本文探討了在實際戰場場景中增強態勢感知的聯合通信和傳感技術。特別是,提出了一種空中可重構智能表面(ARIS)輔助綜合傳感與通信(ISAC)系統,該系統由單個接入點(AP)、ARIS、多個用戶和一個傳感目標組成。通過深度強化學習(DRL),在信號干擾比(SINR)約束條件下聯合優化了接入點的發射波束成形、RIS 相移和 ARIS 的軌跡。數值結果表明,通過抑制自干擾和雜波回波信號或優化 RIS 相移,所提出的技術優于傳統的基準方案。
隨著設備種類的增加,戰場環境變得更加復雜多變,對先進無線傳感與通信技術的需求也在不斷增加。最近,綜合傳感與通信(ISAC)被認為是未來使用毫米波(mmWave)等高頻段無線網絡的一項有前途的技術[1]。特別是,由于雷達傳感和無線通信共享相同的頻譜和硬件設施,ISAC 有可能提高戰場上的整體作戰效率[2]。
ISAC 下行鏈路系統的整體流程一般是由接入點(AP)向用戶發射 ISAC 信號,并處理目標反射的回波信號。然而,由于鏈路的主要視距(LoS)信道特性,軍事場景中的 ISAC 無法避免被各種障礙物(如山脈)阻擋的問題,并隨著通信距離的增加而造成嚴重的路徑損耗[3]。為了克服 LoS 信道的物理限制,可重構智能表面(RIS)作為一種關鍵技術應運而生,它通過調整相移來重新配置信號傳播,從而擴大目標探測和通信范圍[4],[5]。作者在文獻[5]中提出了 RIS 輔助單目標多用戶 ISAC 系統中的聯合發射和接收波束成形技術。然而,在接入點和地面節點之間部署地面 RIS 在動態戰場環境中提供足夠的服務質量(QoS)方面存在局限性。另一方面,將 RIS 安裝在無人飛行器(UAV)上的空中 RIS(ARIS)可利用移動性在動態戰場環境中提供更有效的感知和通信性能[6]。文獻[7]考慮了由 ARIS 輔助的 ISAC 系統,以重新配置傳播環境,靈活對抗惡意干擾。
之前的研究[6]、[7]中針對傳感或通信網絡的 ARIS 系統的解決方案大多是通過凸優化提供的,無法快速應用于戰場場景。深度強化學習(DRL)方法因其在通過深度神經網絡與環境交互的同時制定策略的優勢,已被積極采用,作為傳統優化方法的替代方案。在 DRL 算法中,眾所周知,深度確定性策略梯度(DDPG)在連續行動空間(如 ARIS 軌跡)中收斂和運行良好[8]。文獻[9]的作者提出了一種基于 DRL 的 ARIS 軌跡設計,用于與車輛進行通信和定位。然而,從實際角度來看,當 AP 工作在全雙工模式時,自干擾問題 [10] 不可忽視,而且還需要一種抑制雜波回波信號的方法 [3]。
這項工作的重點是軍事場景中基于 DRL 的 ARIS 輔助 ISAC 系統,其中多天線 AP 為地面用戶提供服務并探測目標。我們的目標是通過聯合優化發射波束成形、RIS 相移和 ARIS 軌跡,使目標定位的 Cramer-Rao 約束(CRB)[11] 最小化。此外,為了應對自干擾和雜波回波信號帶來的挑戰,我們采用了一種基于無效空間投影(NSP)的接收波束成形方案[12]來抑制這些信號。為了應對所提問題的非凸性,我們提出了一種基于 DDPG 的算法,在與環境交互的同時尋找最優策略。通過模擬驗證,所提出的方法優于其他基準方法,如固定 RIS 相移或不應用基于 NSP 的接收波束成形方案。
本文的其余部分安排如下: 第二節介紹系統模型,包括 ARIS 輔助 ISAC 系統的信道、通信和雷達傳感模型。第三節介紹了所提出的基于 DRL 的算法,該算法旨在最小化整個系統的 CRB。第四節展示了數值結果,第五節為本文的結論。
本研究論文介紹了軍用無人機系統盒(The NeuronDrone-Box)中用于攻擊或防御決策的全自主人工智能:硬件、算法和一種新型專用軍用無人機或無人機。第一部分介紹了軍用無人機系統盒(The NeuronDrone-Box)中的攻擊或防御決策全自主人工智能,以適應任何無人機的主控系統。第二部分是使用混沌理論和經濟地理學的算法。第三部分介紹了被稱為 "黑色噩夢 V.7" 的開創性原型機。黑色噩夢 V.7 無人機投彈手擁有一系列與眾不同的功能和應用,本技術報告將對此進行詳細介紹。首先,主張在軍用無人機系統箱(The NeuronDrone-Box)中實施全自主人工智能攻防決策,以控制與全自主人工智能攻防決策軍用無人機系統箱(The NeuronDrone-Box)相連的多副翼系統(MAS)和多導彈系統(MM-System)。
空戰是一個復雜多變的領域,人類飛行員面臨著嚴峻的挑戰。整合人工智能,特別是強化學習(RL),有可能徹底改變空戰行動的有效性。通過利用 RL 技術,自主智能體可以根據不斷變化的戰場條件制定新戰術。在這項研究中,使用先進的 RL 技術訓練了空戰智能體,同時考慮到了不同的初始作戰幾何形狀和相對位置。結果表明,空戰幾何形狀的變化對智能體的能力有顯著影響。為了評估其能力和應變能力,對具有對稱戰斗幾何形狀的相同智能體進行了檢查。任何與預期對稱結果的偏差都會被檢測到,這可能意味著在訓練探索階段遇到了挑戰。在這一框架內對不同的代理進行比較時,它們在特定空戰場景中的優勢就會凸顯出來,從而為加強更多智能代理的開發提供有價值的信息。
圖 7. 根據敵方和空戰幾何圖形選擇智能體的整體視圖
人工智能(AI)在航空航天領域的應用取得了重大進展,尤其是在安全關鍵型系統中,可解釋性和安全性至關重要。隨著無人戰斗飛行器(UCAV)的發展,空戰已成為需要人工智能集成的突出領域之一。
已有多個項目致力于推動這些自主系統(AS)的發展,其中包括 DARPA AlphaDogFight Trial [1]。在這個項目中,人工智能體的任務是在模擬的可視范圍內(WVR)與對方進行斗狗。最終參賽隊與人類飛行員進行了角逐,結果人工智能獲勝。競技團隊是利用深度強化學習(DRL)方法來訓練和發現新穎穩健的空戰戰術。
文獻中對使用 RL 生成空戰戰術進行了廣泛研究。值得注意的是,[2]的一項研究探索了使用深度確定性策略梯度(DDPG)訓練 RL 智能體,結果在視距內(WVR)作戰中大大提高了性能。另一項研究[3]深入研究了多智能體強化學習(MARL),以模擬涉及多架飛機的復雜合作空戰策略,展示了 RL 在復雜場景中的潛力。[4] 采用分層強化學習(HRL)將空戰任務分解為易于管理的子任務,從而簡化了訓練和決策過程。[5]研究了基于模型的 RL 在空戰智能體訓練過程中加速收斂和提高采樣效率的功效,有助于在動態環境中發揮卓越性能。最后,[6] 應用了先進的深度強化技術--近端策略優化(PPO)和軟行為批判(SAC),并比較了它們的性能。
在文獻中,多種 RL 方法都顯示出了優于其他方法的性能。然而,還沒有研究關注如何分析和比較 RL 智能體在所有搜索空間(包括不同方向和距離組合)中不同空戰幾何條件下的勝任能力和魯棒性。
本文提出了一種新穎的分析工具,旨在管理所有訓練參數和獎勵,從而能夠執行智能體對智能體場景進行綜合分析。我們采用最先進的 RL 方法,在不同的初始空戰幾何條件下訓練空戰智能體,如不同的相對位置和方向,使自己的飛機處于優勢、中立或劣勢位置。事實證明,相對空戰幾何形狀的差異是影響智能體能力和魯棒性的主要因素。我們通過啟動具有對稱作戰幾何形狀的相同人工智能代理來測試空戰代理的穩健性,并發現了與對稱結果預期的偏差,這可能表明訓練的探索階段存在問題。我們的分析工具還測試了智能體的泛化能力以及在遇到訓練外情況時的偏離趨勢。此外,在這一框架內對不同代理進行的比較表明了每個智能體在特定空戰場景中的優越性,為開發更智能的空戰代理庫提供了有價值的信息。最終,我們提出的分析工具通過提高空戰場景中的可解釋性、安全性和性能,推動了航空航天領域人工智能的發展。
本研究為基于人工智能的復雜作戰系統的運行和開發建立了 MUM-T 概念和分類系統。分析了該系統的核心方面:自主性、互操作性和程序級別。人工智能 MUM-T 可提高有人駕駛系統的生存能力、擴大其作戰范圍并提高戰斗力。利用美國和英國正在建造的人工智能 MUM-T 綜合作戰系統的數據,分析了技術挑戰和項目水平。目前,MUM-T 處于有人駕駛平臺和無人駕駛飛行器平臺復合運行的水平。從中長期來看,無人地面飛行器、無人水面飛行器和無人水下飛行器等異構平臺之間的互操作通信是可能的。根據人工智能 MUM-T 系統之間互操作性的通用架構和標準協議的發展水平,MUM-T 可以從 "1 到 N "的概念發展到從 "N 到 N "的各種操作概念組合。本研究與現有研究的不同之處在于,MUM-T 系統中體現了第四次工業革命的核心技術,如人工智能、自動駕駛和數據互操作性。此外,通過在現有的無人系統分類法中體現人工智能和自主性,建立了人工智能支持的自主 MUM-T 操作和設施分類系統,并在此基礎上對級別和程序進行了分析。
本研究確立了有人無人協同作戰(MUM-T)的概念,目的是操作、開發和利用智能聯合作戰系統。此外,它還分析了互操作性、自主性、挑戰和計劃水平。人工智能支持的自主無人 MUM-T 提高了有人系統的生存能力,擴大了作戰范圍,并顯著提高了作戰效率。與以往不同的是,MUM-T 的概念正隨著人工智能的發展而不斷擴展,互操作性和自主性也在相應提高。美國和北大西洋公約組織(NATO)國家提出了未來防御領域的挑戰,并在無人系統(UMS)和 MUMT 層面開展了解決這些挑戰的計劃。本研究分析了自主 MUM-T 聯合作戰系統的運行和使用所面臨的技術挑戰和計劃水平,并介紹了基本要素技術。研究方法基于現有定義和第四次工業革命建立了 MUM-T 概念。并利用北約、美國和英國的數據分析了互操作性、自主性、挑戰以及技術和利用方面的計劃水平。
圖 2 基于 NIST 和北約分類標準的人工智能自主 MUM-T 系統分析
美國防部(DoD)對 MUM-T 的定義各不相同。美國 陸軍無人機系統卓越中心(UAUCE)將有人駕駛平臺和無人機視為單一系統。有人系統和無人系統(如機器人、傳感器、無人飛行器和作戰人員)的集成增強了態勢感知、殺傷力和生存能力[1]。國防部將這種關系視為執行共同任務的綜合團隊,美國陸軍航空卓越中心(UAACE)將其定義為同時操作士兵、無人機和無人地面飛行器(UGV),以提高對態勢的了解和生存能力[2]。它采用了標準化的系統架構和通信協議,使來自傳感器的精確圖像數據能夠在整個部隊中共享。目前,它在國防領域的應用最為廣泛。陸軍航空動力局(AFDD 2015)將其定義為:為每個系統提供特殊功能,使現有有人平臺和無人資產能夠合作完成同一任務。這是一種規避風險的方法,通過從空中、陸地和海上無人系統向有人資產傳輸實時信息,提高單兵作戰人員的態勢感知能力[3]。圖 1 是戰場上 MUM-T 系統的層次示意圖。
在世界經濟論壇(WEF)議程的第四次工業革命(Fourth IR)之后,數字化(I2D2)作為一項核心技術被提出。這些技術在未來科學中具有自主、分析、通信和邊緣計算的特點。該技術的特征組合構成了自主系統和智能體(智能+分布式)、擴展領域(互聯+分布式)、作戰網絡(互聯+數字化)、精確作戰領域(智能+數字化)。智能人工智能將改變戰爭的格局,而數字數據的可用性將使分布式和互聯(自主)系統能夠進行分析、適應和響應。這些變化反過來又可能通過預測分析支持更好的決策。
北約(2020 年)以第四次工業革命的核心技術特征及其組合為導向,構建復雜的作戰系統[4-6]。美國國防發展機構(ADD 2018)認為,MUM-T 復雜系統是一種無人作戰系統,可以補充或替代作戰人員的能力,以最大限度地提高作戰效率,最大限度地減少戰場情況下的人員傷亡。它被定義為以一種復雜的方式操作包括戰斗人員在內的有人作戰系統的作戰系統[7]。考慮到美國國防部(2010)、北約(2020)和 ADD(2018)的定義,人工智能支持的自主 MUM-T 復雜作戰系統(以下簡稱 "自主 MUM-T")和 OODA 循環如表 1 所示[1,5,7]。本研究所指的 MUM-T 復合作戰系統通過聯合指揮與控制,在空中、地面、海上、太空、網絡和戰爭等所有領域提供觀察、分析和控制,可通過整合/連接所有軍事力量的有人和無人系統進行操作。它被定義為 "根據決策和行動執行聯合行動的作戰系統"。
圖 3 北約 STANAG LOI 5 和自主邊緣計算 MUM-T 互操作水平設計
本文介紹了一種獨特的方法,即由一個裝有網的飛行機器人對不合作的無人駕駛飛行器進行中空自主空中攔截。本文提出了一種名為 “快速響應比例導航(FRPN)”的新型攔截制導方法,旨在依靠機載狀態估計和跟蹤捕捉靈活機動的目標。在使用 100 個不同復雜度的目標軌跡(包括近 14 小時的飛行數據)進行的仿真中,將所提出的方法與最先進的方法進行了比較,結果表明 FRPN 的響應時間最短,攔截次數最多,而這正是敏捷攔截的關鍵參數。為了能夠從理論和仿真穩健地轉移到實際應用中,我們的目標是避免過度擬合目標的特定假設,并解決攔截未知總體軌跡目標的問題。此外,我們還發現了與目標狀態的跟蹤和估計有關的幾個經常被忽視的問題,這些問題會對系統的整體性能產生重大影響。我們建議使用基于交互多模型濾波器和新測量模型的新型狀態估計濾波器。模擬實驗表明,在考慮一般軌跡時,與常用的卡爾曼濾波法相比,所提出的解決方案能顯著提高估計精度。在這些結果的基礎上,我們采用所提出的濾波和制導方法實現了一個完整的自主攔截系統,該系統在現實模擬中得到了全面評估,并在與機動目標進行的真實世界實驗中得到了測試,其性能遠遠超出了任何最先進解決方案的性能。
圖 1:使用擬議系統成功自主攔截移動目標的拼圖。從 t1 到 t4 的機動時間約為 2 秒。
這項工作研究了在任務式指揮設備中嵌入模擬器的實用性和有效性。其目標是僅使用戰區作戰計劃作為模擬輸入,向操作員隱藏所有模擬器細節,使其無需學習新工具。本文討論了一種原型功能,該功能可根據 SitaWare 中生成的作戰計劃以及嵌入式無頭 MTWS 和 OneSAF 模擬器的模擬結果,生成行動方案(COA)分析。在輸入作戰計劃后,指揮官選擇要執行的模擬運行次數,并按下按鈕啟動模擬,模擬在后臺的運行速度比實時運行更快。模擬運行完成后,指揮官可通過圖形和圖表查看結果,對多次運行進行比較。預計未來的能力將允許指揮官模擬任何梯隊和命令,用于訓練和兵棋推演。
這篇調查論文探討了用于軍事指揮與控制(C2)系統的新興網絡方法。文中對以網絡為中心的 C2 系統進行了廣泛的文獻綜述。此外,它還對基于C2概念的范例進行了全面分析,將網絡化C2系統的重要需求與新興方法進行了映射。同樣,文章還探討了如何利用多智能體系統和網絡模擬的支持,真實地模擬網絡化作戰場景。文章分析了結合網絡方法設計創新解決方案的趨勢,以及多智能體系統在現實模擬中的應用前景。最后,文章討論了未來的實施方案,強調了先進的網絡解決方案,以整合不同的技術,推動技術邊界,提高網絡化軍事 C2 系統的效率。
當前的軍事行動場景從戰爭狀態到非戰爭行動(OOTW)不等。后者越來越多地發生在城市,并涉及軍事人員以外的其他行動者(政府和非政府民間機構)。在這兩種情況下,相應的 C2 系統都需要處理高層次的作戰變量,如決策權的分配(在參與作戰的眾多行動者之間)、互動模式的建立(誰與誰溝通)以及信息的傳播(向 C2 中心和網絡邊緣的行動者)。
研究人員對這些變量的相互依存關系進行了研究[84],測試了戰術網絡并評估了不同組織和方法的性能。作者使用一個名為 ELICIT 的指揮與控制實驗平臺來推斷社會層(人類)在模擬行動中的表現,作為團隊組織和 C2 方法的函數,同時考慮到分層和邊緣拓撲結構。ELICIT 平臺可實現即時共享和完美的數據傳輸。因此,為了在現實場景中評估系統的技術層,使用了名為 EMANE 和 CORE 的網絡模擬平臺。評估結果從帶寬、信息分配和 C2 方法等方面提供了對組織的深入了解。這一基線為網絡設計人員提供了有用的信息,有助于在連續的任務行動中優化網絡參數。
在 IoBT 中,智能物體(用于收集和處理數據)與人類(將接收由此產生的相關信息)之間的復雜互動對傳統(分層)C2 造成了巨大影響,這為松散耦合(邊緣)C2 方法提供了空間[29]。由于沒有一種方法適合所有任務和情況[75],因此有必要獲得 C2 敏捷性,以確保戰場上的信息優勢。
根據 "網絡中心戰 "的原則,C2 靈活性是指當任務和環境發生變化時,識別、選擇和調整 C2 方法,甚至轉向另一種方法的能力。為實現敏捷性,C2 系統應將應用與網絡服務結合起來,使用能夠修改三個變量的范例,并可擴展到整個軍事云。然而,目前的系統主要是為人與人之間的互動而設計的,并沒有考慮到人與智能物的組合。
可以利用 SDN 原理來應對這些挑戰,如數據低參數的動態自配置和處理可變的交互模式。除 SDN 外,DTN 和 ICN 指南還可用于處理另一個變量: 數據分布。DTN 從間歇連接的角度進一步探索了 IoBT 的解決方案[12]。另一方面,ICN 可通過在軍用 IP 網絡中建立 SDN 管理的 ?ICN islands? 來定位和緩存內容[13]。在這種情況下,除了對網絡層次結構和優先級進行編程外,SDN 還將 ICN 集成到 IP 網絡的其他部分。
使用此類技術的網絡解決方案旨在優化 IoBT 通信參數,如延遲、信道帶寬、間歇和節點故障,以及節點移動導致的拓撲變化。SDN 對網絡進行協調,利用其可編程性,根據當前的運行要求選擇最佳網絡協議,并可根據功能和網絡狀態進行更改。例如,SDN 可以管理不同的網絡片段,根據網絡(和節點)狀態(帶寬、數據大小、信道延遲、信道可用性等)優化數據量。ICN(或 DTN)功能將利用數據平面在每個片段內進行有效的信息分發和人-物互動。
通過控制哪個節點可以發送/接收數據,SDN 可以在 C2 空間的第三個維度(決策權分配)上發揮作用。在執行任務期間,網絡管理員可根據任務或環境的變化修改這種分配,從而為在網絡中實現 C2 敏捷性提供技術手段。表 1 列出了 C2 Agility 變量及其與網絡范例的映射關系,以及采用每種范例提供的功能可改善哪些網絡參數。
表 1. 支持 C2 靈活性的網絡范例比較
隨著軍事力量向 "網絡中心戰 "發展,并將決策和行動權力轉移到邊緣,所使用的網絡必須采用最有效、最可靠的網絡架構。因此,指揮與控制結構使用支持其需求的網絡范例是非常直接的。采用新興的網絡方法來幫助指揮與控制機構,旨在改進各種網絡參數,并盡量減少任何不足之處。這種支持既可單獨進行,也可組合使用,因為網絡范例并不相互排斥,可以一起使用。
圖 4 展示了如何在軍事行動中使用網絡范例。從左到右,圖中說明了孤立的 IoBT 設備如何利用 DTN 的原理,向經過的無人機存儲和傳輸數據。然后,由徒步士兵、無人機和裝甲車組成的異構軍事單元可以利用 ICN 加強數據傳播,并通過 SDN 控制器控制網絡路徑和配置參數。
另外,假設由于彼此之間的距離或物理障礙,信息無法中繼到另一個單元。在這種情況下,機載平臺可以存儲、攜帶和傳輸數據(如在 DTN 中)。SDN 控制器可接納新的友好節點進入網絡,而 ICN 則可提供額外保護,防止網絡內交換的信息受到惡意攻擊。最后,在敵后收集信息的偵察單元可以保存數據,直到進入近距離網絡范圍時再安全地傳輸其內容(DTN 的另一種用途)。
圖 4. 目前在 C2 領域使用的網絡范例
本研究提出了一個基于 MOOS-IvP 中間件的自主水下航行器控制算法構建框架。側掃聲納傳感器(SSS)通常用于生成聲納圖像,在圖像中可以識別類似地雷的物體。這里實施的基站社區可維護 SSS 的覆蓋置信度地圖,并為用戶提供二維和三維模擬以及實施高級控制方案的能力。開發可分三個階段進行: 1) 最簡配置,僅使用必要的應用程序來開發和測試外環控制;2) 包含模擬硬件的配置;3) 包含實際硬件的配置,該配置應從第 2 階段平滑、輕松地擴展而來。這樣做的好處是使用方便、開發速度更快、減少硬件測試和成本。
圖 1. 自動潛航器路徑及其側視聲納覆蓋的相應區域示例。
在擬議的 MAS 框架中,每個 AUV 和基站分別有一個獨立的社區。每個群落上都運行著幾個應用程序,其中一些包含在 MOOS-IvP 發行版中,另一些則由作者自行開發。
在擬議框架中,有三種可能的配置:1) 加速開發高級控制和規劃策略的簡約配置;2) 在最底層用變量替代實際傳感器和執行器數據的模擬配置[12];3) 實際硬件實施。
圖 6. 配置 1:2 個自動潛航器群落和 1 個基站群落,應用極少。
圖 8. 配置 2:硬件模擬包括所有傳感器和致動器應用。
近來,物聯網(IoT)技術為農業、工業和醫學等許多學科提供了后勤服務。因此,它已成為最重要的科研領域之一。將物聯網應用于軍事領域有許多挑戰,如容錯和 QoS。本文將物聯網技術應用于軍事領域,創建軍事物聯網(IoMT)系統。本文提出了上述 IoMT 系統的架構。該架構由四個主要層組成: 通信層、信息層、應用層和決策支持層。這些層為 IoMT 物聯網提供了容錯覆蓋通信系統。此外,它還采用了過濾、壓縮、抽象和數據優先級隊列系統等數據縮減方法,以保證傳輸數據的 QoS。此外,它還采用了決策支持技術和物聯網應用統一思想。最后,為了評估 IoMT 系統,使用網絡仿真軟件包 NS3 構建了一個密集的仿真環境。仿真結果證明,所提出的 IoMT 系統在性能指標、丟包率、端到端延遲、吞吐量、能耗比和數據減少率等方面均優于傳統的軍事系統。
IoMT 系統由一組在戰場上應組織良好的軍事設備組成。無人機、作戰基地、艦艇、坦克、士兵和飛機等這些物品應在一個有凝聚力的網絡中進行通信。在 IoMT 網絡中,態勢感知、響應時間和風險評估都會得到提高。此外,IoMT 環境應涉及對普適計算、普適管理、普適傳感和普適通信的全面認識。此外,IoMT 可能會導致傳感器等網絡事物產生超大規模的數據。此外,這類網絡所需的計算量非常大,而這些計算的結果應能實時準確地實現。因此,IoMT 系統架構應考慮上述注意事項。
因此,建議的體系結構由四層組成: 通信層、信息層、應用層和決策支持層(見圖 1)。通信層關注的是事物如何在一個大網絡中相互通信。信息層涉及軍事數據的收集、管理和分析。應用層包括控制不同通信軍事系統的應用程序。最后,決策支持層負責決策支持系統,幫助戰爭管理者做出準確、實時的決策。下文將對每一層進行深入討論。
IoMT 系統可視為物聯網的一個特殊例子。因此,IoMT 環境與物聯網環境有些相似,只是在事物類型、通信方式等方面略有不同。根據這一理念,IoMT 環境可定義為一組使用互聯網相互通信的不同網絡。這些網絡應包括軍事任務中的主動和被動事物。IoMT 系統中應構建的主要網絡包括無線傳感器(WSN)、射頻識別(RFID)、移動特設(MANET)、衛星和高空平臺(HAP)網絡。由于 WSN 在許多軍事問題中的重要性,它被納入了 IoMT 系統。WSN 通過快速收集和提供危險數據來協助戰爭行動。然后,將這些數據發送給最合適的人員,以便實時做出正確決策。因此,除了協調自身的軍事活動外,WSN 的主要目標是監測和跟蹤敵方士兵和其他敵方事物的動向。傳感器可以遠距離分布,覆蓋大片區域。這些傳感器通過控制其行為的基站進行通信。由于 RFID 網絡在軍事領域的重要性,它在 IoMT 環境中得到了體現。軍隊中最重要的問題之一就是大部分物品都要貼上標簽。在戰場上使用 RFID 可以為士兵、貨物、小型武器、飛機、射彈、導彈等提供一個具有監控功能的跟蹤系統。例如,定期掃描每個人的醫療情況和效率是戰爭中一個非常重要的問題。城域網在 IoMT 系統中的表現也是一個重要問題,因為它可以用來促進士兵、武器、車輛等的通信。城域網在軍事上有許多特別的應用,如安裝在飛機和地面站之間的網絡或船舶之間的網絡。每種特設網絡的要求都取決于軍事任務的類型。此外,在軍事應用中使用的特設設備都配備了路由場景,可以利用最佳路由路徑自動轉發數據。物聯網依賴互聯網技術來促進通信,這是一個普遍的邏輯。遺憾的是,某些作戰地點可能沒有互聯網技術。因此,尋找替代通信技術非常重要。這就是在覆蓋目標中使用 HAP 網絡的原因。軍用物資分布面積大,因此必須以可靠的方式進行覆蓋,以保證通信效率。HAP 網絡可作為互聯網之外的第二種通信策略選擇。HAP 網絡的高度有限,因此容易成為敵方的攻擊目標,其故障概率可能很高。如果 HAP 網絡出現故障,通信系統將面臨很大問題,可能會影響軍事任務的執行。因此,應構建一個衛星網絡來覆蓋故障的 HAP 網絡,并覆蓋 HAP 網絡或互聯網可能無法覆蓋的軍事事物(見圖 2)。不同網絡之間的通信難題只需使用報頭恢復技術即可解決。在這種技術中,每個網絡之間都應添加一個翻譯器,用目的節點的報頭封裝每個數據包。新的報頭使數據包可以被理解;這可以通過系統路由器來實現(見圖 3)。
圖2: 通信網絡(該圖部分摘自[23])
圖3: 報頭轉換過程
這一層非常重要,因為它代表著 IoMT 系統架構的核心。射頻識別(RFID)、傳感器等軍用設備收集的信息應以安全、珍貴、實時的方式進行傳輸、存儲和分析。這一層的首要功能是在信息處理后對收集到的信息進行組織和存儲。IoMT 系統數據的處理被認為是一個具有挑戰性的問題,因為在短時間內可以收集到 TB 級的數據。因此,應在不影響質量的前提下盡量減少這些數據。此外,IoMT 的特殊要求(如實時決策)也不容忽視。在 IoMT 系統架構中,數據處理包括四個步驟: 優先化、過濾、壓縮和抽象。下面將對優先級排序過程進行說明。數據過濾、數據壓縮和數據抽象技術在第 4.1 小節中說明。
確定優先級的步驟包括處理不同優先級的數據。對于戰爭管理者(即軍隊將領)來說,收集到的每項數據都有一定的重要程度。因此,應將數據分為若干優先級,以便在 IoMT 系統饑餓的情況下優先處理和發送高優先級的數據。隊列系統就是用來實現這一優先級劃分步驟的。由于 IoMT 系統數據分類數量龐大,因此采用了六隊列系統。因此,IoMT 系統數據將被分為六個不同的類別。第一類代表最重要的 IoMT 系統數據;第二類代表不太重要的數據,依此類推。分類過程將動態完成,因此每個類別中的數據可能會根據戰爭任務的性質發生變化。為切實實現這一步,下一代路由器應具備對 IoMT 系統數據進行分類的能力。圖 4 說明了優先級排序過程。
圖4: 數據分類過程的簡單視圖
IoMT 系統架構中的應用層包括管理、監視等戰爭任務中使用的異構應用。該層應使用一個通用應用程序管理這些應用程序的功能,同時不影響其效率。這些應用程序的統一過程應基于通信數據(信息交換)來實現。在數據通信中,一個應用系統的輸出數據可能是另一個應用系統的輸入數據。因此,確定戰爭應用程序的輸入數據和輸出數據被認為是這一層最重要的目標之一。例如,飛機或發射器的火箭發射應用的輸入需要衛星監控應用的輸出數據,而衛星監控應用可能需要 WSN 應用的數據。信息層和應用層之間的通信非常重要,因為作為輸入和輸出的數據應首先在信息層處理。因此,在設計用于管理軍事應用程序的通用應用程序時,應首先確定每個應用程序的輸入和輸出數據。然后,應確定數據處理的時間(硬、實或軟)。例如,在戰斗停止期間,某個目標的坐標突然發生變化,三個應用程序應實時交互,以完成任務并擊中新位置上的目標。這些相互作用的應用程序構成了 WSN、戰爭管理以及執行任務的飛機機艙。還應確定應用特殊應用程序的優先順序。例如,在敵方多次攻擊特定目標的情況下,防御應用程序將優先啟動。
根據上述討論,一般管理應用程序應有一個專門的數據庫。該數據庫存儲有關單個軍事應用程序的動態變化數據。這些數據與以下主題有關: 輸入和輸出、單個應用程序之間的數據流方向、硬時間軍事情況、實時軍事情況、軟時間軍事情況以及每個應用程序的優先級。這些優先級應根據戰爭形勢來確定。根據綜合管理 IoMT 應用程序的性質,IoMT 系統數據庫的設計可以是分布式的,也可以是集中式的。在分布式數據庫中,應注意數據庫服務器之間交互的復雜性,特別是在需要硬時間或實時交互的事件中(見圖 6)。 、
戰爭中最重要的問題之一是決策過程。在技術戰爭中,決策應具備準確性、實時性、清晰性、安全性和快速分發等諸多規格。所有這些指標都應與信息層收集的數據相關。雖然信息與軍事決策之間關系密切,但所提出的 IoMT 系統架構在信息層和決策支持層之間還有一個中間層,即應用層。短時間內收集到的大量 TB 信息需要進行分析、過濾、優先排序和壓縮。這些過程已經在信息層中完成。但是,信息層沒有能力確定信息在應用層之間的移動方向(即信息的正常順序)。這種信息順序意味著,每個數據段都應指向一個合適的應用程序,以便實現互補和平衡。這些信息將用于決策過程。例如,假設戰爭管理者有一個目標,要求以特定的安排和特定的順序處理信息,直到軍事偵察之旅取得一定的結果。該目標的完成將通過步兵和防空來實現。因此,應用層和決策支持層之間的聯系將對高精度規格的決策產生良好的影響,這將在關鍵的戰爭事件中發揮作用。
簡單地說,本文概述的決策支持流程包括五個步驟: 事件權重、解決方案識別、選擇一種解決方案、行動和輸出評估(見圖 7)。戰爭管理者可根據自身經驗水平提取事件權重。一旦對事件有了充分了解,就該確定解決方案了。在準備決策時,有許多不同的備選方案。因此,確定可用行動的范圍非常重要。接下來,應選擇備選方案,并確定每個備選方案的風險。然后,就該采取行動了。應確定實施計劃,并提供實施所選解決方案所需的資源。應預先確定執行時間,然后開始執行。最后,應對選定解決方案的執行結果進行評估。請注意,有許多決策支持系統在經過實際測試(如 [24,25])后,可在 IoMT 中實施。
決策支持層可能面臨三大挑戰。第一個挑戰是數據過多或不足。這意味著決策支持層的輸出會延遲或不準確,這可能會造成災難,因為在大多數戰爭時期都需要實時決策。第二個挑戰是問題識別錯誤。在大多數戰爭任務中,圍繞一項決策會有許多問題。然而,有時卻無法確認這些問題的真實性。第三個挑戰是對結果過于自信。即使決策過程得到了準確執行,實際產出也可能與預期產出不完全一致。應用層將通過確定決策構建所需的準確信息、對問題的準確定義以及輸出調整來應對這些挑戰。因此,決策支持層將使用應用層的輸出。因此,在擬議的 IoMT 架構中,這些層之間的分離是一個需要考慮的重要問題。
首先,應構建一個軍事模擬環境,以測試所提議的 IoMT 架構的性能。網絡模擬器 3(NS3)是最廣泛使用的網絡模擬軟件包之一,將用于實現這一目標。軍事模擬環境由五種不同類型的網絡組成,其中包括分布在大片區域的大量節點。這五種網絡分別是 WSN、RFID、MANET、HAP 和衛星網絡。這些網絡是根據戰場需求確定的。文獻[26]中的仿真用于評估所提出的 IoMT 架構。在 WSN 仿真中,成千上萬的傳感器分布并部署在戰爭環境中。一個或多個基站將這些傳感器相互連接起來,并從中收集信息。在突發事件中,傳感器能夠向基站發送陷阱信息。然后,如果情況緊急,需要迅速做出決定,基站將直接把信息發送給執行者,如戰士、管理人員等。不過,在正常情況下,基站會將收集到的信息(詳細信息或摘要)重新發送給負責決策的管理人員。基站應該是智能的,并通過編程來實現這一目標。為了在 IoMT 中準確呈現 WSN,傳感器應具有不同的傳輸范圍。對于 RFID,美國軍方在第二次海灣戰爭中使用了最佳方案[27]。每個士兵身上都應貼有一個 RFID 標簽,以便在戰場上進行追蹤。此外,商業貨運和航空托盤等戰爭工具也應貼上 RFID 標簽,以便了解坦克和計劃等關鍵工具的最新狀態。此外,為了挽救士兵的生命,建議的模擬系統考慮了專門用于戰爭的移動醫院,并應配備 RFID 技術。此外,還利用 RFID 技術觀察軍隊的小型庫存物品,以實現更嚴格的庫存控制。對于城域網仿真,它包含戰場對象(如車輛、士兵和信息提供者)之間的臨時通信。在某些軍事情況下,很難通過數據采集中心傳遞或發送信息。因此,城域網仿真的一個考慮因素就是在數據傳輸中使用這種網絡。文獻[28]中所述的架構用于 HAP 和衛星網絡的通信。互聯網仿真使用了 [29] 中介紹的路由算法和 [30] 中介紹的物聯網混合組播架構。多媒體傳輸使用[31],但傳統軍事系統的模擬則使用[32,33]中所述的準則。
在信息層模擬中,將隨機、動態地創建 IoMT 數據。然后,這些數據將被分類并進入隊列,每個隊列將作為一個數據類別。動態數據的創建取決于存儲在特殊數據庫中的戰爭任務。本模擬場景中使用了 [34] 中所述的壓縮技術和數據過濾技術來減少數據,這是信息層的主要目標之一。應用層模擬也取決于戰爭任務,其中包括許多模擬網絡場景。每個網絡應用程序的輸入和輸出數據都在模擬文件中預先確定。網絡應用程序與綜合管理應用程序之間的通信是通過信息傳輸實現的。文獻[35]中的仿真用于決策支持層。戰爭任務的部分建模和仿真來自文獻[36],仿真中使用的武器的一般規格來自文獻[37]。圖 8 顯示了擬議的 IoMT 系統模擬環境的全貌。
這項工作提出了一個在歐盟項目FOLDOUT中開發的融合和跟蹤系統,旨在通過融合不同的傳感器信息和提出對監視區域內檢測到的目標自動跟蹤來促進邊防工作。FOLDOUT的重點是歐盟內部和外部地區的穿透式樹葉檢測。融合多個傳感器信號可以提高檢測的有效性,特別是在森林和其他被樹葉遮擋的地區。我們使用加權地圖(也稱為熱圖)來結合多傳感器信息;對所產生的融合目標進行跟蹤;根據對融合檢測的時間關聯的成本計算來創建或更新跟蹤。我們比較了來自單個傳感器的跟蹤結果和來自融合目標的跟蹤結果,這些數據是在模擬邊界收集的,代表了保加利亞的實際歐盟邊界。結果表明,如果根據融合后的數據而不是單個傳感器的信息進行追蹤,追蹤效果會得到加強。
邊防軍的主要興趣是在全球地圖上對監視區域內檢測到的人員進行定位和跟蹤。為了實現這一目標,首先要將不同傳感器系統觀察到的單個人的探測結果進行融合。當檢測結果相互關聯并保持一致時,就可以在一個共同的地圖上對單獨的目標進行跟蹤。
圖2:指導動作(紅線),扮演一個非法越境的場景:1.一個人通過步行越過邊境。2.該人沿著邊境小路向大路走去。3.此人停下腳步,在路上停留很長時間(可能是在等待汽車中的走私者)。4.在某一時刻離開道路,躲進樹叢中。5. 在樹葉中,該人再次回到路上(可能再次尋找汽車)
RGB和熱像儀中的人員檢測
基于深度學習的綜合物體檢測被應用于相機圖像上。深度學習方法已被證明優于以前的最先進的機器學習技術。深度神經網絡(DNNs)模仿了大腦感知和處理信息的方式。與以前的方法相比,DNNs學習了諸如人物檢測等任務所需的特征。近年來,DNN在物體檢測和分類任務上表現出突出的性能[9, 10]。在這項工作中,物體檢測是基于一個著名的DNN實現,即YOLO檢測器[11]。
PIR傳感器中的人員檢測
探測器經過調整,使被動紅外傳感器在PIR周圍7.5米的半徑內觸發人的存在。
在這項工作中,我們使用加權地圖來提供傳感器數據的層次(也稱為HeatMaps),并以邏輯和數學的方式組合它們。它的動態是完全使用不同傳感器模式的傳感器檢測假設的事件驅動。這些傳感器假設包括位置(WGS84基準)、時間戳(Unix時間戳)和權重(例如,從傳感器檢測中獲取的信心)。為了實現這一點,有兩個組件是必不可少的:加權分布圖(HeatMaps);線性意見庫。圖3顯示了這種方法的基本概念。
圖3:融合方法的基本概念(左),作為使用兩個加權分布圖(熱力圖)的例子。應用不同的衰減函數(右)來建立加權分布圖的時間動態行為。
加權分布圖(熱圖)
加權分布圖是我們數據融合方法的兩個基本組成部分中的第一個。加權地圖的基本思想是,保持和更新關于不同傳感器探測假設的時空信息。加權地圖來自于概率占用網格,但以加權的形式解釋傳入的數據。此外,還采用了時間上的衰減來模擬傳感器數據的及時行為。權重被存儲在一個可選擇分辨率的數組中,代表WGS84坐標中感興趣的矩形區域。圖3展示了用于模擬加權分布圖動態行為的可能衰減函數。
通常,加權分布圖對應于任何一種傳感器數據或傳感器模式(例如,從攝像機圖像中檢測人的邊界框)的時空。傳感器數據被攝取到一個專門的加權圖中,這導致加權圖的值根據傳入的傳感器假設的權重而增加(替換)。相對而言,衰減將及時應用到加權分布圖的值矩陣中。每次傳感器假設被攝入分布圖,它將通過重新計算加權分布圖的權重和衰減以前狀態的值來更新。
最后,線性意見庫允許我們結合多個加權分布圖,從而結合多傳感器模式,目的是減少傳感器系統的整體錯誤發現率。
線性意見庫(LOP)
我們融合方法的第二個重要組成部分是線性意見庫[8]。
每當一個加權分布圖的狀態由于新的傳感器檢測假設而被更新時,就會應用LOP。在評估了LOP之后,閾值處理使我們能夠產生警報。為了確定警報的位置,在組合值矩陣中超過閾值的區域使用分割算法(blob檢測)。這些警報是由多個傳感器假設產生的,用于為跟蹤提供必要的輸入數據,這將在下一節中描述。
為了跟蹤越境進入禁區或敏感區域的入侵者的行動,我們開發了一種基于空間和時間上關聯目標檢測的成本計算的定制算法。該跟蹤系統的工作原理是完全基于目標的位置和時間戳建立一個模型。
在第一次檢測目標時,該模型以該檢測的位置和時間戳進行初始化。軌跡模型是用以下元組定義的:???? = (????,????,????)。
如果幾個目標檢測同時發生,那么創建的模型模板數量與同時收到的檢測數量相同。后續的檢測被添加到一個給定的軌道模型中,這取決于將檢測添加到軌道中的成本。該成本被定義為傳入的檢測和軌跡候選者之間的距離。
在有多個傳入的檢測和多個軌跡候選者的情況下,已經實施了匈牙利算法[12],使檢測和軌跡之間的關聯產生最小的成本。
本研究的目的是設計一個用于電子戰應用的認知雷達(CRr)目標識別系統的現場可編程門陣列(FPGA)實現。這篇論文對稱為加權能量概率(PWE)的閉環自適應匹配波形傳輸技術進行了擴展。這項工作還研究了在功能性數字硬件實現中應用PWE技術的可行性。最初,在Verilog硬件描述語言中開發了一個PWE蒙特卡洛仿真模型,在Xilinx Vivado環境中進行仿真。然后,在蒙特卡羅模型中開發的Verilog模塊組件被整合到利用賽靈思VCU118評估板的CRr目標識別系統實驗中。VCU118具有Virtex UltraScale+高性能FPGA,可完成CRr自適應波形生成和傳輸、數字信號處理要求和目標分類。羅德與施瓦茨公司的SMW200A矢量信號發生器和FSW信號與頻譜分析儀分別作為雷達系統的發射器和接收器,而FPGA實現了CRr使用的封閉反饋回路。