值函數。通過對手信息,價值網絡對模擬有了一個上帝般的地面實況視圖。由于該網絡只與訓練相關,因此可以在不干擾訓練完整性的情況下進行。
近年來,槍支暴力事件急劇增加。目前,大多數安防系統都依賴于人工對大廳和大廳進行持續監控。隨著機器學習,特別是深度學習技術的發展,未來的閉路電視(CCTV)和安防系統應該能夠檢測威脅,并在需要時根據檢測結果采取行動。本文介紹了一種使用深度學習和圖像處理技術進行實時武器檢測的安防系統架構。該系統依靠處理視頻饋送,通過定期捕捉視頻饋送中的圖像來檢測攜帶不同類型武器的人員。這些圖像被輸入一個卷積神經網絡(CNN)。然后,CNN 會判斷圖像是否包含威脅。如果是威脅,它就會通過移動應用程序向保安人員發出警報,并向他們發送有關情況的圖像。經過測試,該系統的測試準確率達到 92.5%。此外,它還能在 1.6 秒內完成檢測。
認識到當前軍事教育體系的特殊性,并考慮到軍事工程培訓快速現代化的必要性,人機界面需要采用創新技術來加強教育過程。我們的目的是詳細分析在培訓未來軍事工程軍官時人工智能技術的實施情況,概述現有策略,并制定通過人工智能技術強化教育過程的可行策略。為實現研究目的,通過五份問卷對 154 名教官進行了開放式和封閉式調查,以解決研究問題。采用傳統的內容分析法和數據統計處理法對答案進行了研究。結果揭示了人工智能在軍事工程訓練中應用的基本方向,以及人工智能在未來軍事工程軍官專業能力培養中的可能應用。但與此同時,研究結果表明,軍事工程訓練過程正面臨著一些挑戰,使人工智能驅動的轉型實施變得更加復雜。為了克服人工智能目前面臨的挑戰,并為人工智能在人機界面的應用提出建議,概述了通過人工智能技術加強軍事工程訓練的策略。
圖 3:通過人工智能技術加強軍事工程訓練的戰略。
根據調查結果,可以考慮通過人工智能技術加強軍事工程訓練的五項策略。
首先,對未來軍事工程軍官進行有效培訓和數據隱私控制需要制定使用人工智能的法律框架。特別是對于信息獲取受限的人機交互界面而言,這一點至關重要。由于所有烏克蘭教育機構都根據《歐盟-烏克蘭聯系協議》中烏克蘭立法與歐盟(EU)法律相協調的原則運作,因此擬議的歐盟人工智能法(歐盟委員會,2021 年)成為設計人工智能法規的基礎。同時,高校的教育過程近似于北大西洋公約組織(NATO)的標準,他們有義務在北約實施人工智能政策(Stanley-Lockman & Christie, 2021)。針對特定機構的規定可以幫助教師處理具體情況,并解決人工智能應用所帶來的具體風險。此外,官方指南還包括一份不能在人機界面中使用的高風險應用程序清單,并規定了人工智能用戶(包括教員和學員)的具體義務。我們預計,制定使用人工智能的法律框架將促進教育進程,并使學員能夠從已有的幾項創新技術中受益。
其次,將人工智能納入課程涉及將人工智能的原則、道德、法規和基本功能納入人機界面教授的課程,以及創建使用人工智能工具的綜合課程。該戰略以在培養未來軍事工程軍官的過程中有效應用人工智能工具為導向,可用于培養人工智能素養和數字能力。此外,這種影響可能有助于擴大工程單元的運作可能性,提高未來軍事工程軍官專業活動的生產力。將人工智能納入課程是培養教員和學員適應人機界面創新數字教育環境的必要條件。因此,修改現有課程將為在軍事工程訓練中正確和合乎道德地使用人工智能創造一個穩定的位置。
第三,教育過程參與者的高水平人工智能數字化能力意味著他們已準備好正確使用人工智能工具,能夠處理來自不同來源的大量信息,并理解在專業軍事活動中進行數字化轉型的必要性(Ng 等人,2023 年)。培養人工智能數字化能力需要為教官和學員開設專門課程,教授如何在數字化環境中操作以及如何避免可能出現的錯誤。人工智能數字化能力對于優化教育過程、在線環境下的工作、改善學習材料的視覺感知、使用人工智能工具創建高質量內容、收集和系統化數據、開發基于人工智能的項目、積極的在線交流、改善教學實踐、高效的課堂管理等都是必不可少的。
第四,通過人工智能技術加強軍事工程訓練需要制定具體的方法,旨在選擇教學方法和活動,使教學過程高效。適當的方法論可以讓教員合理使用學習材料,在學員中形成深厚的知識和技能,培養未來軍事工程軍官的持續學習能力。目前,人機界面的教學科目正面臨著快速轉型,我們看到的是從傳統教學方法向個性化學習和互動式教學方式的轉變。一方面,行為模型、數據分析和學習管理系統等人工智能工具促進了軍事教育的現代化,形成了有效的定制學習。另一方面,人工智能工具的使用要求根據教學科目和教學目標采用特定的教學方法。
人工智能在空戰領域正變得越來越重要。目前,大多數空戰研究都假定所有飛機信息都是已知的。但在實際應用中,由于現實限制和傳感器誤差,一些飛機信息,如位置、姿態、速度等,可能是不正確的,或者是不可能獲得的。在本文中,我們提出了一種基于深度強化學習的框架,用于開發一種能夠在信息不足的部分可觀測馬爾可夫決策過程(POMDP)條件下執行可視范圍(WVR)內空對空作戰的模型。為了穩健地應對這種情況,我們使用了遞歸神經網絡,并應用了軟評價器(SAC)算法,以有效應對現實限制和傳感器誤差。此外,為了提高學習效率和效果,我們還應用了課程學習技術來限制狀態空間的探索范圍。最后,模擬和實驗結果表明,所提出的技術能夠在嘈雜的環境中處理傳感器限制和誤差引起的實際問題,同時還能高效地減少學習的訓練時間。
圖 2 顯示了本研究提出的空戰模型學習框架概覽,該框架由矢量化空戰模擬環境和包括重放緩沖器在內的循環 SAC 模塊組成。環境中有兩個動態模型:己方和目標。它們分別從 SAC 模塊的角色和基于規則的行為模型中獲得動作 at 和 atarget,并輸出飛機狀態 sownship 和 starget。模擬器根據這些狀態生成獎勵 rt 和觀測值 ot,同時考慮到配置的傳感器特性。軌跡(ot、at、rt)被存儲在重放緩沖區中,固定長度的軌跡序列將被采樣用于批判。
近來,物聯網(IoT)技術為農業、工業和醫學等許多學科提供了后勤服務。因此,它已成為最重要的科研領域之一。將物聯網應用于軍事領域有許多挑戰,如容錯和 QoS。本文將物聯網技術應用于軍事領域,創建軍事物聯網(IoMT)系統。本文提出了上述 IoMT 系統的架構。該架構由四個主要層組成: 通信層、信息層、應用層和決策支持層。這些層為 IoMT 物聯網提供了容錯覆蓋通信系統。此外,它還采用了過濾、壓縮、抽象和數據優先級隊列系統等數據縮減方法,以保證傳輸數據的 QoS。此外,它還采用了決策支持技術和物聯網應用統一思想。最后,為了評估 IoMT 系統,使用網絡仿真軟件包 NS3 構建了一個密集的仿真環境。仿真結果證明,所提出的 IoMT 系統在性能指標、丟包率、端到端延遲、吞吐量、能耗比和數據減少率等方面均優于傳統的軍事系統。
IoMT 系統由一組在戰場上應組織良好的軍事設備組成。無人機、作戰基地、艦艇、坦克、士兵和飛機等這些物品應在一個有凝聚力的網絡中進行通信。在 IoMT 網絡中,態勢感知、響應時間和風險評估都會得到提高。此外,IoMT 環境應涉及對普適計算、普適管理、普適傳感和普適通信的全面認識。此外,IoMT 可能會導致傳感器等網絡事物產生超大規模的數據。此外,這類網絡所需的計算量非常大,而這些計算的結果應能實時準確地實現。因此,IoMT 系統架構應考慮上述注意事項。
因此,建議的體系結構由四層組成: 通信層、信息層、應用層和決策支持層(見圖 1)。通信層關注的是事物如何在一個大網絡中相互通信。信息層涉及軍事數據的收集、管理和分析。應用層包括控制不同通信軍事系統的應用程序。最后,決策支持層負責決策支持系統,幫助戰爭管理者做出準確、實時的決策。下文將對每一層進行深入討論。
IoMT 系統可視為物聯網的一個特殊例子。因此,IoMT 環境與物聯網環境有些相似,只是在事物類型、通信方式等方面略有不同。根據這一理念,IoMT 環境可定義為一組使用互聯網相互通信的不同網絡。這些網絡應包括軍事任務中的主動和被動事物。IoMT 系統中應構建的主要網絡包括無線傳感器(WSN)、射頻識別(RFID)、移動特設(MANET)、衛星和高空平臺(HAP)網絡。由于 WSN 在許多軍事問題中的重要性,它被納入了 IoMT 系統。WSN 通過快速收集和提供危險數據來協助戰爭行動。然后,將這些數據發送給最合適的人員,以便實時做出正確決策。因此,除了協調自身的軍事活動外,WSN 的主要目標是監測和跟蹤敵方士兵和其他敵方事物的動向。傳感器可以遠距離分布,覆蓋大片區域。這些傳感器通過控制其行為的基站進行通信。由于 RFID 網絡在軍事領域的重要性,它在 IoMT 環境中得到了體現。軍隊中最重要的問題之一就是大部分物品都要貼上標簽。在戰場上使用 RFID 可以為士兵、貨物、小型武器、飛機、射彈、導彈等提供一個具有監控功能的跟蹤系統。例如,定期掃描每個人的醫療情況和效率是戰爭中一個非常重要的問題。城域網在 IoMT 系統中的表現也是一個重要問題,因為它可以用來促進士兵、武器、車輛等的通信。城域網在軍事上有許多特別的應用,如安裝在飛機和地面站之間的網絡或船舶之間的網絡。每種特設網絡的要求都取決于軍事任務的類型。此外,在軍事應用中使用的特設設備都配備了路由場景,可以利用最佳路由路徑自動轉發數據。物聯網依賴互聯網技術來促進通信,這是一個普遍的邏輯。遺憾的是,某些作戰地點可能沒有互聯網技術。因此,尋找替代通信技術非常重要。這就是在覆蓋目標中使用 HAP 網絡的原因。軍用物資分布面積大,因此必須以可靠的方式進行覆蓋,以保證通信效率。HAP 網絡可作為互聯網之外的第二種通信策略選擇。HAP 網絡的高度有限,因此容易成為敵方的攻擊目標,其故障概率可能很高。如果 HAP 網絡出現故障,通信系統將面臨很大問題,可能會影響軍事任務的執行。因此,應構建一個衛星網絡來覆蓋故障的 HAP 網絡,并覆蓋 HAP 網絡或互聯網可能無法覆蓋的軍事事物(見圖 2)。不同網絡之間的通信難題只需使用報頭恢復技術即可解決。在這種技術中,每個網絡之間都應添加一個翻譯器,用目的節點的報頭封裝每個數據包。新的報頭使數據包可以被理解;這可以通過系統路由器來實現(見圖 3)。
圖2: 通信網絡(該圖部分摘自[23])
圖3: 報頭轉換過程
這一層非常重要,因為它代表著 IoMT 系統架構的核心。射頻識別(RFID)、傳感器等軍用設備收集的信息應以安全、珍貴、實時的方式進行傳輸、存儲和分析。這一層的首要功能是在信息處理后對收集到的信息進行組織和存儲。IoMT 系統數據的處理被認為是一個具有挑戰性的問題,因為在短時間內可以收集到 TB 級的數據。因此,應在不影響質量的前提下盡量減少這些數據。此外,IoMT 的特殊要求(如實時決策)也不容忽視。在 IoMT 系統架構中,數據處理包括四個步驟: 優先化、過濾、壓縮和抽象。下面將對優先級排序過程進行說明。數據過濾、數據壓縮和數據抽象技術在第 4.1 小節中說明。
確定優先級的步驟包括處理不同優先級的數據。對于戰爭管理者(即軍隊將領)來說,收集到的每項數據都有一定的重要程度。因此,應將數據分為若干優先級,以便在 IoMT 系統饑餓的情況下優先處理和發送高優先級的數據。隊列系統就是用來實現這一優先級劃分步驟的。由于 IoMT 系統數據分類數量龐大,因此采用了六隊列系統。因此,IoMT 系統數據將被分為六個不同的類別。第一類代表最重要的 IoMT 系統數據;第二類代表不太重要的數據,依此類推。分類過程將動態完成,因此每個類別中的數據可能會根據戰爭任務的性質發生變化。為切實實現這一步,下一代路由器應具備對 IoMT 系統數據進行分類的能力。圖 4 說明了優先級排序過程。
圖4: 數據分類過程的簡單視圖
IoMT 系統架構中的應用層包括管理、監視等戰爭任務中使用的異構應用。該層應使用一個通用應用程序管理這些應用程序的功能,同時不影響其效率。這些應用程序的統一過程應基于通信數據(信息交換)來實現。在數據通信中,一個應用系統的輸出數據可能是另一個應用系統的輸入數據。因此,確定戰爭應用程序的輸入數據和輸出數據被認為是這一層最重要的目標之一。例如,飛機或發射器的火箭發射應用的輸入需要衛星監控應用的輸出數據,而衛星監控應用可能需要 WSN 應用的數據。信息層和應用層之間的通信非常重要,因為作為輸入和輸出的數據應首先在信息層處理。因此,在設計用于管理軍事應用程序的通用應用程序時,應首先確定每個應用程序的輸入和輸出數據。然后,應確定數據處理的時間(硬、實或軟)。例如,在戰斗停止期間,某個目標的坐標突然發生變化,三個應用程序應實時交互,以完成任務并擊中新位置上的目標。這些相互作用的應用程序構成了 WSN、戰爭管理以及執行任務的飛機機艙。還應確定應用特殊應用程序的優先順序。例如,在敵方多次攻擊特定目標的情況下,防御應用程序將優先啟動。
根據上述討論,一般管理應用程序應有一個專門的數據庫。該數據庫存儲有關單個軍事應用程序的動態變化數據。這些數據與以下主題有關: 輸入和輸出、單個應用程序之間的數據流方向、硬時間軍事情況、實時軍事情況、軟時間軍事情況以及每個應用程序的優先級。這些優先級應根據戰爭形勢來確定。根據綜合管理 IoMT 應用程序的性質,IoMT 系統數據庫的設計可以是分布式的,也可以是集中式的。在分布式數據庫中,應注意數據庫服務器之間交互的復雜性,特別是在需要硬時間或實時交互的事件中(見圖 6)。 、
戰爭中最重要的問題之一是決策過程。在技術戰爭中,決策應具備準確性、實時性、清晰性、安全性和快速分發等諸多規格。所有這些指標都應與信息層收集的數據相關。雖然信息與軍事決策之間關系密切,但所提出的 IoMT 系統架構在信息層和決策支持層之間還有一個中間層,即應用層。短時間內收集到的大量 TB 信息需要進行分析、過濾、優先排序和壓縮。這些過程已經在信息層中完成。但是,信息層沒有能力確定信息在應用層之間的移動方向(即信息的正常順序)。這種信息順序意味著,每個數據段都應指向一個合適的應用程序,以便實現互補和平衡。這些信息將用于決策過程。例如,假設戰爭管理者有一個目標,要求以特定的安排和特定的順序處理信息,直到軍事偵察之旅取得一定的結果。該目標的完成將通過步兵和防空來實現。因此,應用層和決策支持層之間的聯系將對高精度規格的決策產生良好的影響,這將在關鍵的戰爭事件中發揮作用。
簡單地說,本文概述的決策支持流程包括五個步驟: 事件權重、解決方案識別、選擇一種解決方案、行動和輸出評估(見圖 7)。戰爭管理者可根據自身經驗水平提取事件權重。一旦對事件有了充分了解,就該確定解決方案了。在準備決策時,有許多不同的備選方案。因此,確定可用行動的范圍非常重要。接下來,應選擇備選方案,并確定每個備選方案的風險。然后,就該采取行動了。應確定實施計劃,并提供實施所選解決方案所需的資源。應預先確定執行時間,然后開始執行。最后,應對選定解決方案的執行結果進行評估。請注意,有許多決策支持系統在經過實際測試(如 [24,25])后,可在 IoMT 中實施。
決策支持層可能面臨三大挑戰。第一個挑戰是數據過多或不足。這意味著決策支持層的輸出會延遲或不準確,這可能會造成災難,因為在大多數戰爭時期都需要實時決策。第二個挑戰是問題識別錯誤。在大多數戰爭任務中,圍繞一項決策會有許多問題。然而,有時卻無法確認這些問題的真實性。第三個挑戰是對結果過于自信。即使決策過程得到了準確執行,實際產出也可能與預期產出不完全一致。應用層將通過確定決策構建所需的準確信息、對問題的準確定義以及輸出調整來應對這些挑戰。因此,決策支持層將使用應用層的輸出。因此,在擬議的 IoMT 架構中,這些層之間的分離是一個需要考慮的重要問題。
首先,應構建一個軍事模擬環境,以測試所提議的 IoMT 架構的性能。網絡模擬器 3(NS3)是最廣泛使用的網絡模擬軟件包之一,將用于實現這一目標。軍事模擬環境由五種不同類型的網絡組成,其中包括分布在大片區域的大量節點。這五種網絡分別是 WSN、RFID、MANET、HAP 和衛星網絡。這些網絡是根據戰場需求確定的。文獻[26]中的仿真用于評估所提出的 IoMT 架構。在 WSN 仿真中,成千上萬的傳感器分布并部署在戰爭環境中。一個或多個基站將這些傳感器相互連接起來,并從中收集信息。在突發事件中,傳感器能夠向基站發送陷阱信息。然后,如果情況緊急,需要迅速做出決定,基站將直接把信息發送給執行者,如戰士、管理人員等。不過,在正常情況下,基站會將收集到的信息(詳細信息或摘要)重新發送給負責決策的管理人員。基站應該是智能的,并通過編程來實現這一目標。為了在 IoMT 中準確呈現 WSN,傳感器應具有不同的傳輸范圍。對于 RFID,美國軍方在第二次海灣戰爭中使用了最佳方案[27]。每個士兵身上都應貼有一個 RFID 標簽,以便在戰場上進行追蹤。此外,商業貨運和航空托盤等戰爭工具也應貼上 RFID 標簽,以便了解坦克和計劃等關鍵工具的最新狀態。此外,為了挽救士兵的生命,建議的模擬系統考慮了專門用于戰爭的移動醫院,并應配備 RFID 技術。此外,還利用 RFID 技術觀察軍隊的小型庫存物品,以實現更嚴格的庫存控制。對于城域網仿真,它包含戰場對象(如車輛、士兵和信息提供者)之間的臨時通信。在某些軍事情況下,很難通過數據采集中心傳遞或發送信息。因此,城域網仿真的一個考慮因素就是在數據傳輸中使用這種網絡。文獻[28]中所述的架構用于 HAP 和衛星網絡的通信。互聯網仿真使用了 [29] 中介紹的路由算法和 [30] 中介紹的物聯網混合組播架構。多媒體傳輸使用[31],但傳統軍事系統的模擬則使用[32,33]中所述的準則。
在信息層模擬中,將隨機、動態地創建 IoMT 數據。然后,這些數據將被分類并進入隊列,每個隊列將作為一個數據類別。動態數據的創建取決于存儲在特殊數據庫中的戰爭任務。本模擬場景中使用了 [34] 中所述的壓縮技術和數據過濾技術來減少數據,這是信息層的主要目標之一。應用層模擬也取決于戰爭任務,其中包括許多模擬網絡場景。每個網絡應用程序的輸入和輸出數據都在模擬文件中預先確定。網絡應用程序與綜合管理應用程序之間的通信是通過信息傳輸實現的。文獻[35]中的仿真用于決策支持層。戰爭任務的部分建模和仿真來自文獻[36],仿真中使用的武器的一般規格來自文獻[37]。圖 8 顯示了擬議的 IoMT 系統模擬環境的全貌。
我們的研究展示了如何將技術和數據科學實踐與用戶知識相結合,既提高任務性能,又讓用戶對所使用的系統充滿信心。在本手稿中,我們重點關注圖像分類,以及當分析師需要及時、準確地對大量圖像進行分類時出現的問題。利用著名的無監督分類算法(k-means),并將其與用戶對某些圖像的手動分類相結合,我們創建了一種半監督圖像分類方法。這種半監督分類方法比嚴格的無監督方法具有更高的準確性,而且比用戶手動標記每張圖像所花費的時間要少得多,這表明機器和人工優勢的結合比任何替代方法都能更快地產生更好的結果。
美國陸軍對人工智能和輔助自動化(AI/AA)技術在戰場上的應用有著濃厚的興趣,以幫助整理、分類和澄清多種態勢和傳感器數據流,為指揮官提供清晰、準確的作戰畫面,從而做出快速、適當的決策。本文提供了一種將作戰模擬輸出數據整合到分析評估框架中的方法。該框架有助于評估AI/AA決策輔助系統在指揮和控制任務中的有效性。我們的方法通過AI/AA增強營的實際操作演示,該營被分配清理戰場的一個區域。結果表明,具有AI/AA優勢的模擬場景導致了更高的預期任務有效性得分。
美國陸軍目前正在開發將人工智能和輔助自動化(AI/AA)技術融入作戰空間的決策輔助系統。據美國陸軍機動中心稱,在決策輔助系統等人工智能/輔助自動化系統的協助下,士兵的作戰效率可提高10倍(Aliotta,2022年)。決策輔助工具旨在協助指揮官在作戰場景中減少決策時間,同時提高決策質量和任務效率(Shaneman, George, & Busart, 2022);這些工具有助于整理作戰數據流,協助指揮官進行戰場感知,幫助他們做出明智的實時決策。與使用AI/AA決策輔助工具相關的一個問題是,陸軍目前缺乏一個有效的框架來評估工具在作戰環境中的使用情況。因此,在本文中,我們將介紹我們對分析框架的研究、設計和開發,并結合建模和仿真來評估AI/AA決策輔助工具在指揮和控制任務中的有效性。
作為分析框架開發的一部分,我們進行了廣泛的文獻綜述,并與30多個利益相關者進行了利益相關者分析,這些利益相關者在人工智能/AA、決策輔助、指揮與控制、建模與仿真等領域具有豐富的知識。根據他們對上述主題的熟悉程度,我們將這些利益相關者分為若干焦點小組。我們與每個小組舉行了虛擬焦點小組會議,收集反饋意見,并將其用于推動我們的發現、結論和建議(FCR)。同時,我們還開發了一個逼真的戰場小故事和場景。利用該場景和我們的FCR輸出,我們與美國陸軍DEVCOM分析中心(DAC)合作開發了一個功能層次結構,通過建模和仿真來測量目標。我們將假設的戰斗場景轉移到 "一個半自動化部隊"(OneSAF)中,該模擬軟件利用計算機生成部隊,提供部分或完全自動化的實體和行為模型,旨在支持陸軍戰備(PEOSTRI, 2023)。使用分析層次過程,我們征詢了評估決策者的偏好,計算了功能層次中目標的權重,并創建了一個電子表格模型,該模型結合了OneSAF的輸出數據,并提供了量化的價值評分。通過A-B測試,我們收集了基線模擬和模擬AI/AA效果的得分。我們比較了A情景和B情景的結果,并評估了AI/AA對模擬中友軍任務有效性的影響。
分析評估框架可針對多標準決策問題對定量和/或定性數據進行評估。定性框架,如卡諾模型(Violante & Vezzetti, 2017)、法式問答(Hordyk & Carruthers, 2018)和定性空間管理(Pascoe, Bustamante, Wilcox, & Gibbs, 2009),主要用于利益相關者的投入和頭腦風暴(Srivastava & Thomson, 2009),不需要密集的計算或勞動。定量評估框架以數據為導向,提供一種數學方法,通過衡量性能和有效性來確定系統的功能。分析層次過程(AHP)適用于我們的問題,因為它使用層次設計和成對的決策者偏好比較,通過比較權重提供定性和定量分析(Saaty,1987)。雖然AHP已被廣泛應用,但據我們所知,該方法尚未被用于評估人工智能/自動分析決策輔助工具,也未與A-B測試相結合進行評估。
指揮與控制(C2)系統用于提供更詳細、更準確、更通用的戰場作戰畫面,以實現有效決策;這些C2系統主要用于提高態勢感知(SA)。研究表明,使用數字化信息顯示方法的指揮官比使用無線電通信收集信息的指揮官顯示出更高水平的態勢感知(McGuinness和Ebbage,2002年)。AI/AA與C2的集成所帶來的價值可以比作戰斗視頻游戲中的 "作弊器":它提供了關于敵方如何行動的信息優勢,并幫助友軍避免代價高昂的后果(McKeon,2022)。對C2系統和SA的研究有助于推動本文描述的小故事和場景的發展。
建模與仿真(M&S)是對系統或過程的簡化表示,使我們能夠通過仿真進行預測或了解其行為。M&S生成的數據允許人們根據特定場景做出決策和預測(TechTarget,2017)。這使得陸軍能夠從已經經歷過的作戰場景和陸軍預計未來將面臨的作戰場景中生成并得出結論。模擬有助于推動陸軍的能力評估。測試和評估通常與評估同時進行,包括分析模型以學習、改進和得出結論,同時評估風險。軍隊中使用了許多不同的M&S工具。例如,"步兵戰士模擬"(IWARS)是一種戰斗模擬,主要針對個人和小單位部隊,用于評估作戰效能(USMA, 2023)。高級仿真、集成和建模框架(AFSIM)是一種多領域M&S仿真框架,側重于分析、實驗和戰爭游戲(West & Birkmire, 2020)。在我們的項目范圍內,"一支半自動化部隊"(OneSAF)被用于模擬我們所創建的戰斗情況,以模擬在戰場上擁有人工智能/自動機優勢的效果。
如前所述,人工智能/AA輔助決策的目標是提高決策的質量和速度。人工智能可用于不同的場景,并以多種方式為戰場指揮官和戰士提供支持。例如,人工智能/AA輔助決策系統可以幫助空中和地面作戰的戰士更好地 "分析環境 "和 "探測和分析目標"(Adams, 2001)。人工智能/自動機輔助決策系統可以幫助減少人為錯誤,在戰場上創造信息和決策優勢(Cobb, Jalaian, Bastian, & Russell, 2021)。這些由AI/AA輔助決策系統獲得的信息分流優勢指導了我們的作戰小故事和M&S場景開發。
在我們的作戰小故事中,第1營被分配到一個小村莊,直到指定的前進路線。營情報官羅伊上尉(BN S2)使用AI/AA輔助決策系統(即助手)準備情報態勢模板(SITTEMP),該系統可快速收集和整合積累的紅色情報和公開來源情報衍生的態勢數據。然后,它跟隨瓊斯少校和史密斯上尉,即營行動指揮員(BN S3)和S3助理(AS3),使用AI/AA輔助決策系統制定機動行動方案(COA),以評估 "假設 "情景、 她根據選定的機動方案開發指定的利益區域(NAI),然后在其內部資產和上層資源之間協調足夠的情報、監視和偵察(ISR)覆蓋范圍。假設時間為2030年,雙方均不使用核武器或采取對對方構成生存威脅的行動,天氣條件對藍軍和紅軍的影響相同,時間為秋季,天氣溫暖潮濕。
作為解決方案框架背景研究的一部分,我們與32位民用和軍用利益相關者進行了接觸,他們都是AI/AA及其對決策和仿真建模的貢獻方面的專家。我們進行的利益相關者分析過程如下: 1)定義和識別利益相關者;2)定義焦點小組;3)將利益相關者分配到焦點小組;4)為每個焦點小組制定具體問題;5)聯系利益相關者并安排焦點小組會議;6)進行焦點小組會議;7)綜合并分析利益相關者的反饋;以及8)制定FCR矩陣。我們利用FCR矩陣的結果來繪制功能層次圖,其中包括從模擬場景中生成/收集的目標、衡量標準和度量。然后根據這些目標、措施和指標對任務集的重要性進行排序。這為使用層次分析法(如下所述)奠定了基礎。
AHP是托馬斯-薩蒂(Thomas Saaty)于1987年提出的一種方法,它利用專家判斷得出的一系列成對比較,將功能層次結構中的每個功能和子功能放入一個優先級表中。然后通過有形數據或專家定性意見對各種屬性進行排序。如表1所示,這些排序被置于1-9的范圍內。在賦予每個屬性1-9的權重后,再賦予標準和次級標準權重,以顯示其相對重要性(Saaty,1987)。
隨著新軍事變革的不斷推進和發展,作戰方式正在向以網絡為中心的戰爭轉變。作為整個武器系統的關鍵環節和核心,指揮信息系統是整個系統的靈魂。指揮信息系統的核心功能是快速準確決策,如何從海量復雜的 "大數據 "中快速獲取有價值的情報信息,從而在作戰指揮決策時支撐起戰斗勝利的關鍵[1]。只有依托大數據處理技術,從海量數據中提取有價值的信息,才能準確及時地掌握敵方的戰略企圖、作戰規律和小規模戰斗,客觀預測作戰思想和對手的行為特征,準確把握分析對抗力量關系和戰場的發展變化,實現實時感知和指揮員同步認知,才能把戰場上的 "數據優勢 "轉化為 "決策優勢",達到作戰目的。
A. 同構類型和不完全性
在指揮信息系統中,有各種偵察傳感器和電子對抗設備獲得的各種類型的情報數據,包括結構化的情報數據、半結構化和非結構化的數據,如戰場情況圖像、視頻情報、地理和地形信息[4]。這樣復雜的數據類型很難用傳統的、固定格式的數據庫工具進行分析。此外,所獲得的情報數據大多是缺失和錯誤的,在數據分析過程中必須進行處理。
B. 大數據規模
在作戰過程中,各種偵察監視衛星、有人和無人偵察機、戰場偵察雷達等戰場傳感器每天都會采集大量的數據、語音和圖像信息。隨著全頻譜傳感的實現,信號情報和偵察獲得的數據成倍增加,構成了海量的信號情報數據[5]。然而,在收集到的海量數據中,包括大量的噪聲或干擾,以及來自自己身邊和朋友的各種信號,要從海量數據中提取有價值的情報信息,增加了數據分析的難度。
C. 時效性
在信息化戰場上,各種偵察傳感器會不斷地、實時地傳輸各種情報數據,飛機轉瞬即逝,對情報數據分析速度提出了更高的要求。只有對海量情報數據進行快速、準確的分析,才能為指揮員提供實時、準確的指揮決策依據。
在未來的信息化戰場上,"先敵認知 "是對指揮信息系統決策能力的核心要求之一。因此,需要通過大數據分析將各種情報 "數據 "轉化為 "知識",并最終上升為指揮員的 "認知"[6]。指揮部信息系統中大數據分析的運行架構如圖1所示。從架構上看,為了實現從層級指揮到扁平化指揮的平穩過渡,采取了集中與分布的策略。從分析策略上看,為滿足指揮決策智能化、實時化、精確化的要求,采用了離線分析和實時在線分析。其中,離線分析集中在情報中心,而實時在線分析則分別在各情報站和情報中心進行。
圖1. 基于大數據分析的指揮信息系統的運行架構
其基本工作原理如下。
首先,各情報站從各種信息源(如偵察傳感器、電子對抗設備等)獲取各種實時情報數據。結合其他情報站的分析結果,該站對實時信息進行初步分析,并將分析結果報告給信息中心[7]。同時,該站的分析結果將分發給其他情報站,協助其他情報站進行實時分析。
其次,在信息中心,通過信息數據采集模塊從各情報站獲取信息數據,并存儲在歷史情報數據庫中。一方面,基于歷史情報數據庫中積累的海量歷史信息數據,通過離線分析積累各種信息知識;另一方面,獲得的信息數據和分析結果數據,結合知識庫中的信息知識,通過實時在線分析進行信息數據融合、目標綜合識別、態勢評估和態勢預測,最終為指揮員提供實時決策支持。
此外,信息站之間以及信息站與信息中心之間的信息交流是通過實時大數據分發服務完成的,以確保信息資料的傳輸效果。