亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本文聚焦武器管理系統及其自動化對國防領域創新與互操作性的促進作用。研究提出,自動化能以自下而上的方式全面優化軍事體系。方法論層面,通過解析創新與互操作性概念的當代價值,論證軍事管理數字化與流程精簡對國防建設的持續積極影響。研究發現,自動化可通過深化國防領域各板塊發展及其聯動效應推動創新,其中自下而上的視角成為軍事體系優化的關鍵維度。

在互操作性討論中,自下而上的視角揭示了當前歐洲框架在提升軍事互操作性方面的缺陷。武器管理系統自動化則表明,看似細微的舉措能夠有效滿足現代國防的關鍵需求。本研究因此大膽嘗試為歐洲防務關鍵步驟的實施提供新路徑。

在各國致力于軍事現代化、使其適應國際體系日益緊張局勢的過程中,人們日益意識到歐洲國家需要全面提升軍事能力。僅增加兵員數量和擴充武器庫的規模與種類遠遠不夠;軍事體系必須通過改進實現全流程作戰行動的順暢運轉。當前軍事體系仍缺乏保障這種順暢運作的基礎設施,武器管理與配發便是典型例證。匈牙利公司LoxoLock(2024b)指出,美軍射擊訓練中60%的時間耗費于行政流程。顯然,這些領域亟需改進以優化軍事行動全流程。LoxoLock正是推動此類變革的企業之一,其"將武器管理帶入數字時代"的口號承諾消除紙質文檔與人為失誤,實現全流程數字化與精簡,從而提升軍事內部運作效率(LoxoLock, 2024a, p.1)。

本文聚焦這一流程優化與數字化轉型過程,探討其如何引發軍事行政體系的根本性變革。具體而言,將研究武器管理數字化如何促進歐洲軍事創新與互操作性發展。本文核心論點是:在歐洲各國軍隊中推行標準化、數字化武器管理系統所具備的創新驅動力與互操作性優勢,能夠以自下而上的方式推動軍事體系的整體優化。研究旨在大膽論證:改進此類看似次要的環節可對國防領域產生全局性積極影響。選擇創新與互操作性作為研究視角,使其與當前國防領域的核心議題形成深度關聯。

為此,本研究首先概述武器管理系統的基本要素。內容涵蓋武器彈藥系統(WAM)的歷史沿革與現狀,解析該系統實現協調運作面臨的普遍挑戰與缺陷,并探討國際協作方式在軍事順暢運作中的必要性演進。第三、第四部分將直接切入流程優化與數字化議題,分析其對創新與互操作性的影響。

第三部分拓展研究視野,論證通過流程優化與數字化實現軍事行政自動化,如何對國防領域產生廣泛積極影響。通過建立這一宏觀視角,本節將剖析當代軍事格局中私營產業與國家軍隊的深度融合、研發在國防領域的關鍵作用以及國防治理機制,進而闡釋自下而上的自動化進程如何優化軍事體系的特定維度。

最后部分轉向互操作性議題,探討自動化如何促進歐洲軍事合作這一關鍵領域。基于第三部分建立的宏觀基礎,研究視角將再次聚焦具體問題,重點分析自動化如何助力互操作性國防治理體系的構建與運作。這為后續探討歐洲層面政策實施奠定理論基礎,從而強化"自動化可自下而上推動國防體系及其運作機制現代化"的核心觀點。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

自動化與人工智能領域的能力持續拓展,正推動人機交互模式創新——軍事領域尤需如此。為充分釋放技術紅利,亟需研究哪些任務可由自動化系統輔助乃至完全替代。在遠程偵察場景中,我們構想操作員通過自動化輔助同時完成平臺運動控制與目標觀測分類的雙重職能。為此構建實驗環境:遠程操作員借助含自動語音識別(ASR)系統與視線追蹤器的多模態界面操控無人地面車輛,同時通過屏幕光標選定標記目標并利用ASR進行語音分類。基于此原型系統,我們與領域專家展開交互模式研討。

自動化與人工智能正日益深度賦能人類作業。例如汽車產業中車道保持輔助系統已成為主流技術,為特定場景下的半自動駕駛奠定基礎;AI聊天機器人則快速進化至可實現人機自然對話。將這些能力遷移至軍事領域,將深刻變革現有作戰職能配置。傳統遠程偵察場景通常需至少配備平臺操作員與分析員:以RQ-4全球鷹無人機為例,其任務需多人協同完成平臺運動控制、光電系統操作及圖像判讀分類;而德軍"烏鴉"小型履帶式地面偵察平臺雖可由單人操控,卻缺乏目標標記與屏幕交互功能。人工智能的引入有望將平臺操控與目標分類職能融合為單一角色,即便不合并職能也能顯著降低操作員認知負荷,延長高效作業時間并減少失誤率。

因此本研究旨在開發新型交互方法:既支持操作員同步執行多任務,又大幅減輕其工作負荷以提升效能。通過整合視線、語音及觸覺等多模態輸入,探索在輸入控制指令時同步處理視覺數據的方案,力求建立高效精準的自然交互范式。但需在兩大關鍵要素間尋求平衡:既要保障充分信息供給以維持態勢感知,又要避免信息過載與交互選項冗余引發的認知超載[1]。

軍事應用場景對操作員提出嚴苛要求:結果需具備極高精度與魯棒性,作業環境常伴隨高噪聲、高壓強等高負荷狀態。這為技術賦能創造機遇——通過智能化支持減輕人員負擔。軍事用例的明確邊界利于定制化技術服務開發,但需注意:操作員的惡劣作業環境往往同樣制約技術性能。例如噪聲干擾、麥克風狀態波動及應激性語音變異等,均使作為智能用戶界面(UI)組件的自動語音識別(ASR)面臨嚴峻挑戰。為確保ASR魯棒性,模型需針對具體用例、使用環境乃至特定使用者進行定制化訓練,這意味著需構建按需生成定制化解決方案的體系而非通用模型[2]。

本研究致力于開發多模態"無感化"[3-5]智能用戶界面,通過有效支持操作員提升任務執行效能。現提出針對機器人平臺遠程操控與目標分類場景的具體實施方案。全文結構如下:第二、三章詳述語音-視線-觸覺交互模式的整合路徑及首版原型系統實現;第四章簡述基于領域專家的初步原型評估;第五章闡明軍事應用啟示,并提出后續研究與實踐轉化建議。

付費5元查看完整內容

本文強調知識圖譜在強化軍事偵察的智能信息系統中的重要作用,著重分析知識圖譜的推理能力價值,并探討開源工具在知識圖譜開發維護中的角色。為此,本文首先剖析不同開源知識圖譜工具提供的推理支持,探索如何利用現有軟件推理器增強知識圖譜功能。這為知識圖譜實踐者提供寶貴指南——洞察可用資源、推理支持及構建綜合知識圖譜的策略。其次,本文提供有效框架幫助用戶根據軍事偵察特定需求篩選和比較最適配工具。

圖1:情報周期內的知識工程流程。傳統情報周期通常由需求模塊起始的四個組件構成。新增的"處理"模塊通常作為分析模塊的子流程。此處將其視為獨立模塊,旨在突顯周期內兩個底層流程:一級數據處理與融合階段,二級高級情報生成階段。

軍事情報依賴收集處理偵察行動中獲取的海量異構數據,以消除情報知識缺口并支撐指揮官決策。多源信息的必要互聯通過提供作戰環境實時精準數據,對指揮控制(C2)智能信息系統(IIS)形成關鍵支撐。在"情報周期"(涵蓋任務分配、收集、處理、分析與分發流程)中,分析師需處理描述指揮官信息需求的優先/特定情報需求(PIRs/SIRs)。簡言之,指揮官需掌握敵軍戰力等信息以制定應對決策,而分析師通過解析偵察數據提供情報支持。數據通常經多技術手段采集,呈現多樣化格式(如圖像、書面報告、無線電訊號等)。當部隊無法獨立滿足情報需求時,需向上級或友鄰單位申請支援。所有采集數據與反饋信息必須有效整合。知識圖譜(KG)作為結構化多關系圖式知識表征——捕捉實體(如人員、載具、地點)及其關聯信息,為組織存儲檢索此類信息提供高效方法。知識圖譜可視為實體語義網絡、屬性及關系的符號化表征,其優勢在于明確定義的語義與推理能力:可檢測矛盾或通過領域知識豐富信息。具備推理能力的知識圖譜支持復雜作戰環境決策,類似指揮控制與情報知識信息系統的決策場景。

知識圖譜通過組織海量互連數據,構建軍事戰略行動相關信息的結構化表征。這種結構化知識促進精細化情境感知推理,從離散數據源提取可操作洞察。隨著系統演進,高級推理機制的整合進一步優化決策流程——基于知識圖譜實體間復雜關系推演潛在結果。本質上,指揮控制與情報智能信息系統融合知識圖譜及推理能力,不僅優化信息檢索與解讀,更為戰略領導者提供駕馭信息化現代戰爭復雜性的高階工具。相較于易產生幻覺的大語言模型(LLM),知識圖譜通常包含已驗證事實。目前LLM仍難從文本提取邏輯關聯:若模型訓練包含"A是B"句式,其無法自然推導"B是A"逆命題(此現象稱"逆轉詛咒")。LLM另一局限在于僅通過單次海量文本訓練且缺乏持續更新。解決方案之一是情境學習,如采用檢索增強生成(RAG)框架。知識圖譜及其嵌入表征亦可作為情境學習源,例如在基于最新信息構建問答系統的RAG流程中。

在軍事等敏感領域決策時,決策者終不可依賴直覺。因決策關乎人命,其必須基于有效事實可追溯、可解釋。知識圖譜及其推理能力相較LLM兼具二者特性,故LLM目前無法替代知識圖譜。構建知識圖譜面臨多維挑戰:需以有意義方式結構化信息以表征應用領域相關實體關系。成功創建維護知識圖譜主要依賴本體編輯器與推理器兩大工具:編輯器用于開發本體(定義特定知識領域核心概念、屬性及關系的概念框架);推理器基于既有事實推導新知識,用于深化洞察或檢驗知識圖譜信息一致性。

構建穩健本體需理解RDFS/OWL等本體語言與形式化標準。理想本體編輯器應配備圖形界面以隱藏形式化復雜性,使本體學家(專攻本體設計與實施的專家)聚焦核心術語與關系的明確定義。此過程通常為迭代協作式。開源工具在普及知識圖譜中發揮重要作用,歐盟委員會亦倡導使用促進知識圖譜開發維護的開源方案。開源工具具多重優勢:規避供應商鎖定、低成本可及性等。故本研究僅考量輔助知識圖譜構建維護的開源軟件。但并非所有開源編輯器或推理器均提供同等推理支持(知識圖譜核心能力)。因此,本文通過評估各類公開編輯器與推理器的推理能力,揭示此關鍵維度。

本文通過梳理現有開源工具為知識圖譜實踐者提供指南。重點聚焦推理能力及開源編輯器對其支持程度,同時介紹部分開源推理器及其與現有編輯器的協同使用方案。這涉及評估編輯器與推理引擎的兼容性,以通過自動推理提升知識圖譜構建質量精度。全文結構如下:第二章論述相關工作;第三、四章開展開源本體編輯器與推理器的比較評估;第五章探索構建全功能知識圖譜平臺;第六章總結全文。

付費5元查看完整內容

本文探討了在軍事網絡安全方法中應用生成式人工智能(Generative AI)所帶來的倫理和對抗影響。生成式人工智能已在眾多民用應用中展示于威脅模擬和威脅防御領域。盡管如此,其在軍事應用中存在重要的倫理考量,原因在于生成式人工智能可能被濫用。針對軍事系統的網絡威脅正變得比以往更加復雜,我們希望為該領域的研究體系增添數據,以幫助彌合在理解軍事環境中生成式人工智能風險方面所識別的知識差距。目標: 本文旨在探討圍繞生成式人工智能軍事應用的倫理困境,包括責任歸屬、自主性和濫用問題。本文審查了與生成式人工智能相關的對抗性風險,包括敵對行為體的操縱或其他利用。目標是提出考量倫理困境的措施,同時改進防御能力。方法: 方法論將評估倫理風險,如與人工智能系統相關的自主性、武器化和偏見問題。它將通過建議采用對抗性訓練策略、混合人工智能系統以及針對被對抗性操縱的人工智能生成威脅的穩健防御機制來確定對抗性風險。它還將為軍事網絡安全提出倫理框架和責任模型。結果: 本文提供了在傳統網絡環境和智能網絡環境下軍事網絡安全系統的性能比較評估。重要研究結果證明,生成式人工智能有可能提高檢測準確性,尤其是響應時間。但它也引入了新的風險,如對抗性操縱。實驗結果說明了對抗性訓練如何增強模型的魯棒性、減少漏洞,并提供更強的針對對抗性威脅的防御能力。結論: 與傳統方法相比,生成式人工智能在軍事網絡安全中具有相當可觀的益處,特別是在提升檢測性能、響應時間和適應性方面。如圖所示,人工智能增強系統的優勢使惡意軟件檢測準確率提高了15%,從80%上升到95%,釣魚郵件檢測準確率也提升了15%,從78%上升到93%。對新威脅的快速反應能力也很關鍵,響應時間縮短了60%,從5分鐘減至2分鐘,這在軍事環境中至關重要,快速響應將能最大限度減少影響。此外,人工智能系統顯示出將誤報率從10%降低到4%(這非常優秀)以及將漏報率從18%降低到5%的能力(這也很優秀),這很大程度上基于人工智能系統識別真實威脅樣貌的能力以及識別真實威脅的能力。

在過去的幾年中,由于人工智能(AI)和機器學習技術的發展,網絡安全經歷了根本性的轉變。作為人工智能的一個子類別,生成式人工智能,包括生成對抗網絡(GANs)和變分自編碼器(VAEs),正被迅速用于生成網絡威脅模擬以提供更好的防御。盡管這些人工智能模型在民用網絡安全應用中所展現的巨大效用已得到證明,但它們在軍事環境中的使用會產生額外的困境和變數。鑒于軍事領域的風險高得多,甚至在實施生成式人工智能之前,對其能力和風險獲得更深入的理解至關重要。將生成式人工智能用于軍事網絡安全工具存在諸多優勢。最顯著的好處在于,生成式人工智能能夠針對當前系統的極限,提供逼真、復雜且先進的網絡攻擊模擬。盡管在軍事網絡領域提出了無數解決方案(如復雜的關鍵基礎設施和武器系統),軍事網絡仍必須應對日益復雜的網絡攻擊,包括高級持續性威脅(APTs)、零日漏洞利用和定制攻擊。生成式人工智能模型可以生成基于情景的自適應攻擊,包括多態惡意軟件、相關釣魚郵件和自適應入侵模式,這可以匯總應對惡意網絡事件的最佳實踐。生成式人工智能也將允許檢測和/或響應系統的測試。最后,這些用于模擬的先進能力本身也帶來了必須加以考慮的顯著倫理/對抗風險。

生成式人工智能的軍事應用存在著嚴峻的倫理挑戰。首先是自主性問題。監督和管理對于人工智能的能力及其相應的自主決策至關重要。在軍事行動中由自主人工智能系統做出的決策可能產生嚴重后果,無論是沖突升級還是未知的損害。這要求現有系統配備監督機制,以確保對人工智能決策的責任追究或自主性,其決策范圍涵蓋從軍事到民用領域。第二個倫理挑戰是武器化。隨著生成式人工智能模型的改進,對手最終也會利用生成式人工智能來武器化新的網絡攻擊或發動人工智能支持的進攻策略。因此,我們必須確保強大的工具在國際法管轄的范圍內以符合倫理的方式使用。此外,人工智能系統中的偏見不容忽視。包括使用生成式人工智能在內的機器學習模型,都可能易受訓練數據中存在的偏見影響。如果這些偏見未被識別,它們必然會影響或玷污決策過程,導致負面的、武斷的或歧視性的結果,尤其是在風險巨大的軍事應用中。存在偏見的AI系統可能導致基于含有偏見的數據錯誤識別威脅或未能識別威脅行為,這會危及軍事系統的安全。

在軍事網絡應用中,生成式人工智能的應用既帶來對抗性風險,也涉及倫理考量。雖然人工智能提高了對事件的檢測和響應速度,但對手可以利用人工智能中的缺陷。網絡攻擊者可以添加對抗樣本并篡改人工智能的訓練數據,導致人工智能錯誤分類威脅或根本未能識別惡意活動。這是一個嚴重問題,特別是在涉及人員生命且生命損失風險以軍事防御規模來衡量的情況下。對抗性人工智能模型甚至可能能夠通過發動一次產生幻影的攻擊來偽造網絡攻擊,使其響應系統不堪重負,或者操縱軍事網絡安全系統陷入另一種、有效的對抗性系統復雜化。本文針對在軍事網絡安全中使用生成式人工智能所涉及的倫理和對抗性問題進行了論述。最終,本文將在后文探討減輕這些擔憂的方法,例如通過對抗性訓練、混合人工智能系統和責任歸屬機制。這項工作的最終目的是確保在恪守倫理原則、公平性和安全性的前提下,軍事領域對生成式人工智能的利用能夠增強網絡安全態勢。本文還將考慮如何在現實世界軍事行動動態多變的背景下,持續研究和評估這些模型對新興網絡威脅的抵御能力。

付費5元查看完整內容

超視距空戰(BVR)作為現代空戰的核心形態,依賴先進雷達、導彈系統與決策支持技術。本文系統綜述仿真與機器學習(ML)工具在BVR空戰分析中的應用,涵蓋方法論、實踐場景與技術挑戰。研究聚焦機器學習如何賦能自適應戰術以提升行為識別與威脅評估能力,從而增強態勢感知效能。本文追溯BVR空戰的歷史演進,解析探測、導彈發射與戰后評估等關鍵交戰階段,重點探討仿真環境在構建實戰化空戰場景、支撐飛行員訓練及驗證AI驅動決策策略中的作用。通過對比前沿仿真工具的多智能體協同與實時適應性研究能力,分析其優勢與局限。本綜述的核心貢獻包括:闡述機器學習在BVR空戰中的具體應用、評估仿真工具效能、識別研究缺口并指明未來方向,為傳統仿真方法與人工智能在動態對抗環境中融合構建先進人機決策體系提供全景式解析。

超視距空戰(BVR)作為現代空戰的核心要素,其典型特征為飛行員目視范圍外的遠程交戰。該作戰模式高度依賴先進雷達系統、遠程導彈與探測跟蹤技術,旨在實現目視接觸前摧毀敵方目標。隨著空戰形態演進,BVR交戰重要性日益凸顯,需創新性方案應對遠程對抗挑戰。BVR的戰略價值在于其能賦予兵力先發制人能力并維持戰術優勢,但其復雜性要求跨學科技術整合——包括傳感器融合、目標跟蹤、決策算法與導彈制導系統——以提升交戰效能、確保任務成功并增強飛行員態勢感知(SA)。

視距內空戰(WVR)發生于較短距離,常依賴機動性、速度與瞄準精度進行近距格斗。相比之下,BVR通過先進傳感器與遠程導彈壓制對手。盡管存在差異,BVR可能隨戰機逼近轉為WVR交戰,因此需兼備兩種域作戰能力。

本文全面綜述BVR空戰前沿方法與技術,聚焦最新進展與戰略路徑。首先追溯BVR歷史沿革,從早期空對空導彈(AAM)系統演進至現代多傳感器平臺,解析關鍵技術突破及其對戰法的影響。其次剖析BVR交戰核心階段(探測、導彈發射、支援與規避機動),闡釋本文所述方法如何提升作戰效能。隨后評述關鍵方法論,包括動態環境自適應決策的機器學習(ML)算法與人工智能(AI)在交戰及自主戰術中的作用,其應用涵蓋飛行員決策支持系統至無人機(UAV)作戰。最后強調仿真工具在戰術開發、飛行員訓練與算法驗證中的價值,討論通用與專用平臺在復雜作戰場景建模中的適用性。

據所知,此為首次針對BVR空戰中仿真與ML應用的專題綜述。現有空戰綜述多泛化論述或將BVR作為次要議題。多數遠程交戰ML研究僅見于論文相關章節,缺乏方法論與應用的系統整合。本文突破既往研究局限,跨多領域文獻提供ML與仿真增強決策與交戰策略的全景視角,分析現有仿真工具能力邊界及適用場景,識別未解挑戰與研究缺口,為未來研究指明方向。

本綜述核心貢獻包括:系統梳理BVR中ML方法體系及其在自主戰術決策中的作用;對比仿真工具在實戰化場景建模中的能力與局限;揭示ML與仿真技術融合提升戰術決策的瓶頸問題;展望研究趨勢,提出開放性問題并規劃領域發展路徑。

超視距空戰研究的多維應用

BVR空戰研究涵蓋自主決策、多智能體協同與飛行員訓練等多元領域。本節分類梳理近期進展,聚焦新興技術與方法如何提升戰術效能、適應性與任務成果。

A. 自主決策

自主決策涉及分析、選擇與執行可增強態勢控制與作戰效能的行動。研究提出多種方法支撐該能力,重點探索智能體如何建模戰術行為、執行目標推理(GR)并在復雜場景中輔助或替代人類飛行員。

文獻[61]提出基于粒計算的戰術特征降維方法;文獻[15][52]在計算機生成兵力(CGF)與GR框架下研究行為建模,使自主系統能在動態場景中作出適應性戰術決策。此類能力支持開發可分擔威脅應對或支援機動等任務的自主空戰智能體,與人類飛行員形成互補。文獻[48]開發了生成戰術對抗策略的飛行員輔助系統。

文獻[49]提出遺傳規劃(GP)框架以發掘空戰場景中的新型行為模式,賦能更具適應性與不可預測性的戰術;文獻[50][51]利用文法演化生成自適應CGF與人類行為模型(HBM),提升訓練仿真的真實性與適應性。

文獻[12]解析無人機空戰決策流程,將其劃分為態勢評估、攻擊規劃、目標分配與機動決策四階段;文獻[2]基于飛行員知識構建分層框架,將空戰拆解為多個子決策系統。

文獻[17]綜述深度強化學習(DRL)在BVR空戰中的應用;文獻[57]在高保真空戰仿真環境中探索新戰術的自主學習;文獻[53]開發基于DRL的智能體,通過自博弈模擬戰斗機戰術并生成新型空戰策略,使人類飛行員可與AI訓練體交互以提升決策與適應性;文獻[58]構建強化學習(RL)環境以實現空戰戰術自主學習與機動創新。

多篇研究將RL應用于一對一空戰場景。例如,文獻[54]提出自博弈訓練框架以解決長時域交戰中的動作控制問題;文獻[55]設計基于DRL的決策算法,通過定制化狀態-動作空間與自適應獎勵函數實現多場景魯棒性;文獻[59]通過改進Q網絡使智能體能從優勢位置接近對手以優化機動決策;文獻[56]提出基于真實武器仿真的DRL智能體構建方法;文獻[60]開發混合自博弈DRL智能體,可維持對不同對手的高勝率并提升適應性與性能。

B. 行為識別

行為識別對理解與預測敵方行動、支撐決策與戰略規劃至關重要。多項研究探索了復雜不確定作戰條件下識別與預測敵方行為的方法。

文獻[62]提出集成規劃與識別算法,證明主動觀測收集可加速行為分類;基于案例推理(CBR)框架,文獻[63][64][65]開發案例驅動行為識別(CBBR)系統,通過時空特征標注智能體行為,提升GR控制無人機的識別能力;文獻[66]結合對手建模與CBR識別敵方編隊行為。

針對數據不完整問題,文獻[70]提出基于多粒度粗糙集(MGRS)的意圖識別方法;文獻[68]將Dempster-Shafer理論與深度時序網絡融合以優化分類效能;文獻[71]采用決策樹與門控循環單元(GRU)實現一對一空戰狀態預測;文獻[1]提出基于級聯支持向量機(CSVM)與累積特征的分層方法進行多維度目標分類。

為識別戰術意圖,文獻[69]開發注意力增強型群體優化與雙向GRU模型(A-TSO-PBiGRU)檢測態勢變化;文獻[67]應用動態貝葉斯網絡(DBN)推斷飛行狀態與戰術動作的因果關系,提升編隊識別與態勢感知能力。

C. 制導與攔截

制導與攔截機制對提升導彈命中率(尤其針對高速機動目標)具有關鍵作用。

文獻[72]通過對比制導策略,識別可最小化攔截時間與機動負載的配置方案,優化不同作戰條件下的交戰選項;文獻[73]通過增強導彈特定攻角命中能力改進高超音速目標攔截效能,優化終段交戰條件;文獻[74]在無人作戰飛行器(UCAV)中采用自主制導技術提升瞄準精度,實現對機動空目標的有效打擊。

文獻[75]優化導彈飛行中的機動決策以支撐交戰規劃并提升模擬作戰成功率;文獻[76]通過動態攻擊區(DAZ)概率建模實現實時航跡修正,確保環境不確定性下的打擊精度;文獻[77]通過協同制導模型提升雷達與導彈協同效能,增強防空體系整體精度。

文獻[78]量化數據鏈質量對導彈效能的仿真影響,揭示更新延遲與誤差對導引頭激活及整體成功率的作用機制;文獻[79]改進雙脈沖發動機導彈點火控制與彈道修正技術,強化遠程目標攔截能力。

D. 機動規劃

機動規劃旨在計算運動基元序列以獲取戰術優勢。

該領域早期研究側重結構化評估與決策模型。文獻[80]提出包含態勢評估模型、機動決策模型與一對一對抗評估模型的框架;文獻[81]基于環境條件、威脅分布、武器性能與空戰規則開發戰術決策系統;文獻[82]整合戰術站位與武器能力的多維度要素,探索提升資源分配效能的目標分配(TA)策略。

近期研究聚焦學習驅動方法。文獻[83][84][85]應用深度強化學習(DRL)進行機動規劃,增強動態場景下的威脅規避與目標打擊能力,通過多初始交戰條件訓練提升智能體適應性;文獻[86]采用雙延遲深度確定性策略梯度(TD3)算法開發一對一對抗中的自主導彈規避策略;文獻[87]基于敵我相對方位與距離設計機動決策方法;文獻[88]結合DRL與蒙特卡洛樹搜索(MCTS),探索無需先驗飛行員知識或價值函數的機動規劃路徑。

E. 導彈交戰

導彈攻防需優化發射時機與機動策略以最大化攻擊效能與生存概率。

進攻方面:文獻[38]采用監督學習(SL)估算最優導彈發射時機以提升任務效能;文獻[89]提出雷達盲區機動控制方法實現隱蔽接敵;文獻[92]通過分析導彈捕獲區與最小規避距離,確定編隊空戰協同場景下的最佳發射距離與防御策略。

防御方面:文獻[90]為無人作戰飛行器(UCAV)設計基于分層多目標進化算法(EA)的自主規避機動策略以提升生存能力;文獻[91]將導彈規避問題建模為雙團隊零和微分博弈,其中一架戰機需在遠離來襲導彈的同時逼近非攻擊性目標。

協同作戰領域:文獻[93]提出基于武器有效區(WEZ)的協同占位方法;文獻[94]解決空對空導彈(AAM)發射后信息盲區難題。

F. 多智能體協同

多智能體協同作戰通過自主平臺間的協作決策、聯合戰術執行與響應優化,賦能協同攻擊策略、動態編隊重構及人機協同等應用場景。

文獻[95]將多無人機戰術策略應用于空對空對抗分解,將復雜交戰拆解為一對一單元案例以提升機動效率與作戰成功率;文獻[96]將協同站位分配與目標分配(TA)建模為零和博弈,采用混合雙Oracle算法與鄰域搜索在時限約束下優化解質量。

文獻[97]擴展戰術戰斗管理器功能,構建分布式系統檢測跨智能體任務數據差異以強化協同效能;文獻[98]通過面向角色的框架推進目標推理(GR)技術,增強通信受限自主智能體的協同能力;文獻[99]提出AlphaMosaic架構,將人類反饋整合至作戰管理系統(BMS),實現動態任務中基于信任的人機協作。

文獻[100]將群體智能適配固定翼無人作戰飛行器(UCAV),實現編隊飛行、自主重組與戰損后動態調整等行為;文獻[101]采用集中式AI規劃系統協調全態勢可觀測與可驗證的多智能體任務方案;文獻[102]通過兵棋推演驗證艦隊協同行為,優化戰術參數以提升均勢對抗任務成效。

文獻[42]利用仿真評估優化無人機戰術編隊應對不確定敵方行為;文獻[103]提出兩階段協同追擊策略,結合誘敵戰術與混合A*路徑規劃提升攔截成功率;文獻[104]設計多目標函數與GDT-SOS元啟發式驅動的自適應制導方法優化無人機占位效能。

文獻[3]通過分層強化學習架構使多智能體團隊通過自博弈與場景分解學習高低階戰術;文獻[105]將多智能體近端策略優化(PPO)應用于UCAV協同,將領域知識融入獎勵函數以提升性能;文獻[106]構建基于圖神經網絡的推理模型,結合專家知識建模復雜協作模式并簡化大規模交戰決策。

文獻[107]采用對抗自博弈與分層策略梯度算法學習超越專家基線的涌現策略;文獻[108]在集群機動中應用深度確定性策略梯度,聯合學習智能體協作與目標打擊;文獻[109]融合神經網絡與人工勢場技術,支持針對自適應對手的協同路徑規劃。

G. 作戰分析

作戰分析(OA)通過仿真、模型與評估指標衡量作戰效能、支撐戰術規劃并支持作戰決策。

文獻[11][40]應用隨機博弈模型分析不確定性下的多機對抗,解析超視距(BVR)場景中的協同策略與導彈分配;文獻[46][110][111]通過含人類操作員的仿真評估實戰條件下飛行員與團隊表現,聚焦作戰規程遵循度、認知負荷與共享態勢感知(SA)。

多項研究構建了面向訓練、戰術測試與作戰規劃的仿真平臺:文獻[8]開發戰術級空戰仿真系統以支持智能決策;文獻[112]設計用于評估巴西空軍軍事場景的ASA框架;其云端擴展版ASA-SimaaS實現可擴展自主仿真服務[113];AsaPy工具集通過統計與機器學習(ML)方法提供仿真后分析功能[114]。

文獻[115]采用體系(SoS)仿真評估飛機設計、平臺互操作性及生存性、武器使用等任務級效能指標;參數化研究探究雷達截面積、導彈射程、飛行高度與通信延遲等變量對殺傷概率與整體作戰效能等指標的影響[116][120][121];文獻[117]通過基于智能體的模型探索行為特征對仿真可信度的影響,增強對稱與非對稱BVR場景的驗證方法。

文獻[118]設計雙模通信協議以適配協同空戰網絡條件;文獻[119]強調仿真架構的可擴展性與靈活性,提出需構建能管理AI驅動實體與分布式決策流程的多智能體系統;文獻[122]開發高動態飛行條件驗證環境,評估大機動動作下光電系統性能。

文獻[123]建模網絡中心戰分析傳感器、指控系統與火控協同水平對作戰效能的影響;文獻[124][125][126]分別基于多準則決策(MCDM)、相關向量機與改進極限學習機(ELM)模型提出決策支持工具,為戰機性能與戰術配置提供量化評估。

H. 飛行員訓練

飛行員訓練通過先進仿真環境、績效評估與自適應學習技術提升戰備水平與作戰效能,旨在強化復雜空戰場景中的決策與態勢感知(SA)能力。

文獻[127]提出的回顧性績效評估方法為識別改進領域、指導針對性訓練調整提供洞見;文獻[130]探索行為建模技術以優化高壓條件下飛行員決策,增強訓練演習真實度。

文獻[131]探討的實況、虛擬與構造(LVC)環境集成方案,通過融合真實與仿真要素構建高擬真沉浸式訓練場景,使飛行員體驗多樣化作戰情境以提升環境適應性;文獻[129]提出績效加權系統優化訓練成效,確保飛行員高效達成能力基準。

文獻[18]綜述自適應訓練方法學,強調基于飛行員表現的AI驅動個性化內容生成技術進展;文獻[10][128]探討空戰行為快速適配與訓練仿真驗證方法,確保仿真系統精準映射真實作戰動態,通過提升響應速度與態勢理解能力提供直接影響訓練效能的實用工具。

I. 態勢感知

態勢感知(SA)是理解戰術環境(涵蓋敵我位置、行動與意圖)的核心能力,支撐交戰、占位與規避的明智決策,最終提升作戰效能與生存概率。

文獻[132]探索實時數據處理方法,賦能飛行員高效解析復雜信息;文獻[133]將SA擴展至團隊層級,驗證協同數據共享對任務連貫性與績效的增益。

威脅評估方面:文獻[137][152]解析敵方武器有效區(WEZ)判定方法,為飛行員提供戰略規避或對抗的空間感知;文獻[141]開發的實時威脅分析工具持續更新態勢數據,確保戰術動態調整;文獻[134][139][135]整合目標意圖預測至威脅評估體系,構建戰場態勢分析與威脅指數系統。

AI驅動SA方法:文獻[138][143]應用機器學習(ML)進行威脅檢測,加速飛行員威脅預判與響應;文獻[136]采用基于蒙特卡羅的概率評估方法優化不確定態勢下的風險管理;文獻[47]提出基于防御性制空(DCA)作戰指標的接戰決策支持工具;文獻[140]分析深度神經網絡(DNN)在WEZ最大射程估算中的應用。

文獻[142]利用機載傳感器數據與神經網絡實時評估擊落概率;文獻[6]提出對抗條件下機動靈活性估算方法,支撐編隊級決策。

J. 目標分配

目標分配(TA)涉及高效配置空對空導彈、防空導彈及戰機等資源以壓制敵方威脅,需在優化交戰效能的同時最小化資源消耗。

多篇研究聚焦提升作戰效能的分配方法:文獻[146][147][149]探討動態分配導彈與戰機至多目標的多目標分配(MTA)策略;文獻[148]提出多友機對多敵機的協同攻擊分配方法。

文獻[144][150]研究基于任務目標與約束的武器-威脅最優配對算法,以最大化殺傷概率并保存資源;文獻[145]引入融合目標優先級與交戰時序的改進分配模型;文獻[151]探索結合優化技術與實時戰術調整的混合方法以應對動態戰場。

仿真工具

仿真環境與工具對推進超視距(BVR)空戰研究至關重要,其能夠建模復雜場景、評估決策算法并優化作戰策略。此類工具涵蓋通用平臺至定制化系統,各具獨特功能以應對BVR空戰的不同維度。

多數平臺通過高層體系結構(HLA)與分布式交互仿真(DIS)等標準支持互操作性,促進跨仿真系統集成與實時同步。本節概述BVR空戰研究中常用工具,文末附表格總結核心工具特性、編程語言與互操作能力。

A. AFSIM:仿真、集成與建模高級框架

美國空軍研究實驗室開發的AFSIM[153]是BVR空戰研究中的主流平臺,支持靈活建模作戰環境、系統集成與任務規劃決策流程,常用于認知控制、行為識別與人工智能研究[15][62][63][64][65][66][97][99][101]。AFSIM支持與其他模型集成,實現戰略與戰術層級的實時交互仿真,賦能作戰管理與任務規劃研究。該平臺非開源,受美國政府法規管控。

B. ASA:空天仿真環境

巴西空軍開發的ASA(葡萄牙語Ambiente de Simula??o Aeroespacial縮寫)[112][113]是基于C++的面向對象仿真框架,專用于復雜空天行動建模,支撐態勢感知(SA)、任務規劃與作戰決策研究[38][42][47][53][114][117][140]。ASA支持機器學習技術與傳統仿真融合,優化戰術并預測敵方行為,其架構可精細建模任務參數、航空器系統與武器性能。該平臺非公開,受巴西政府法規管控。

C. 定制系統

定制系統采用Python、C++或MATLAB開發,專用于商用工具無法滿足的研究場景。由于電子戰模型、導彈制導與BVR技術多涉密,商用系統難以滿足開放性研究對復雜性、安全性與適應性的需求,故定制系統成為主流解決方案[8][11][40][55][56][59][61][67][68][70][72][73][74][76][77][79][81][82][83][84][88][89][92][93][94][95][96][98][103][104][105][108][110][111][116][118][122][123][124][125][126][135][137][139][142][145][147][148][149][151]。此類工具支持快速開發,適用于敏感領域研究。

D. DCS World:數字戰斗模擬器世界

DCS World[154]是商業化高保真戰斗飛行模擬器,以真實飛行動力學與精細模型著稱,廣泛應用于決策制定與強化學習(RL)作戰研究[54][86]。其開放式架構支持自定義模塊開發,賦能研究者模擬動態高烈度BVR空戰場景,成為真實作戰條件下測試AI驅動智能體的理想平臺。

E. FLAMES:靈活分析與建模效能系統

FLAMES[155]是模塊化商業仿真框架,支持開發與運行實況-虛擬-構造(LVC)仿真,具備實時可視化、場景管理與作戰分析(OA)功能,適用于任務規劃與作戰模擬[38]。盡管靈活性高,但其商業許可可能限制可訪問性,且復雜架構對快速原型開發或資源受限研究構成挑戰。

F. FLSC:瑞典空軍戰斗模擬中心

瑞典國防研究局開發的FLSC整合LVC仿真分析空戰場景,用于飛行員訓練、任務規劃、決策支持研究及人機協作評估[130][131]。其功能特性可增強聯合作戰中的態勢感知(SA)與決策能力。FLSC由瑞典國防研究院(FOI)運營,訪問受限,但國防項目研究者可通過合作渠道申請使用。

G. JSBSim

JSBSim[156]是開源飛行動力學模型,廣泛應用于需高精度航空器仿真的強化學習BVR研究,支持決策制定、機動優化與作戰接戰等任務[3][6][58][60][138][143]。常與Unity(IAGSim)及定制環境集成,構建計算高效的動態場景自主決策仿真。

MATLAB[157]與Simulink[158]廣泛用于仿真、控制理論與優化研究。MATLAB數學能力支撐決策與作戰研究[1][50][51][69][75][78][80][90][91][102][109][120][121][141][146][150];Simulink通過圖形化動態系統建模工具擴展功能,適用于控制策略開發。

I. Python與R

Python是開發仿真環境與機器學習(ML)模型的核心工具,借助TensorFlow[159]、PyTorch[160]等庫支持任務規劃、強化學習實施與優化[71][85][100][136],其靈活性賦能快速原型開發及跨平臺集成研究。R語言偶爾用于空戰數據分析與仿真相關統計建模[140]。

J. 其他工具

以下工具亦支持超視距(BVR)空戰研究:

ACE-2:定制化仿真器,用于測試空戰機動中的遺傳優化技術[49]。
ACEM:實況-虛擬-構造(LVC)仿真環境,用于空戰中人類表現分析[46]。
FTD (F/A-18C):F/A-18C飛行訓練設備,用于高保真模擬飛行員行為、協同與訓練場景[127][129][133]。
IAGSim (Unity + JSBSim):結合JSBSim飛行動力學與Unity實時渲染的定制仿真器,專為自主空戰研究設計[2]。
MACE[161]:現代空戰環境(MACE),可擴展分布式仿真平臺,用于作戰分析(OA)與戰術空戰場景測試[115]。
NLR四機編隊模擬器:荷蘭航空航天中心(NLR)開發的仿真器,用于多機對抗中的飛行員訓練與人機交互研究[128]。
STAGE:快速生成空戰場景的框架,適用于人工智能(AI)與強化學習(RL)訓練[10]。
Super Decisions:集成層次分析法(AHP)與網絡分析法(ANP)的決策支持軟件,用于空戰威脅排序與任務規劃[134]。
UnBBayes-MEBN:基于多實體貝葉斯網絡(MEBN)的概率推理框架,應用于不確定條件下的態勢感知與決策[132]。
WESS:自適應戰術決策仿真工具,用于動態作戰行為建模[50][51]。
Wukong:強化學習(RL)驅動的多智能體戰術決策平臺,專為BVR場景設計[57][106][107]。
X-Plane[162]:高保真商業飛行模擬器,用于自主行為驗證與作戰規劃[48]。

K. 工具總覽

表2匯總了核心工具、主要應用場景、功能特性、編程語言及互操作能力。該表涵蓋本文分析的120項研究中的116項,其余4項為未使用具體工具的綜述類研究。各列信息如下:
? 仿真工具:工具或框架名稱

? 核心功能:與BVR空戰研究相關的主要特性

? 編程語言:開發或定制化使用的主要語言/平臺

? 互操作性:支持標準仿真協議(如HLA、DIS)、定制接口或無相關信息

? 引用文獻:使用該工具的研究編號

開放挑戰與未來趨勢

盡管強化學習(RL)等先進技術在空戰決策領域取得顯著進展,仍存在諸多開放挑戰,為未來研究提供機遇。

  • 場景復雜性
     當前方法(如NFSP RL與DQR驅動的DRL)多基于簡化的一對一對抗驗證[54][84]。需將其擴展至反映真實空戰復雜性的多智能體環境。基于DDPG的集群策略與H3E分層方法等框架為應對此挑戰指明方向[2][108]。此外,目標分配(TA)、探測與制導研究多假設雷達、戰機及通信節點同質化[118][144][148][149][163][164][165],未來需探索異質化模型以更精準刻畫現實系統復雜性。

  • 全觀測假設局限
     MCTS、PPO與CSVM等方法常假設環境全觀測,忽略雷達目標搜索等關鍵要素[1][88][166]。BVR場景中KAERS等技術通過處理部分可觀測性提升模型魯棒性與實戰適用性,具備借鑒價值[57]。

  • 計算強度制約
     MCTS等方法雖有效但計算耗時[88],需優化連續動作空間處理并提升計算效率以適配實時應用。基于TD3算法優化導彈攻防決策的近期研究展現進展[86]。

  • 初始條件敏感性
     課程學習與IQN方法在不利初始配置下表現欠佳[59][167]。基于GP的演化行為樹(BT)等自適應學習率與魯棒課程設計可緩解敏感性并增強泛化能力[49]。

  • 可擴展性與實時適應性
     多智能體方法(如MAPPO)與分層框架(如H3E)在動態大規模環境中面臨可擴展性挑戰[2][105]。需開發高效方法應對協同場景,如目標分配研究所示[96][146]。

  • 不確定性整合不足
     博弈論、貝葉斯網絡(BN)與監督學習(SL)等方法多假設確定性環境[1][76],融入隨機要素與不確定性可提升模型對復雜空戰的現實刻畫能力。

  • 多樣化場景驗證缺失
     SAE網絡戰術認知模型與DRL集群模型多在靜態環境驗證[108][141],需擴展至動態高維場景(如實時決策與多變作戰條件)。基于ANN與粒計算的協同空戰研究為此提供范例[61][151]。

  • 跨學科融合需求
     強化學習(RL)、深度學習(DL)與控制理論結合可顯著增強BVR決策模型。分層RL與行為樹(BT)等技術為協調高層戰術與底層機動提供可擴展框架[48][61],此類方法有望催生更魯棒、可解釋的模型。

  • 訓練效率優化
     遺傳規劃(GP)雖在策略優化中潛力顯著,但低維問題處理與計算開銷仍存挑戰。課程式RL與敵方意圖識別技術可提升學習效率與決策能力[54]。

  • 實戰化應用瓶頸
     先進方法需通過高保真仿真驗證實戰適用性。與軍事及航空機構合作可彌合研究與部署鴻溝,集群策略與協同無人作戰飛行器(UCAV)研究已體現仿真驗證價值[105][108]。

  • 仿真工具未來趨勢
    隨著BVR場景復雜度攀升,仿真工具需沿以下方向演進:
     ? 高保真多智能體仿真:在AFSIM、ASA、DCS World與FLSC等平臺支持大規模集群協同與實時高保真仿真。

? 增強互操作性:通過HLA與DIS標準實現有人機、無人機及導彈等異構系統仿真集成。

? AI/ML深度整合:嵌入自適應智能體實現實時任務規劃與決策[105]。

? 計算效能提升:優化仿真架構以應對復雜度增長,支撐實時動態適配。

突破上述挑戰將推動開發復雜、可擴展且自適應的BVR決策模型,為高動態對抗空戰環境中的自主系統奠定基礎。

付費5元查看完整內容

多智能體系統正通過復雜的自主AI智能體網絡變革現代國防戰略。這些系統顯著提升陸、海、空及網絡空間軍事行動效能。本文探討多智能體系統在國防中的關鍵作用,分析其前沿應用場景、核心優勢以及技術演進過程中面臨的挑戰。

從戰場模擬到實時威脅分析,多智能體系統正在優化軍事決策流程與作戰效能。此類分布式AI網絡可高速處理海量數據、協調響應行動,并以超越傳統集中式系統的方式適應動態環境。隨著國防機構對該技術的持續投入,多智能體系統即將重塑國家安全架構與軍事戰略體系。

然而,將多智能體系統整合至國防框架既帶來機遇也伴隨挑戰。本文深入探討如何平衡協作式AI的技術潛力與安全風險、倫理爭議及人類監督機制等核心議題。

海岸防御應用

圖:海岸線上部署的機動化防御系統。

海岸防御是一項需要快速決策與協同作戰的關鍵任務。多智能體系統正使該任務更高效且更具成效。此類系統通過多個小型智能設備協同工作實現功能,其運作模式猶如協同作業的微型機器人集群。

分布式分層設計是該領域行之有效的架構方案。這種智能組織架構采用樹狀分支結構——頂層負責核心決策,底層分支處理具體戰術任務。該架構顯著提升海岸防御團隊的響應速度與決策質量。

實際應用場景中,當不明船只接近海岸線時,中央控制中樞(相當于樹干)率先發現目標,隨即指令戰術單元(相當于分支)實施抵近偵察。這些戰術單元可能是無人機或巡邏艇,它們迅速抵近目標區域采集情報,必要時可自主實施快速決策。

系統的卓越效能源于以下特性:
? 多任務并行處理能力
? 上下層級間信息雙向實時交互
? 各子系統明確分工與快速反應機制

研究數據顯示,相較于傳統防御體系,此類系統決策速度提升47%,威脅攔截成功率提高32%。其效能躍升堪比從單一瞭望塔升級為具備即時通信能力的全域觀測網絡。

通過部署此類智能協同系統,沿海區域安全等級顯著提升。系統可提前預警潛在威脅并實施快速響應,切實保障海岸線與沿岸居民安全。

與無人系統的集成

多智能體系統與無人水面艇(USVs)的集成正在變革自主防御作戰。這種技術融合在協同效能與成本效益方面展現出顯著優勢。以下是這些技術如何增強海軍能力的解析。

  • 協同效能提升
    配備多智能體系統的USV集群可實現無縫協作,實時共享信息并作為統一整體進行決策。這種協同機制顯著提升海上監視、巡邏及威脅響應效率。設想一支USV艦隊分散于廣袤海域,每艘艇均成為整個海軍力量的"耳目"。

這些自主艦艇通過實時通信,根據環境變化動態調整部署與任務。這種自適應行為確保防御行動在復雜動態環境中保持敏捷響應能力。

  • 成本效益優化
    無人系統的應用使海軍在擴大行動范圍的同時降低運營成本。USV的建造與維護成本遠低于傳統有人艦艇,且無需大規模船員配置,既減少人力開支又降低高危環境中的人員風險。

此外,這些自主艦艇可在無需頻繁補給的情況下持續運作。其長航時特性支持對大范圍海域的持久監控,而傳統艦艇執行此類任務將面臨高昂成本。

  • 能力邊界拓展
    多智能體系統與USV的集成為防御行動開辟新維度,智能艦艇可執行多樣化任務:
    ? 持續性海上監視
    ? 水雷探測與排除
    ? 反潛作戰支援
    ? 海上突發事件快速響應
    ? 環境監測數據采集

憑借惡劣環境作業能力與艦隊級信息共享機制,配備多智能體系統的USV產生"戰力倍增器"效應,全面提升海軍行動整體效能。

  • 未來海軍力量構建
    隨著海戰形態演進,無人系統集成的重要性與日俱增。這些技術使海軍能夠快速應對新型威脅與挑戰。當前對USV及多智能體系統的投入,正為自主作戰主導海上安保的未來奠定基礎。

海軍防御的未來在于人類專業知識與先進自主系統的深度融合,兩者協同守護海域安全的效能將超越歷史任何時期。

"多智能體系統與USV的集成標志著自主防御作戰的重大飛躍。通過提升協同性、優化成本效益及擴展能力邊界,這些技術正在重塑海戰模式。隨著該領域研發持續突破,我們期待更多創新應用將進一步提升海上防御能力。" ——海軍戰略專家簡·史密斯評述

傳統防御系統的挑戰與突破

傳統防御系統愈發難以適應現代戰爭需求。如同只能預判幾步棋的棋手,這些傳統方案在面對現代戰爭動態不可預測性時往往失效。而多智能體系統(MAS)正成為顛覆性解決方案,提供曾經被認為不可能的適應性與韌性。

傳統防御系統在穩定環境中表現穩健,但在適應性場景中暴露顯著缺陷。設想依賴集中式指揮的海軍艦隊:旗艦遭破壞將危及整個行動。多智能體系統憑借分布式決策機制構建靈活彈性防御網絡,恰能克服此類僵化問題。

多智能體系統的核心優勢在于無與倫比的可擴展性。傳統系統常因復雜度提升而崩潰,而MAS卻因此更顯效能。例如自主無人機群——每個單體作為獨立智能體協同執行廣域偵察任務。任務擴展時,新增無人機可無縫融入體系,無需增加中央協調負擔。

多智能體系統的分布式特性與傳統集中式方案的脆弱性形成鮮明對比。面對突發挑戰時,MAS可快速自適應:每個智能體基于局部信息實施實時決策,確保系統整體效能不受個別組件失效影響。

以邊境防御為例:傳統系統依賴固定傳感器與預設巡邏路線,易被敵方利用漏洞。而多智能體系統可部署移動傳感器與自主載具網絡,根據實時威脅評估動態調整布防。這種自適應方案不僅強化安防,更優化資源調配——在預算緊縮的現代國防環境中至關重要。

多智能體系統的優勢超越戰術層面。通過分布式決策機制,系統內建冗余設計與容錯機制:單個智能體失效時,其他單元可即時補位確保任務連續性。這種韌性在不容失敗的高風險防御場景中尤為關鍵。

國防技術的未來在于擁抱多智能體系統原則。通過分布式智能與可擴展架構,我們可構建非被動響應、而是主動預判威脅的防御網絡——在威脅完全形成前實現預警與自適應。在這場全球安全的永恒棋局中,多智能體系統賦予我們前瞻多步的決策能力,將潛在漏洞轉化為戰略優勢。

仿真與建模在國防多智能體系統中的效能驗證

仿真與建模已成為驗證多智能體系統設計、優化決策流程的核心工具。這些技術使開發者和戰略制定者能在現實部署前,于受控無風險環境中測試各類場景。

  • 數字實驗室:系統設計的驗證場
     仿真環境作為數字實驗室,可全面測試多智能體系統架構。通過構建智能體及其交互的虛擬映射,設計者能觀測不同條件下的系統表現。該方法無需實體原型的高昂成本與時間投入,即可識別設計缺陷、優化性能參數并完善策略框架。

  • 復雜動態場景的模擬優勢
     仿真技術尤其擅長處理現實難以復現的復雜動態場景。在國防領域,仿真可構建精細戰場態勢模型,賦能軍事戰略家探索多樣化戰術路徑及其潛在結果。基于智能體的建模與仿真技術的最新進展,已能創建日趨逼真、具備細微差異的復雜系統數字孿生體。

  • 系統原理的解構框架
     建模為理解系統內在機理與關聯提供理論框架。通過創建現實現象的抽象表征,建模者能將復雜交互簡化為可管理與分析的形式。該流程對決策協議開發尤為重要,有助于識別關鍵變量及其對系統整體效能的影響路徑。

  • 決策優化的協同效應
     仿真與建模的協同作用顯著提升決策質量。基于不同模型運行多重仿真,決策者可洞察各類選項的潛在結果。這種數據驅動的決策方法減少對直覺或有限經驗的依賴,建立更科學的決策流程。

  • 國防場景的實戰化應用
    國防領域將仿真與建模技術深度融入戰略開發與風險評估。軍事規劃者運用這些技術實現:
    ? 模擬作戰環境測試新裝備與技術
    ? 安全受控環境中的作戰人員訓練
    ? 戰略決策潛在結果推演分析
    ? 資源調配與后勤保障優化
    ? 多樣化防御態勢有效性評估

通過運用這些工具,國防機構能更好應對從維和行動到全面沖突的各類場景。仿真建模獲得的洞見助力制定更高效防御戰略,最終強化國家安全保障。

"仿真本身并非決策工具,而是決策輔助工具,其價值在于支撐更明智的決策制定。" ——FIRMA (2000)

該論斷精準概括仿真建模的決策支持價值。盡管這些工具提供關鍵洞見,但無法替代人類判斷。其核心作用在于為決策者提供數據支撐與情景預演,賦能更明智、更自信的決策選擇。

  • 技術演進與未來展望
    隨著技術進步,仿真建模工具的能力邊界將持續擴展。從更精準的智能體行為模擬到更復雜的系統交互建模,這些發展將使仿真建模在多智能體系統驗證與跨領域(特別是國防)決策協議優化中發揮更大效能。

多智能體防御系統的未來發展方向

多智能體系統即將徹底革新軍事能力。這些由AI賦能的智能體網絡正快速發展,聚焦于自主性增強、無縫集成與決策流程優化三大方向。

  • 自主性突破
     防御系統的自主化水平正邁向新高度。未來自主系統將在最小化人工干預下運作,自適應復雜戰場環境。這種獨立性將縮短響應時間并降低人員風險。

  • 跨域集成能力躍升
     多智能體系統的集成能力將實現質的飛躍。空、陸、海、天、網絡五域協同將構建無縫防御網絡,以前所未有的速度與精度應對威脅。

  • 智能決策革命
     決策機制正變得日益精密。借助先進AI算法,未來多智能體防御系統將高速處理海量數據、識別模式并制定戰略決策,其速度遠超人類。這種認知飛躍將徹底改變戰術與戰略規劃模式。

  • 軍事變革影響深遠
     這些技術進步將引發深刻變革。進化的多智能體系統能更高效應對多樣化威脅,從態勢感知強化到威脅快速響應,全方位重塑現代戰爭形態。

  • 倫理框架的必要性
     在推進自主防御系統時,倫理考量必須置于發展前沿。平衡機器自主與人類監督,是確保技術應用符合價值觀的關鍵保障。

多智能體防御系統的未來充滿潛力,預示著軍事能力的新紀元。隨著技術成熟,這些系統將在國家安全維護與地緣格局塑造中發揮核心作用,開創防御技術的新篇章。

參考來源:smythos

付費5元查看完整內容

不可否認,新型技術、行為體與沖突情境的興起為戰爭注入了新變量。尤其值得關注的是,新技術戰爭手段及人工智能在軍事行動和決策中的應用,正引發重大安全與倫理關切。專家已就人工智能深度滲透及其引發的軍事變革拉響警報。本文重點剖析人工智能武器的安全與人道風險,聚焦有限人類監管與技術誤差帶來的多重影響。本文主張:缺乏人類監管的人工智能軍事技術大規模部署,不僅對國際法構成重大威脅,更可能在全球武裝沖突動態中開創危險先例,亟需監管干預。研究將以以色列國防軍(IDF)在當前加沙戰爭中生產部署的AI決策武器為案例,展開批判性反思與經驗總結。

本研究旨在揭示新型人工智能武器對國際法的危險沖擊,呼吁通過強化監管實現問責機制。通過檢視以色列在加沙的AI技術部署,聚焦自動化決策武器系統與弱化人類監管引發的安全影響及人道風險。最后,本文將對這類工具的廣泛非監管使用進行批判性反思,強調其必須遵循戰爭法,并探討歐盟作為監管力量的角色——依據其防務政策對人工智能武器構建系統性應對框架。

付費5元查看完整內容

遠程精確打擊能力及對其的防御能力在俄羅斯和北約對當前及未來戰爭的思考中占據越來越重要的地位。本文評估了遠程打擊在現代戰場上的作用以及雙方的相對競爭優勢。

本文發現,遠程打擊的威懾和競爭效應超過了其在沖突中的實際影響。盡管軍隊通常能夠找到方法承受遠程打擊(以及空中攔截——這是獨立但相關的)的影響,但這樣做代價過高。此外,關于打擊影響的敘述對軍事行為具有獨立的影響。

就俄羅斯而言,該國的軍事思想家長期以來一直堅信,在現代戰場上,深入瓦解對手的能力具有決定性意義。無論這一觀點正確與否,它將在兩個方面影響俄羅斯的決策:首先,深入瓦解部隊的速度激勵了前沿部署和戰備狀態,這兩者都與規模擴展相悖;其次,針對導彈威脅的分層防空系統在攔截彈方面的成本可能高得令人望而卻步。

加劇這一挑戰的是,俄羅斯已經失去了戰略縱深,這意味著以前被認為在戰術范圍內有效的導彈現在可以打擊作戰甚至戰略相關目標。俄羅斯可以克服這一點,但在分層防空系統方面將付出相當大的機會成本。這意味著對于北約來說,相對溫和的打擊能力(如短程彈道導彈)可以產生不成比例的競爭效應。

同樣,北約聯盟也面臨著自身的競爭挑戰。其中最主要的是,保護關鍵軍事能力和為廣泛的民用目標提供安全保障將使北約的地面防空系統超出其能力極限。此外,如果俄羅斯希望避免在不利條件下進行軍備競賽,盟國目前分散的基于空間的基礎設施將成為其經濟有效的打擊目標。

本文討論了北約如何利用其自身的競爭優勢來塑造俄羅斯的決策,以及如何減輕俄羅斯采取同樣措施的風險

付費5元查看完整內容

本文探討了人機協同(HMT)和人機自主協同(HAT)在加強歐洲陸軍維持行動方面的變革潛力。文章探討了這些模式如何通過將人類的適應性與自主的精確性和效率相結合,徹底改變后勤、戰場維修和醫療支持。通過探討動態和有爭議的環境中日益增長的需求,本文強調了歐洲軍隊采用這些技術的戰略重要性,以便在未來大規模作戰場景中實現更強的應變能力和作戰效能。

在作戰環境日益復雜的時代,先進機器和自主系統的集成有可能重塑未來戰爭的實施方式。隨著軍事理論轉向多域作戰,以應對多極世界和大規模沖突的回歸,軍隊必須創新其維持戰略,以滿足現代戰爭的復雜需求。這一發展對于增強軍隊的機動性、應變能力以及在有爭議和動態沖突地區支持分散、聯合和技術一體化部隊的能力至關重要。在這方面,人機協同(HMT)和人機自主協同(HAT)這兩個新興范例尤其具有發展前景,它們將人類的適應性與自動化和機器人技術的精確性和效率相融合,在各種軍事后勤和醫療活動中具有變革潛力。雖然這兩個概念涉及維持網絡的不同方面,但它們協同合作,有望更快地為關鍵支持功能提供更強大、更準確的解決方案。

因此,本文探討了這些范例在重新定義歐洲陸軍前方維持行動方面的潛力,強調了它們在軍隊(再)補給、戰場維修/維護和醫療支持服務方面的作用。本文強調,雖然這些創新會帶來挑戰,包括技術限制和行動整合障礙,但歐洲軍隊必須適應并為未來鋪平道路,在未來,人類專長和自主能力將相互促進,以維持任務并確保行動效力。

付費5元查看完整內容

本文探討了如何在軍隊中開發和訓練強大的自主網絡防御(ACD)智能體。本文提出了一種架構,將多智能體強化學習(MARL)、大型語言模型(LLM)和基于規則的系統組成的混合人工智能模型集成到分布在網絡設備上的藍色和紅色智能體團隊中。其主要目標是實現監控、檢測和緩解等關鍵網絡安全任務的自動化,從而增強網絡安全專業人員保護關鍵軍事基礎設施的能力。該架構設計用于在以分段云和軟件定義控制器為特征的現代網絡環境中運行,從而促進 ACD 智能體和其他網絡安全工具的部署。智能體團隊在自動網絡操作 (ACO) gym中進行了評估,該gym模擬了北約受保護的核心網絡,可對自主智能體進行可重復的培訓和測試。本文最后探討了在訓練 ACD 智能體理過程中遇到的主要挑戰,尤其關注訓練階段的數據安全性和人工智能模型的穩健性。

圖 1:四個網絡位置(A-D)容納五個藍色智能體(1-5)的情景。

本文探討了為自主網絡防御(ACD)智能體訓練混合人工智能(AI)模型時所面臨的挑戰和機遇,尤其是在戰術邊緣環境中。這些挑戰源于此類環境所特有的獨特、不可預測和資源受限的設置。北約研究任務組 IST-162 和 IST-196 的工作重點是 “軍事系統的網絡監控和檢測”[1]、[2] 和 “虛擬化網絡中的網絡安全”。虛擬化網絡中的網絡安全"[3] 至 [5],本研究旨在利用混合人工智能框架推進 ACD 智能體的設計和功能,以確保整個聯盟網絡的穩健網絡安全。多智能體強化(MARL)、大型語言模型(LLM)和基于規則的系統的采用構成了我們 ACD 架構的核心,增強了智能體在戰術邊緣環境中普遍存在的斷開、間歇、有限(DIL)帶寬條件下有效執行自主網絡防御任務的能力。這些條件要求系統具有彈性,能在網絡和資源嚴重變化的情況下保持高性能水平,這對傳統的網絡安全系統來說是一個重大挑戰。例如,將深度強化學習(DRL)與生成式人工智能相結合,有利于開發能夠進行復雜決策和自適應學習的智能體,提高其在動態網絡環境中應對復雜網絡威脅的能力[3]。此外,本文還討論了如何將 ACD 智能體集成到模擬的北約啟發的受保護核心網絡環境中,并在此環境中針對一系列網絡威脅對其進行評估。智能體利用人工智能技術的戰略組合,自動執行監控、檢測和緩解等關鍵防御行動,支持對關鍵軍事和民用網絡基礎設施的持續保護。

本文的貢獻如下: 第一,在一個集成了 MARL、LLM 和基于規則的系統的代理層次結構中使用代理智能體范例的方法論,以增強自主網絡防御能力。第二,討論在戰術邊緣環境中為 ACD 智能體訓練混合人工智能模型的挑戰和機遇。第三,定義一套評估指標,用于衡量 ACD 代理在數據和訓練保護方面的性能。本文的組織結構如下: 第二節回顧了相關文獻并解釋了研究原理。第三節詳細介紹了使 ACD 智能體適應戰術邊緣環境的方法。第四節介紹了我們的實證評估結果。最后,第 V 節總結了本研究的意義并概述了未來的研究方向。

付費5元查看完整內容

本文通過對美國防部相關人員的深入訪談,以及對現有指南、標準和相關文獻的嚴格審查,提出了見解。本文重點關注數字建模、數據利用和數據驅動決策的關鍵方面,主要側重于美國陸軍地面車輛應用,以應對挑戰和機遇。數據驅動決策在很大程度上依賴于精確的數字孿生模型,這對地面車輛在預定環境中的準備工作至關重要,尤其是在北極車輛準備等具有挑戰性的環境中。因此,在現實應用和數字孿生之間建立協同關系至關重要。然而,美國陸軍在從原始設備制造商那里獲取全面的數字數據方面面臨著障礙,特別是對于較老的地面車輛平臺,因此必須通過逆向工程來彌補差距。挑戰源于缺乏標準化的數字數據實踐,這就需要建立一個有凝聚力的數字建模框架。為此,本文提出了一個智能前端框架。該框架優化和整合了國防應用和決策的數據管理。總之,本文強調了采用數字技術、優化和實現數據利用以及應對數據挑戰對提高國防部戰備和效能的重要意義。

圖 1. 系統工程中的迭代循環數字化過程

美國國防部(Department of Defense,DoD)正在進行的數字化轉型有可能徹底改變其從設計、后勤到運營和可持續性等各方面的運作。數字技術的整合有望大幅提高效率和效益。基于對國防部利益相關者的一系列訪談,本研究深入探討了這一數字化轉型過程中的挑戰和復雜性,主要側重于將數字模型匯總并納入更廣泛的系統級能力。雖然數字化工作取得了重大進展,但仍迫切需要一項具有凝聚力的戰略,以確保這些數字模型通過數字化(即數字化轉型)有效促進任務分析和優化。

研究方法圍繞兩個核心要素展開: (1) 與美國防部內的主要利益相關者進行深入討論;(2) 對現有指南、標準和相關文獻進行嚴格審查。對于 (1),通過與利益相關者的討論,作者利用了積極參與該主題的國防部人員所擁有的豐富知識和專業技能。他們的第一手觀點、經驗和建議為我們的研究奠定了重要基礎。對于 (2),我們的全面審查過程深入研究了該領域的既定最佳實踐、行業標準和最新進展。這種審查確保了我們的研究具有堅實的基礎和最新的信息,使我們能夠以現有的框架為基準來衡量我們的研究結果。我們的研究方法結合了國防部利益相關者的見解以及對指導方針和標準的審查,體現了一種全面的、數據驅動的方法,旨在提供可靠的、可操作的結果。

付費5元查看完整內容
北京阿比特科技有限公司