美國海軍陸戰隊需要制定新的海軍陸戰隊空中指揮控制系統(MACCS)作戰概念,彌補海軍遠征兵力航空作戰在條令上的差距,并使MACCS具有敏捷性和生存能力。
未來的安全環境和海軍陸戰隊將任務重點轉向與同級對手的競爭,給海軍陸戰隊空中指揮控制系統(MACCS)帶來了重大挑戰。為了在未來安全環境中保持相關性,海軍陸戰隊需要制定與海軍遠征作戰相一致的新MACCS作戰概念。海軍和海軍陸戰隊需要制定新的航空作戰和航空指揮控制條令,以確定海軍遠征兵力航空兵將如何支持 CFMCC 的作戰行動。MACCS應能通過采用任務組織的節點和團隊進行分布式作戰。最后,通過規范的特征管理和多樣化的傳感器使用,使其更具生存能力。
海軍陸戰隊需要制定新的MACCS作戰概念,彌補海軍遠征軍航空作戰的條令差距,使MACCS具有敏捷性和生存能力。首先,通過追求新的作戰概念,海軍陸戰隊可以探索將MACCS的作用擴展到其他領域的機會。它有可能通過使用或整合各種傳感器來傳播全域態勢感知,從而實現全域火力打擊。它還有可能圍繞聯合全域指揮與控制(JADC2)等新概念進行重組,從而實現分布式 C2 節點,使MACCS能夠剝離其綜合 C2 中心(如 TACC、DASC、TAOC)。其次,海軍和海軍陸戰隊關于海軍遠征兵力航空作戰的合并條令出版物將明確指揮關系和海軍陸戰隊航空兵在海軍作戰中的作用。第三,MACCS應能根據任務的不同,利用任務組織的節點或團隊進行分布式作戰。為了提高生存能力,海軍陸戰隊需要將技術解決方案與新的使用概念、特征管理 TTP 和多樣化的傳感器使用方案相結合。
美國武裝部隊已在為未來戰斗做準備。在過去20年的沖突中,技術上處于劣勢的敵人有效地打擊了美國。當與具有同等或更大技術優勢的對手作戰時,美國武裝部隊將需適應并準備打贏這些戰斗。隨著新戰略的顯現,美國必須通過 EABO 和 LOCE 實現海軍一體化。為了取得成功,美國海軍陸戰隊將保護其在云中的 C2 和 ISR 能力,并做好準備,即使在性能退化的環境中也能繼續發揮作用。任務式指揮命令,能夠在沒有云訪問的情況下繼續發揮作用,是贏得未來戰斗的關鍵。如果美國能適應、訓練并準備好應對可能發生的情況,就能在 C2D2 環境中作戰。
如果海軍陸戰隊要與近似對手競爭,海軍陸戰隊必須將人工智能(AI)作為一種決策支持系統(DSS),以加快規劃-決策-執行(PDE)周期,從而在認知、時間和致命性方面取得優勢。
信息系統和監視技術正在改變戰爭的特點,使較小的部隊也能分布和影響較大的區域。但是,目前的指揮、控制、通信、計算機、情報、監視和偵察系統(C4ISR)以及機器人和自主系統(RAS)都是人力密集型系統,會產生大量數據,海軍陸戰隊必須迅速利用這些數據來提供可操作的情報。由于遠征高級基地行動(EABO)要求部隊規模小、分布廣、復原力強,必須迅速做出明智決策,才能在各種不斷發展和演變的威脅面前生存下來,因此這就存在問題。
使用數據分析和機器學習的人工智能處理、利用和傳播信息的速度比人類更快。配備了人工智能 DSS 的 EAB 指揮官將以比對手更快的速度做出更明智的決策。然而,在實現這一目標之前,目前還存在著巨大的障礙。海軍陸戰隊必須為 EABO 制定一個人工智能支持概念,并將其納入海軍作戰概念中,充分確定人工智能工作的優先次序和資源,并為企業數據管理提供資源,以最大限度地利用數據分析和機器學習來發現數據庫中的知識(KDD)。此外,海軍陸戰隊必須利用美國陸軍的人工智能實驗和概念開發來實現多域作戰(MDO)。最后,海軍陸戰隊應確定當前可通過狹義人工智能加以改進的技術和作戰領域。
指揮、控制、通信、計算機、情報、監視和偵察(C4ISR)以及機器人和自主系統(RAS)技術的普及正在改變戰爭的特點,使較小的部隊能夠分布和影響更大的區域。然而,作戰期間收集的數據正在迅速超越人類的認知能力。早在 2013 年,美國國防部就指出:"ISR 收集和......收集的數據急劇增加。我們繼續發現,我們收集的數據往往超出了我們的處理、利用和傳播能力。我們還認識到,就戰術層面的分析人員數量而言,PED 的資源需求可能永遠都不夠"。
如果能迅速加以利用,C4ISR/RAS 數據將為指揮官提供戰勝敵人的信息優勢。但是,從這些來源獲取及時、可操作的情報需要大量人力,而且必須通過人工手段對數據進行快速處理、利用和傳播(PED)才能發揮作用。如果遠征軍要通過 C4ISR 與近鄰競爭并獲得競爭優勢,這對海軍陸戰隊來說是個問題。這些豐富的信息可以加快計劃-決策-執行(PDE)周期,但如果不加以管理,就會使領導者被信息淹沒,猶豫不決。必須采取相應措施,利用新技術實現數據自動化和管理。如果海軍陸戰隊要與近似對手競爭,海軍陸戰隊必須將人工智能(AI)作為決策支持系統(DSS),以加快 PDE 周期,從而在認知、時間和致命性方面取得優勢。
本文旨在證明,利用人工智能技術可加快指揮官在其環境中的觀察、定位、決策和行動能力。本文承認,但并不打算解決射頻通信、信息系統和組織變革中出現的技術問題的重大障礙。本文分為四個不同的部分。第一部分重點討論不斷變化的安全環境和新興技術帶來的挑戰,以及這些挑戰將如何影響指揮官。第二部分討論技術解決方案、決策模型,以及人工智能作為 DSS 如何為 EAB 指揮官創造認知、時間和致命優勢。第三部分將在未來沖突中,在 EAB 指揮官很可能面臨的假想作戰場景中說明這種系統的優勢。最后一部分重點討論了實施過程中遇到的障礙,并對今后的工作提出了建議。
自 2001 年以來,海軍陸戰隊在 "持久自由行動"(OEF)、"伊拉克自由行動"(OIF)和最近的 "堅定決心行動"(OIR)中重點打擊暴力極端組織(VEO)和反叛亂戰爭。美國武裝部隊所處的是一個寬松的環境,有利于技術優勢、不受限制的通信線路和所有領域的行動自由。隨著 2018 年《國防戰略》(NDS)和海軍陸戰隊第 38 任司令官《司令官規劃指南》(CPG)的出臺,這種模式發生了變化,《司令官規劃指南》將大國競爭重新定為國家國防的首要任務,并將海軍陸戰隊重新定為支持艦隊行動的海軍遠征待命部隊。
為了支持這一新的戰略方向,海軍陸戰隊開發了 "先進遠征作戰"(EABO),作為在有爭議環境中的瀕海作戰(LOCE)和分布式海上作戰(DMO)的一種使能能力。EABO 為聯合部隊海上分隊指揮官或艦隊指揮官提供支持,在反介入區域拒止(A2/AD)環境中提供兩棲部隊,以獲取、維持和推進海軍利益,作為控制海洋的綜合海上縱深防御。然而,EABO 對部隊提出了一些必須考慮的具體挑戰。這些挑戰包括在所有領域與近似對手的競爭、對新興技術的依賴、人員與能力之間的權衡,以及地理距離和分布式行動帶來的復雜性。總的主題是如何通過在關鍵點上集成人工智能技術來克服這些挑戰,從而增強指揮官的 PDE 循環。
如果情報驅動軍事行動,那么海軍陸戰隊就會出現問題。如前所述,數據收集的速度超過了戰術層面的處理、利用和傳播(PED)過程。數據本身是無用的,必須經過組織和背景化處理才有價值。根據認知層次模型(圖 1),數據和信息對形成共同理解至關重要。聯合情報流程通過規劃和指導、收集、處理和利用、分析和制作、傳播和整合以及評估和反饋這六個階段來實現這一目標。C4ISR/RAS 的擴散擴大了收集范圍,但 PED 卻沒有相應增加。除非采取措施實現信息管理自動化,否則指揮官將面臨信息超載和決策癱瘓的風險。
信息超載是指由于一個人無法處理大量數據或信息而導致的決策困難。 羅伯特-S-巴倫(Robert S. Baron)1986 年關于 "分心-沖突理論"(Distraction-Conflict Theory)的開創性研究表明 執行復雜任務的決策者幾乎沒有多余的認知能力。由于中斷而縮小注意力,很可能會導致信息線索的丟失,其中一些可能與完成任務有關。在這種情況下,學習成績很可能會下降。隨著分心/干擾的數量或強度增加,決策者的認知能力會被超越,工作表現會更加惡化。除了減少可能關注的線索數量外,更嚴重的干擾/中斷還可能促使決策者使用啟發式方法、走捷徑或選擇滿足型決策,從而降低決策準確性。
鑒于 Baron 的結論,C4ISR/RAS 將降低而不是提高戰術指揮官的決策能力。筆者在擔任海軍陸戰隊作戰實驗室(MCWL)科技處地面戰斗部(GCE)處長期間進行的研究證實了這一結論。2013 年,海軍陸戰隊作戰實驗室 (MCWL) 開展了戰術網絡傳感器套件 (TNS2) 有限技術評估 (LTA)。一個海軍陸戰隊步槍連及其下屬排配備了空中和地面機器人、地面傳感器以及戰術機器人控制器(TRC)。戰術機器人控制器使一名操作員能夠在白天或黑夜,在視線范圍外同時控制多輛戰車進行 ISR。MCWL 將這種 ISR 形式命名為多維 ISR(圖 2)。LTA顯示,使用TNS2的排級指揮官在防御、進攻和巡邏時都能迅速發現威脅,但LTA也發現了兩個重大問題:1.在軟件和機器人能夠自主分析和關聯傳感器輸入之前,海軍陸戰隊員仍需收集和整理ISR數據;2.在中高作戰壓力下... 在中度到高度的作戰壓力下......操作人員會超負荷工作......無法探測和識別目標,并普遍喪失態勢感知能力。
海軍陸戰隊情報監視和偵察--企業(MCISR-E)正在通過海軍陸戰隊情報中心(MIC)、海軍陸戰隊情報活動(MCIA)與戰斗支援機構(CSA)和國家情報界(IC)連接,納入預測分析流程,以解決這些問題。通過海軍陸戰隊情報活動(MCIA),MCISRE 解決了全動態視頻(FMV)聯合 PED 支持問題,并于 2017 年成立了全動態視頻聯合 PED 小組,該小組具有全面運作能力,每周 7 天提供 12 小時支持,費用由 14 名分析員和 3 名特派團指揮官承擔。
雖然這是朝著正確方向邁出的一步,但由于人力需求量大,這可能證明是不夠的。EAB 指揮官必須依靠地理位置相隔遙遠的上級總部提供的、通過有爭議的電磁頻譜傳輸的情報成品。海軍陸戰隊司令部的 MIX 16(海軍陸戰隊空地特遣部隊綜合演習)實驗結果證實了這一結論: "未來戰爭將在具有挑戰性的電磁環境中進行,分布在各地的部隊......從上級總部 "伸手回來 "獲取日常情報援助的能力可能有限,而且無法依賴"。此外,在戰術和作戰層面增加更多的分析人員會導致循環報告,這只會加劇信息超載問題。
根據《EABO 手冊》,EAB 必須 "產生大規模的優點,而沒有集中的弱點"。美國陸軍在 2016 年進行的實驗表明,較小的單位有可能分布并影響較大的區域(圖 3)。有人無人協同作戰概念(MUMT)認為,采用縱深傳感器、縱深效應和支援行動的部隊可實現戰斗力并擴大其影響范圍。
然而,DO 和 EABO 是零和博弈。C4ISR 和 RAS 技術可以讓部隊分布得更遠,但實驗表明,規模經濟會喪失。增加兵力將增加所有領域的需求。正如皮涅羅在 2017 年的一篇研究論文中總結的那樣:"當部隊分散時,就會失去指揮與控制、情報和火力等輔助功能的效率。"在后勤方面也是如此。這種 "DO 困境 "可以用以下經過修訂的 "三重約束范式 "來表示(圖 4)。隨著部隊的分散,一個領域的整合將削弱另一個領域的能力。如果 EAB 指揮官能在不增加 EAB 占地面積的情況下提高能力,就能重新獲得規模經濟效益。智能技術整合可以解決這一問題。
人工智能展示了解決 PED 問題和 EABO/DO 困境的最大潛力,同時為指揮官提供了對抗性超配。據審計總署稱,"人工智能可用于從多個地點收集大量數據和信息,描述系統正常運行的特征,并檢測異常情況,其速度比人類快得多"。由聯合規劃流程(JPP)提供信息的人工智能系統可以產生更快、更明智的 PDE 循環。如果海軍陸戰隊想要實現 EABO,就不能僅僅依靠人類。相反,未來的關鍵在于如何利用人工智能來增強人類的決策能力。
研究表明,人類的決策并不完美,在復雜和緊張的情況下會迅速退化。人類的決策在很大程度上是憑直覺做出的,并在進化過程中不斷優化,通過使用判斷啟發法(偏差)來防止認知超載。偏差是快速決策的捷徑,它根據以往的經驗和知識做出假設。36 偏差是一種快速決策的捷徑,它根據以往的經驗和知識做出假設。雖然這些決策已經過優化,但并沒有參考因啟發式方法而被否定的大量數據。由于這些決策都是基于以往的經驗和現有的知識,人們在面對混亂的新情況時可能毫無準備。如前文所述,這對 EAB 指揮官來說是個問題。決策支持系統可以提供幫助。
決策支持系統可以是一個人用來提高決策質量的任何方法。海軍陸戰隊營長利用其參謀人員和聯合規劃流程 (JPP) 提供專家判斷來提高決策質量,而商業部門也越來越依賴于決策支持系統和人工智能來處理大量數據。在本文中,決策支持系統被定義為 "幫助用戶進行判斷和選擇活動的基于計算機的交互式系統",也被稱為基于知識的系統,因為 "它們試圖將領域知識形式化,使其適合于機械化推理"。大多數 DSS 都采用西蒙的有限理性理論(Theory of Bounded Rationality)來建模,該理論承認人類在信息、時間和決策認知方面的局限性。西蒙提出了一個四步模型(圖 5),包括:1.觀察現實的智能;2.制定和衡量標準和備選方案的設計;3.評估備選方案和建議行動的選擇;以及 4.根據信息采取行動的實施。4. 執行,根據信息采取行動,最后反饋到第一步。
指揮官決策的兩個關鍵要素是選擇活動和推理。選擇活動,也稱為選項意識,是指在某種情況下對不同行動方案或備選方案的認識。選擇意識為指揮官提供了通往解決方案的不同途徑。能夠自主分析海量數據的 DSS 可能會揭示出以前不知道的選項。推理是一種邏輯思維能力。通過構建決策過程,數據支持系統可以不帶偏見和感情色彩地對數據得出結論。一些研究表明,在現實環境中,簡單的線性決策模型甚至優于該領域的專家。
DSS 有不同的類型,而類型決定了其性能和對人類增強的效用。智能決策支持系統(IDSS)是與作戰行動最相關的系統,因為它使用人工智能技術和計算機技術來模擬人類決策,以解決實時復雜環境中的一系列問題。在本文中,它將被稱為人工智能決策支持系統或 AI-DSS。它由一個數據庫管理系統(DBMS)、一個模型庫管理系統(MBMS)、一個知識庫和一個用戶界面組成,前者用于存儲檢索和分析數據,后者用于獲取結構化和非結構化數據的決策模型。人工智能-決策支持系統結合了人類構建問題結構的能力,以及通過統計分析和人工智能技術來支持復雜決策的系統,從而壓縮了 PED 流程(圖 6)。
約翰-博伊德上校(美國空軍退役)被譽為機動作戰條令及其相應心理過程模型的主要作者之一。通過對實驗性戰斗機的研究,他認識到 "錯配有助于一個人的成功和生存,以及敏捷性和節奏之間的關系,以及如何利用它們使對手的感知現實與實際現實相背離"。為了解釋這些不匹配,他提出了一個 PDE 循環,后來被稱為 OODA(觀察、定向、決定和行動)循環(圖 7)。博伊德認為,誰能通過歸納或演繹推理更快地執行這一過程,誰就能獲勝。通過將人工智能融入 OODA 循環,EABO 指揮官可以獲得對敵決策優勢。正如伯杰司令在其規劃指南中所說:"在任何規模的沖突環境中,我們必須比對手更快地做出并執行有效的軍事決策。
更好的信息和選擇有助于做出更迅速、更明智的決策,同時減輕認知負擔。EAB 部隊將面臨超音速和潛在的高超音速武器,這將使他們幾乎沒有時間做出充分知情的決策。EAB 指揮官將被迫利用大量有人和無人傳感器平臺感知威脅,并迅速確定行動方案。
人工智能輔助 OODA 循環(圖 8)直觀地描述了 EAB 指揮官如何借助人工智能技術做出決策。它將博伊德的 OODA 循環作為指揮官 PDE 循環的基礎。這反映出指揮官是決策過程的中心,也是情報和決策支持的主要消費者。下一層是國家情報總監辦公室(ODNI)的六步情報循環,用于將數據處理成情報。下一層是西蒙的有界理性模型,用于描述 AIDSS 如何嵌套在 EAB 指揮官的決策框架中。最后,使用狹義人工智能增強的外部代理被疊加以代表物理工具(如 RAS、武器系統、AI-DSS 和圖形用戶界面 (GUI))。在關鍵點集成狹義人工智能,以實現傳感器操作和利用、數據和情報的 PED 以及武器使用的自動化,從而減少人力并壓縮 PDE 周期時間,為指揮官創造可利用的優勢窗口。
由于 EAB 指揮官將在一個簡樸、分散和資源有限的環境中工作,他必須重新獲得在這些方面失去的效率,以超越對手。AI-OODA 循環將按以下方式解決問題。在執行任務前,指揮官進行任務分析/人員規劃流程,以確定指揮官的關鍵信息需求(CCIR)(優先情報需求(PIR)/友軍情報需求(FFIR))以及與上級總部意圖相關的任務(作戰空間的情報準備(IPB)、行動區域、任務、約束/限制等)。
在步驟 1. 觀察階段,指揮官收集有關作戰環境、敵我態勢和友軍態勢的數據,以驗證 IPB 中的基準假設并更新態勢感知。為此,將利用國防部云服務和配備計算機視覺和機器學習技術的無人系統提供的多源情報,自主分析環境,查找 CCIR。這些系統在收集和識別 CCIR 時,可根據威脅程度和排放控制(EMCON)狀態采取兩種行動方案:1. 從云和/或邊緣 AI 平臺(AI-DSS)分發/縮減信息;2. 限制通信并返回基地進行開發。從這一過程中收集到的數據將反饋到第二階段--定向,以確定其意義和相關性。
在步驟 2. 在第 2 步 "定向"階段,指揮官要對收集到的大量數據進行意義分析,以便做出適當的決策。隨著數據池的不斷擴大,第一步的輸出結果必須由人工進行處理,這將耗費大量的時間和資源。如果處理不當,指揮官就有可能因信息過載而無法確定行動方案。研究表明,在面臨信息超載等人類認知極限時,人們會使用次優的應對策略,從而導致認知偏差。第二步是當前流程中的瓶頸,也是人工智能輔助決策支持系統(AI-DSS)緩解信息過載和縮短 PDE 周期的理想場所。
AI-DSS 的優勢在于它可以自主地以數字方式整合來自無限量來源的數據,包括多源情報、RAS、鄰近邊緣 AI 節點、開放源數據以及最終基于國防部云的服務,以生成決策輔助工具、預測性威脅預報或響應行動方案。通過監控這些來源,人工智能可利用 KDD 推斷出模式和意義,以探測敵方意圖,并在人工智能-OODA 循環的第 4 步中利用 F2T2EA(發現、修復、跟蹤、瞄準、交戰、評估)的殺傷鏈模型做出反應。與計算機網絡防御(CND)中使用的技術類似,EABO 部隊可以探測敵人的行動,將敵人的殺傷鏈指標與防御者的行動方針聯系起來,并識別出將敵人的個別行動與更廣泛的戰役聯系起來的模式,從而建立起陸基情報驅動的 SLOC(海上交通線)防御(IDSD),以控制當地海域。現在,他的情報系統已獲得最佳數據,并輔以人工智能生成的行動方案 (COA),為第 3 步 "決定 "做好準備。
在步驟 3. “決定”步驟中,指揮官現在可以決定采取何種行動方案來實現預期結果。AI-DSS 可以推薦 COA、確定成功概率并建議后續行動或對手行動。通過圖形用戶界面,她的決定可以在整個梯隊中傳達,并傳遞給 RAS 平臺,從而在分布式作戰空間中形成一個綜合的有人無人團隊。
在步驟 4.“ 行動”中,指揮官正在執行任務,并利用反饋機制為其下一個決策周期提供信息,該決策周期已通過綜合通信、火力和指揮控制網絡進行了溝通,以確定可用和適當的武器系統。人工智能 OODA 循環將循環往復地進行下去,直到指揮官達到預期的最終狀態或情況不再需要采取戰術行動。通過利用人工智能作為 DSS,指揮官實現了以下目標:
1.融合--在梯隊中快速、持續、準確地整合來自所有領域、電磁頻譜(EMS)和信息環境的內部和外部能力;
2.優化 - 在正確的時間,以最有效和最高效的方式,向正確的目標提供效果的能力;
3.同步--將態勢感知、火力(致命和非致命)和機動結合起來進行滲透和利用的能力;以及
4.感知和行動速度--在沖突的各個階段都能識別和直觀地看到導致領域優勢和/或挑戰的條件,并采取相應行動;
確信所有數據點都以不偏不倚的方式加權,且周期速度快于敵方。
本節將通過一個小故事來解釋人工智能-OODA 循環系統在未來沖突中如何運作,從而將前面討論的主題結合起來。本節旨在從概念上向讀者概述如何使用該系統、它能解決哪些挑戰以及它能創造哪些機遇。
有幾個問題不是本文的主題,但卻是接受和開發 AI-DSS 的重大障礙。將精力和資源集中在這些領域將激發行業解決方案,并協助海軍陸戰隊制定必要的政策、程序和戰術,以實現這一概念,并使海軍陸戰隊與國防部的人工智能戰略保持一致。
第一個問題是 EABO 的人工智能支持概念。如果對問題沒有清晰的認識,海軍陸戰隊就無法在技術、培訓和實驗方面進行適當的投資。一個可以考慮的途徑是與美國陸軍合作。2019 年 8 月,陸軍未來司令部發布了《2019 年未來研究計劃--人工智能在多域作戰(MDO)中的應用》。MDO 是聯合部隊的一個概念,海軍陸戰隊可以輕松嵌套在遠征梯隊中。這項研究通過戰爭游戲得到加強,概述了在 A2/AD 環境中建立人工智能能力的要求、優勢/劣勢和作戰案例。
第二個問題是海軍陸戰隊人工智能的資源配置。國防部人工智能戰略的美國海軍陸戰隊附件在 MCWL 設立了人工智能利益共同體(COI)和人工智能處,以確定人工智能工作的優先順序和同步性,并制定海軍陸戰隊人工智能戰略。這是一個良好的開端,但還不足以滿足人工智能運作所需的資源。海軍陸戰隊必須利用美國陸軍在多域作戰中開展的人工智能工作的范圍和規模,加速技術成熟、實驗和部隊發展。軍事、戰爭和后勤部人工智能有限技術評估應重點關注人工智能-DSS 如何能夠實現、改進或完全修改與 ISR-Strike、C2、維持和部隊保護相關的任務執行。2020 年有機會與陸軍人工智能任務組 (A-AITF) 就其 20 財年人工智能操作化研究計劃開展合作。
第三個問題是企業數據管理。國防部在匯集數據并將其組合成可用的形式方面舉步維艱。為了解決這個問題,國防部數字化現代化戰略要求提供企業云數據服務,也稱為聯合企業防御基礎設施(JEDI)。司令還認識到海軍陸戰隊在數據收集、管理和利用方面的不足,以促進更好的決策。機器要進行 KDD,必須有大量可用的數據集。海軍陸戰隊必須以人工智能-DSS 和其他深度學習技術能夠利用的方式構建其數據,以獲得業務收益。
第四個問題是對人工智能技術的信任。根據美國政府問責局的說法,人工智能正在接近第三次浪潮,但并非沒有嚴重障礙: "第三波人工智能的一個重要部分將是開發不僅能夠適應新情況,而且能夠向用戶解釋這些決策背后原因的人工智能系統"。目前的深度學習方法具有強大的分析能力,但有時會產生不尋常的結果。要讓指揮官信任并在軍事行動中使用 AI-DSS,就必須具備解釋人工智能如何得出答案的能力。可解釋的人工智能是國防部和商業部門共同關注的問題,而商業部門正在牽頭研究可能的解決方案。53 可解釋的人工智能是國防部和商業部門都關注的問題,而商業部門正在引領可能的解決方案研究。了解為什么會做出好的或壞的決策,會讓人對技術產生信任,這對軍事行動至關重要。
第五個問題是邊緣計算,即 "將計算能力下推到數據源,而不是依賴集中式計算解決方案"。這是必要的,因為電磁頻譜將受到爭奪,機器將無法依賴一致的通信和基于云的計算。數據網絡架構將需要重組,以便變得更加分散,并可抵御災難性損失,每個邊緣設備都應能夠與相鄰節點進行網狀連接和通信。在實踐中,數據連接將根據威脅環境從完全連接到拒絕連接的滑動范圍進行。這樣,AI-DSS 就能對本地收集的數據進行快速、實時的 PED,為 EAB 指揮官的決策周期提供支持。此外,國防部必須在戰術邊緣提供基于云的服務,并采用 5G 數據傳輸速率,以機器速度和低延遲充分利用人工智能和 RAS。同樣,這也是與美國陸軍在多域作戰方面的合作領域。
第六個問題是,這在以前已經嘗試過。2002 年,美國國防部高級研究計劃局(DARPA)創建了 PAL(個性化學習助手)計劃,作為一種認知計算系統,它可以通過學習來協助用戶完成任務,從而做出更有效的軍事決策。其主要目標之一是減少對大量人員的需求,從而使決策更加分散,不易受到攻擊。PAL 的一些功能包括將多源數據融合為單一饋送,這些功能已過渡到蘋果 Siri 個人助理和美國陸軍的未來指揮所 (CPOF) 計劃。筆者無法獲得有關 PAL 計劃局限性的詳細信息,但陸軍認識到遠征決策支持系統的必要性,目前正在精簡 CPOF。指揮所計算環境(CPCE)將多個環境整合為一個單一的用戶界面,整體重量從 1200 磅減至 300 磅,主要用于移動作戰。這是朝著正確方向邁出的一步,也是陸軍和海軍陸戰隊的潛在合作領域。
最后,MCWL 應研究在 RAS、計算機視覺、機器學習和數據分析方面的狹窄人工智能領域,這些領域可立即應用于減少指揮官的認知負荷。
當前的 C4ISR/RAS 是勞動密集型的,會產生大量數據,必須迅速加以利用,才能為海軍部隊提供可操作的情報。使用數據分析和機器學習的人工智能可以比人類更快地處理、利用和傳播信息。配備了人工智能信息系統的 EAB 指揮官將以比對手更快的速度做出更明智的決策。然而,在實現這一目標之前,目前還存在著巨大的障礙。展望未來,海軍陸戰隊必須制定一個與海軍作戰概念相匹配的海軍陸戰隊作戰概念,對人工智能工作進行充分的優先排序和資源配置,對企業數據管理進行資源配置,以最大限度地利用數據分析和機器學習來發現數據庫中的知識(KDD),并利用美國陸軍的人工智能實驗和概念開發來實現多域作戰(MDO)。此外,海軍陸戰隊應確定當前可通過狹義人工智能加以改進的技術和作戰領域。
海軍陸戰隊不能再依賴過時的決策支持系統和信息管理方法來進行戰術決策。隨著友軍和敵軍利用技術獲取戰術利益,指揮官的信息負荷將繼續增加。人工智能決策支持系統可以解決這個問題。軍事指揮與控制發展計劃》(MCDP 6)指出了這一點的必要性:"無論時代或技術如何發展,有效的指揮與控制都將歸結為人們利用信息做出明智的決定和行動....,衡量指揮與控制有效性的最終標準始終如一:它能否幫助我們比敵人更快、更有效地采取行動?
美海軍陸戰隊空地特遣部隊(MAGTF)作為海軍綜合部隊的一部分,將在交戰層、增援層和鈍化層的分布式海洋環境中感知、分享、欺騙和吸引同行的對手部隊,以實現競爭連續的國家軍事目標。為了實現這一目標,海軍陸戰隊空中指揮與控制系統(MACCS)必須部署小型、隱蔽、自主的無人空中和地面多光譜/模式傳感器,以增強大型空中監視雷達,采用網絡化的混合航空指揮與控制(AC2)節點,在行動中進行調整,并重振海軍陸戰隊集中指揮和分散控制的航空理念。其目的是用蜂群式的力量和火力來摧毀對手的物質和心理力量,并提高友軍的生存能力。
國防部(DoD)指令5100.01規定了海軍和海軍陸戰隊的職能,而未來的安全環境在《2015年海軍陸戰隊安全環境預測: 未來2030-2045》、《海軍陸戰隊作戰概念》(MCOC)以及《有爭議環境中的近海作戰》(LOCE)和海軍的分布式海上作戰概念對未來安全環境進行了描述。根據這些資料,目前的軍法署署長小組缺乏一個有彈性的MACCS,能夠同時進行匯總和操作,在對手咄咄逼人的瞄準行動中幸存下來,為海上態勢感知作出貢獻,并支持分布式交戰。空中和水面監視雷達傳感器極易被發現,部署的數量不足以吸收攻擊,探測到的低空威脅距離不夠,無法在水面或陸地上攔截它們,而且在海洋環境中的部署和機動性能仍然有限。此外,MACCS目前沒有組織、訓練或裝備,無法通過重新配置功能能力來適應不斷變化的情況并以最佳方式完成任務,從而對所使用的AC2節點進行適應性任務組織。歸根結底,問題在于如何在提高生存能力的同時,提高軍法署和海軍感知、共享、欺騙和參與敵方部隊的能力。
美國軍方正在探索 "內部 "的不對稱能力,如可以在對手威脅圈內運作的蜂群概念,即反介入/區域拒止(A2AD)環境。集群是系統性地同時臨時集結分散和連接的部隊,并從各個方向對敵方開火。其目的是摧毀對手的物理和心理力量,提高友軍的生存能力。軍法署署長辦公室需要對空中和地面威脅提供多譜系/模式的監視,并協調聯合部隊對這些目標的反擊,這些目標延伸到具有反介入/區域拒止系統的爭議地區。它必須在高威脅的海洋環境和內陸地區提供補充性的感應,以實現遠程交戰(遠程交戰)。較小的移動式空中和水面監視多譜系/模式傳感器對對手在水面和陸地上的目標定位是一個重大挑戰。它們可以補充大型空中監視雷達,照亮大型雷達因地形或地球曲率而無法覆蓋的區域。這些較小的傳感器可以為較大的更有能力的雷達提供早期排隊,并通過由彈性混合AC2節點管理的網絡為共同的戰術圖景做出貢獻。大量的主動和被動傳感器和誘餌,在不同的時間打開和關閉,并不斷移動,再加上有選擇地激活大型空中監視雷達,將刺激對手的觀察,其速度將壓倒他們的目標能力,同時掩蓋友好能力。為低級別的地面指揮官獲得卓越的態勢感知,在縱深上創造更大的防空和制海選擇,并加快處理即時空中支援請求,將使蜂擁而至的部隊和火力能夠消滅敵軍。海軍陸戰隊有機會通過分散不斷移動的小型空中和地面主動和被動多光譜/模式傳感器、混合AC2機構和分布式武器系統,提高聯合部隊感知、分享、欺騙和參與友軍高價值大型雷達系統范圍之外的威脅的能力。在作戰層面上,在一個或兩個戰場上與對手進行橫向競爭可以增加對手的成本,迫使他們投入更多的資源并評估他們的利益。避免隧道式視野,將自己的行動限制在確切的物理競爭點上,并不能提供整個競爭連續體的全部選擇,而這將是迫使對手進行成本強加計算所需要的。
國防無人駕駛飛行器(UAV)的設計是以2008年以來重新興起的反恐戰爭為基礎的,因為2001年雙子塔被襲擊。這種環境有利于無人機的發展和使用,為所謂的馬賽克戰爭概念提供了基礎。這個概念是指導無人機設計和未來使用的主要載體。在這種情況下,新的無人機用戶界面的設計不是基于以前建立的航空顯示概念。原因是這些飛機不是傳統意義上的 "飛行",而是由地面控制站(GCS)中的飛行員/操作人員指揮的。這是一個必須理解的范式轉變,以提高操作能力和安全性。這種模式的核心是與適當的人機界面有關的問題,以提高態勢感知。本稿討論了這個問題,并研究了與飛行員自主性的適當級別有關的問題;人機界面對決策的影響;自適應界面的設計;使用創新技術進行人機互動;調查無人機與地面部隊和指揮與控制之間的互動。為了闡明這些問題,本稿件提出并描述了一個人機界面原型的構建,以模擬無人機系統在模擬戰斗環境中的操作。調查是基于這樣一個過程:定義場景和任務,建立不同方法的人機界面,設計和分析實驗,用生理傳感器測量人的表現,以便對適當的設計作出定量回答。基于這個過程,預計在關鍵的操作條件下,人的表現可以被評估,并產生最佳的人機界面解決方案,以減少工作量和提高態勢感知。
未來的戰場是一個將受到近鄰對手快速變化的技術能力嚴重影響的戰場。在這種環境下的成功將需要簡單易用的系統,它能適應各種情況,并能與其他部隊和系統整合。多域作戰指揮、控制、計算機、通信、作戰系統和情報(MDOC5i)旨在為海軍陸戰隊準備未來的戰場。由于傳統的機器學習技術存在某些缺點,MDOC5i使用矢量關系數據建模(VRDM),為海軍陸戰隊提供適合動態部署的系統。MDOC5i使用全球信息網絡架構(GINA)作為其VRDM平臺。這項研究使用GINA創建了一個無處不在的決策模型,可以根據美國海軍陸戰隊的場景進行配置。該研究實現了無處不在的模型,并通過一個網絡分析用例證明了其功能。這個決策模型將作為所有GINA實施的基礎模型。快速構建和調整基于場景的GINA模型并將這些模型整合到一個共同的框架中的能力將為海軍陸戰隊提供對抗未來對手的信息優勢。
圖. 超圖描繪了構成 GINA 決策模型的關鍵實體。這是圖 3.2 中描述的“決策者信息”部分的細分。影響力的三個主要領域是現實世界、網絡和網絡。本論文中的模型將僅包含網絡類別的一部分,特別是 XMPP 流量。這三個領域應被視為為大規模網絡診斷設計的決策模型的起點。
在最近的沖突中,美國能夠承擔對其敵人的技術優勢[1]。然而,由于美國已經將重點從反叛亂(COIN)行動轉移到與近距離對手的沖突上,這是一種不能再假設的奢侈。美國和國防部必須不斷尋求獲得并保持對近距離對手的技術優勢。所有軍種的指揮官都強調了這一點,包括司令部的規劃指南[2]。網絡戰場是一個日益復雜和快速發展的領域,在戰爭中從來沒有出現過像現在這樣的能力。目前的對手既有掌握該空間的愿望,也有掌握該空間的能力[1]。人機交互(HCI)將是在未來沖突中實現信息主導的關鍵。人機交互融合了計算機科學、認知科學和人因工程,以 "專注于技術的設計,特別是用戶和計算機之間的互動"[3]。我們必須掌握人機交互,以協助指揮官并保持對敵人的優勢
美國海軍陸戰隊(USMC)沒有很好的裝備來在網絡領域取得成功。美國海軍陸戰隊訓練和教育司令部(TECOM)已經將這一能力差距確定為一個主要的問題聲明:"海軍陸戰隊沒有接受過應對同行威脅的訓練,在這種情況下,我們不再享有數量或技術優勢的歷史優勢。為了在未來的戰場上取勝,我們必須提供一個學習框架,以發展適應性和決定性的海軍陸戰隊,并提供訓練環境,以產生能夠產生決定性效果的互操作單位"[4]。
信息技術的進步產生了一個以網絡為中心的應用框架[5],可以幫助縮小能力差距,使美國海軍陸戰隊保持對對手的網絡優勢。
在為滿足指揮官的指導并使美國海軍陸戰隊為網絡戰場做好準備而采取的舉措中,海軍陸戰隊已經建立了多域作戰指揮、控制、計算機、通信、作戰系統和情報(MDOC5i)。MDOC5i是一個基于陸軍網絡信息管理環境(ANIME)的系統,提供了一個以網絡為中心的因果動態數字孿生環境。利用基于實體的模擬,MDOC5i提供以網絡為中心的互操作性和決策模型,可以增強多域作戰(MDO)[6]。MDOC5i計劃 "提供基層開發的技術,使操作人員能夠'推斷和適應'不斷變化的戰斗空間的需求" [7]。MDOC5i確定了需要改進的三個問題領域:互操作性、信息處理和利用,以及文化轉變[7]。
隨著戰場的不斷發展,聯合解決方案將是獲得優勢的關鍵。這些互操作性的解決方案將依賴于網絡和通信能力。互操作性是指與整個服務的各種通信系統相關的所有設備之間的通信能力。因此,目前在互操作性方面的差距需要被彌補,以進行聯合行動。系統之間的互操作性還沒有通過一個標準化的通用方法來實現[7]。MDOC5i認為這個問題的根源在于,當前系統所使用的所有網絡都被認為是彼此獨立的領域,而不是一個統一的作戰指揮和控制(C2)系統[7]。
MDOC5i解決的下一個問題是信息處理和利用。這個問題指的是目前整個海軍陸戰隊沒有能力處理大量的信息。數據通常很豐富,而且隨著傳感器能力的增長,數據會越來越豐富,但很難分析所有的數據并從噪音中分出有用的數據。鋪天蓋地的數據如果不進行適當的分析,對決策過程是無用的,甚至是有害的。這個問題被具體描述為:"當前行動和數據收集的速度超過了我們處理、識別和獲取可操作情報的能力,以快速評估、調整和修改計劃和實時COA,從而優化部隊投射、殺傷力,并實現持久的超額配給"[7]。
為了提高處理越來越多的數據和跟上快速發展的戰場的能力,作戰人員需要關注人機互動。這種關系對于能夠在可操作的時間范圍內將大量的數據轉化為有用的信息,從而做出更好的決定至關重要。更好的人機交互可以幫助確保 "數據處理和決策的速度與行動的速度相稱" [7]。
解決的最后一個問題,即文化轉變,涉及美國防部需要調整其在數據整合和聯合行動方面的重點。雖然國防部致力于為作戰人員提供可操作的情報,但其方法是無效的和低效的[7]。此外,各個軍種制定了自己的就業方法和情報方式,這往往會導致聯合行動的無效性。為了在目前存在的動態戰場上作戰,各軍種必須共同努力,"使能力與任務、標準操作程序、訓練戰術和協議、采購和部署政策以及作戰部隊的整體文化相一致" [7]。
5月9日至5月13日,MDOC5i在海軍陸戰隊空地作戰中心(MCAGCC)二十九棕櫚島與第七海軍陸戰隊進行了演示。這次初步測試的目的是展示MDOC5i所帶來的增強的火力能力,并確定MDOC5i通過提供共同情報圖像(CIP)--共同作戰圖像(COP)和決策支持來增強整個海軍陸戰隊空地特遣部隊(MAGTF)的MDO的可行性。
在MCAGCC Twenty-Nine Palms進行的MDOC5i演習成功地描述了該系統的防火能力。MDOC5i系統使用最先進的掃描機制和瞄準系統,將標準裝備的區域射擊武器轉變為精確射擊武器平臺,能夠在幾乎沒有歸零的情況下有效地攻擊目標。雖然這本身就大大增加了海軍陸戰隊的殺傷力,但增強的火力能力僅僅是MDOC5i概念所提供的效用的開始。底層系統使用全球信息網絡架構(GINA),一個矢量關系數據建模(VRDM)平臺,以使所有通過網絡連接的單位都能獲得準確的COP和CIP。這在戰場上提供了一個優勢,因為所有單位都獲得了意識,并將能夠為共享系統提供輸入,從而產生最準確的CIP-COP。
這些投入可以用來幫助決策和影響有利于沖突空間競爭的活動。
這一過程的關鍵使能部分之一是GINA內的決策模型,它能使人采取行動。在二十九棵樹的演示中,海軍陸戰隊員被展示了使用標準武器系統對選定目標進行第一輪射擊的能力。選定的目標出現在通過網絡連接的所有信息顯示器上。為了實現目標定位,GINA模型接受目標的輸入并將信息傳遞給所有用戶。系統首先決定該目標是一個有效的目標還是一個重復的目標。它通過一個專門設計的決策模型來實現這一目標,該模型將確定的目標與其他繪圖的目標進行比較。如果新的目標在指定的距離內,程序會認為它是重復的。這可以防止信息過載,使指揮官對現有的威脅有最準確的描述,以便更好地決定如何使用武器系統來對付敵人的目標。因此,在這個特定的例子中,輸入的是確定的目標位置,決定的是該目標是合法的還是重復的,決定的標準是確定與其他已經繪制的目標的距離,結果是對威脅的準確描述,使海軍陸戰隊能夠最好地與敵人作戰。
在演示中,決策與識別目標有關,而影響的行動與射擊有關。然而,如前所述,增強射擊能力只是MDOC5i通過基于VRDM的GINA平臺所能提供的好處的開始。創建和采用為指揮官提供最新的CIP-COP并幫助決策的模型將對海軍陸戰隊和國防部(DOD)的所有方面都有用。按照目前的情況,每次實施新的模型時,都需要從頭開始創建新的決策模型。
海軍研究生院(NPS)論文的目的是在GINA平臺上使用VRDM建立一個不可知的決策模型。重點是該模型的普遍性,以便它可以很容易地被塑造為未來的情景。該決策模型擴展了無處不在的數據表概念,以包含關于數據的信息屬性,并允許通過基于屬性的真值表關系實現來自數據屬性和信息屬性(邏輯類型)的知識屬性。因此,模型將數據轉化為信息,然后從已知的真值(既定協議)中獲取狀態和規定過程的知識,然后模型執行相應的過程。這表明了該方法的普遍性,并使任何數據任務的數據轉化為行動。本論文驗證了使用基于模型的配置方法,該方法由數據、真值表和狀態的概念對象組成,可用于人在/在環的自動數據決定-行動,并可在知識管理圖框架內為任何任務進行管理。
建議的模型在通過分析可擴展消息和存在協議(XMPP)消息來確定網絡健康狀況的情況下進行測試。該模型的輸入是可擴展標記語言(XML)消息,旨在復制大規模戰術網絡的數據包捕獲(PCAP)中捕獲的XMPP消息。雖然網絡診斷分類本身很重要,并證明了功能,但主要的效用將在于決策模型的普遍性。因為該模型是不可知的,它可以很容易地被修改以適應一系列所需的場景。務實地說,它可以作為所有其他GINA實施的基礎模型,使海軍陸戰隊實現信息超配。
本論文的假設是,GINA將被證明是一個高效的平臺,在這個平臺上實現一個可以輕松配置的泛在決策模型,以應對多種情況。在這個假設的核心,主要目標是利用GINA架構成功地設計和實現一個無所不在的決策模型。這項任務已經完成,證明了主要假說的正確性。
本論文的問題包括。
1.無處不在的決策模型能否在GINA的界面中實現?
2.GINA是否為機器學習(ML)提供了一個可行的、可操作的替代方案,該模型是否達到了與傳統機器學習技術相同的效果?
3.該模型是否有切實的方面證明比傳統機器學習技術優越?
4.該模型和GINA平臺能否用于大規模網絡流量分析?
與假設一致,第一個問題是最重要的,并且被證明是正確的。所實施的決策模型應該能夠促進并推動未來的工作。其余的問題涉及模型的可擴展性和與傳統技術相比的性能。雖然這兩個概念都沒有直接解決,但該模型提供了肯定的機會來測試這些概念。
為了成功地理解決策模型的實施和它可以應用的規模,有必要了解所涉及的工具。其中一些應用在本論文中直接使用。其他的是在MDOC5i中使用的,對于理解這個模型如何推導到多種情況下是很有用的。這些工具也提供了很好的背景,對未來的工作有好處。
GINA 是一個基于云的、提供可執行建模環境的 VRDM 平臺,該平臺產生的模型能夠進行推理和適應[7], [8]。該架構通過其反思性的、可執行的、基于組件的、與平臺無關的和模型驅動的構造,提供先進的數據、信息和知識的互操作性[9]. 該平臺使用一種語義結構,使應用領域的用戶能夠理解組成的模型組件,并形成具有半知覺行為的系統,這對動態任務需求的適應性和可配置的靈活性至關重要。該創新平臺是松散耦合的,這意味著它可以通過配置創建模型,使用來自遺留系統、現有系統或未來系統的各種輸入[8],而不會破壞或重新編譯。由于概念性的信息對象構造可以臨時引入,并可能存在于任何領域,GINA提供了誘人的可能性,美國防部正在探索這種可能性[2]。
GINA技術由方法論、開發工具和可執行模型的部署平臺組成,可作為軟件程序使用。這些模型不需要被編譯,而是在元數據中定義并實時編譯。該平臺使用通過配置實現的行為、環境和因果的建模概念,以提供定義、操作和互操作性[10]。GINA可以通過其名稱的組成部分進一步理解。"全球 "指的是該平臺通過多層抽象包含了所有的數字表示。"信息 "指的是可以被建模和管理的靜態和動態數據以及互動關系。"網絡 "指的是可以通過模型和圖表顯示、參考和管理的所有互聯關系的數字表示。"架構 "意味著GINA是被使用的系統,專門用于制作行為、背景和因果關系的可執行模型[10]。
第二章將深入討論GINA的優點和特點。
Dark Stax是一個由ANIME開發和使用的工具,能夠以接近實時的速度創建復雜系統的數字孿生體。這些數字孿生體可以用來操作克隆的系統進行數據操作和決策分析。這種聯合有助于數據驅動的決策過程。這個工具能夠創建戰術網絡的克隆,并過濾PCAP數據,為網絡診斷模型創建輸入[10]。Dark Stax工具由Ad Hoc維護和運行。他們對該工具的掌握為首要的人工智能(AI)技術和VRDM技術的結合提供了巨大的效用。
StarUML是一個開源的軟件建模平臺,支持統一建模語言(UML)[11]。它被設計為支持簡明和敏捷的建模,并提供系統疊加的可視化描述[12]。本文使用UML圖來描述實現的VRDM模型的靜態和動態方面。UML并沒有捕捉到VRDM模型中包含的所有細節,但它確實捕捉到了最重要的信息,并提供了模型中連接的清晰疊加。
在這個項目中,它只被用于GINA模型的可視化和文檔化。然而,我們的意圖是使GINA能夠接受UML設計作為輸入。因此,一個系統可以用UML建模并輸入到GINA中,以放棄配置。
Cursor On Target(COT)"是一個互聯網協議和一個基于XML的機器對機器模式,可以被任何系統讀取和理解,使專有和開放源碼系統能夠相互通信"[13]。模擬器在GINA模型中被用來模擬XMPP流量。XMPP消息的樣本在一個文本文件中生成。然后,Cursor On Target Simulator(COTS)模擬器將文本文檔的內容作為XML輸入到GINA。這個XML是決策模型的輸入。
美國海軍陸戰隊正在建設反水面作戰領域的能力,特別是在獲得地基反艦導彈(GBASM)及其相關發射平臺方面。研究為分析與這種新能力相關的部隊結構提供了一種方法。研究方法使用離散時間馬爾可夫模型對GBASM炮組和敵方水面艦艇之間的戰術級決斗進行建模。這些模型有足夠的復雜性來解決關鍵的部隊設計問題,并且對決斗的關鍵特征進行了參數化,以便進行強有力的敏感性分析。
在海軍導彈作戰中,重要的是確定所需的炮彈規模S,以使炮彈有足夠高的概率殺死敵艦。GBASM概念的獨特之處在于,與從水面艦艇上發射導彈相比,它能夠將這種炮彈分散到幾個平臺上,并以更適合特定戰術場景的方式進行發射。在這種情況下,如果有一個大小為K的禮花彈,并將該禮花彈分散到N個平臺上,那么每個平臺在特定的禮花彈中發射?枚導彈,這樣K × N = S。有了這個公式,就能夠分析平臺數量和每個平臺發射的導彈數量在這些配置的殺傷力和生存能力方面的權衡。這為成本-效益分析提供了基礎。
對GBASM炮臺與敵方水面艦艇發生接觸的情況進行模擬。從簡單的場景開始,然后逐漸復雜化。讓GBASM發射器與一艘敵方水面艦艇進行決斗。GBASM一方被稱為藍方,水面艦艇被稱為紅方。最初假定雙方都有足夠的導彈供應,并且交換的時間是有限的,因此可以把供應視為無限的。GBASM以彈丸為單位進行發射,每個彈丸至少包括一枚導彈。在藍方的炮擊之后,紅方的水面艦艇有機會進行還擊。
在所描述的環境中,假設藍方具有首發優勢。鑒于GBASM的引入在沿岸地區造成的不對稱情況,首發優勢的假設并不是不合理的。GBASM是移動的,有可能移動到難以探測的地方,只有在準備開火時才出來。GBASM的目標是保持不被紅方船只發現,直到它成功瞄準紅方船只。一旦紅方船只成為目標,GBASM系統就會開火并移動到一個新的位置。如果沒有關于GBASM移動的完美信息,紅方艦艇將持續處于不利地位。
此外,該模型捕捉到了紅方對藍方的炮擊進行防御措施的能力。這些防御性的反措施是用參數λ來說明的,這個參數是紅方根據泊松分布可以攔截的藍方導彈的平均數量。以這種方式對紅方采取反措施的能力進行建模,說明了隨著藍方導彈規模的增加,紅方采取反措施的能力也在減弱。同樣,也說明了紅方針對藍方分布式發射器的能力下降。紅方殺死藍方分布式平臺的能力用參數?表示,根據泊松分布,紅方在還擊中可以殺死藍方平臺的平均數量。這再次說明,隨著藍方平臺數量的增加,紅方瞄準和殺死藍方的效果有限。
在對該模型的分析中,遇到了幾個關鍵的發現。首先,最重要的是確定理想的炮擊規模S,以提供足夠高的殺死敵艦的概率。這不是一個簡單的 "越多越好 "的問題,因為炮擊規模有一個收益遞減點。正如人們所期望的那樣,還得出結論,增加平臺的數量K可以提高生存能力,從而提高GBASM炮臺的殺傷力。然而,改進的幅度對其他參數很敏感,當炮彈規模足夠大時,改進的幅度通常很小。
該研究的主要產出是創建的模型和對它們進行進一步分析的能力。本論文中任何地方使用的參數值都不是由具體的GBASM系統或潛在的敵方水面艦艇的能力來決定的。因此,結果應該被看作是對參數空間可能區域的探索的概括。這些模型提供了根據有關特定系統的能力進行具體分析的能力。
美國負責采購和維持的國防部副部長辦公室(OUSD A&S)的任務是快速和低成本地向作戰人員和國際合作伙伴提供和維持安全和有彈性的能力。現在迫切需要開發適應性采購框架(AAF),以加快軟件開發和采購流程,加強作戰概念(CONOPS),如分布式海上作戰(DMO)。國防部(DoD)必須利用與國防戰略和全球威脅的性質相聯系的數據驅動的分析來塑造AAF,并擴展新的能力來應對新的威脅。威脅和能力共同演化矩陣(TCCM)解決了這一要求。威脅是一種能力試圖處理的問題。一種能力是代表威脅的問題的解決方案。共同進化算法探索了一些領域,其中一個能力或能力組合的質量由其成功擊敗一個威脅或威脅組合的能力決定。TCCM有可能在新的和有爭議的環境中系統地優化、推薦和共同演化能力和威脅。我們展示了一個關于幫助項目執行辦公室(PEO)使用從公開來源匯編的非機密數據對特定領域DMO的能力和威脅進行戰役的用例。
不僅美國防部負責采購和維持的副部長辦公室(OUSD A&S)有必要制定采購戰略,而且整個國防部也有必要應用數據驅動的分析以及與國防戰略和全球威脅的性質相聯系的創新和適應性作戰概念(CONOPS),并為作戰人員擴展新的能力。
例如,為了提高部隊的總體戰備能力,并在廣泛的行動和沖突頻譜中隨時投射戰斗力,海軍需要靈活的指揮和控制(C2)組織結構來滿足CONOPS。例如,DMO是海軍的一個CONOPS,而遠征先進基地作戰(EABO)是美國海軍陸戰隊(USMC)的一個CONOPS。DMO和EABO都是海戰現代化的新興作戰概念。PMW 150是PEO C4I的C2系統項目辦公室,也是C2解決方案的主要提供者,它的工作重點是將作戰需求轉化為海軍、海軍陸戰隊、聯合部隊和聯軍作戰人員的有效和可負擔的作戰和戰術C2能力。PMW150的任務是 "以創新的方式滿足相關能力的操作要求,使作戰人員能夠保持C2的優勢"(Colpo,2016)。
另一方面,美國艦艇的海上行動,特別是在沿海地區,將繼續存在爭議和危險;因此,當務之急是發展DMO和EABO,以實現統一的行動愿景。DMO的目的是在有爭議的環境中支持國家和戰略目標。DMO的概念不僅將進攻性打擊視為在戰斗中獲勝的主要戰術,而且還將欺騙和迷惑敵人的能力確定為在有爭議的環境中獲得成功的關鍵任務。目前的工作重點是將現有的平臺、系統和能力與DMO的具體戰術相結合,以實現海上戰略和作戰目標。DMO被定義為 "通過使用可能分布在遙遠的距離、多個領域和廣泛的平臺上的戰斗力來獲得和保持海上控制所必需的作戰能力"(海軍作戰發展司令部[NWDC],2017)。
DMO作為海軍和海軍陸戰隊資產運作的一個概念,其發展源于分布式殺傷力(DL)模型(Popa等人,2018)。DMO的概念采用了DL的擴展觀點,由三個支柱組成:通過網絡射擊能力提高單個軍艦的攻擊力,將攻擊能力分布在廣泛的地理區域,并為水面平臺分配足夠的資源,以實現增強的作戰能力(Rowden, 2017)。DMO還強調在所有領域,包括空中、地下和網絡戰,都需要更有彈性和可持續性的水面平臺。DMO的未來觀點是成為以艦隊為中心的戰斗力,通過整合、分配和機動性,允許在多個領域(有爭議的空中、陸地、海上、太空和網絡空間;國防部,2018)同時和同步執行多種能力和戰術,以便在復雜的有爭議的環境中戰斗和獲勝(Canfield,2017)。因此,DMO不僅包括傳感器、平臺、網絡和武器的傳統戰爭能力,而且還延伸到隨著新技術發展的其他戰術。DMO概念使用涉及ISR、機器學習(ML)和人工智能(AI)的先進探測和欺騙,特別是使用無人系統來增強進攻性戰術行動的能力;因此,通過潛在地利用平臺、傳感器、武器、網絡和戰術的不同組合,可以在所有海上領域放大一支多樣化但統一的部隊的戰斗力。
DMO的概念包括詳細的能力,如反措施、反目標和反介入的戰術。反措施是旨在轉移威脅的防御性能力。反目標可能是進攻性能力、欺騙性戰術和轉移威脅的作戰演習。欺騙性戰術包括無人資產群、機械和物理反措施、電子干擾和限制電磁輻射,或排放控制(EMCON)。反介入是為了消除威脅。
傳統上,基線部隊結構由一組固定的友軍艦艇和飛機組成,排列成行動組,包括航母打擊組(CSG)、遠征打擊組(ESG)、水面行動組(SAG),以及各種獨立的可部署單位,如EABO的遠征海軍部隊。
DMO的行動要求包括能力、人力、維護和供應等資源,需要仔細分析、計劃和執行,這需要正確的數據戰略、分布式基礎設施和深度分析。威脅與能力協同進化矩陣(TCCM)的技術概念解決了DMO和EABO行動的要求。威脅是一種能力試圖處理的問題,包括其復雜性和緊迫性。一種能力是代表威脅的問題的解決方案。來自ML/AI社區的協同進化算法探索了一些領域,其中能力或能力組合的質量由其成功擊敗威脅或威脅組合的能力決定。戰爭游戲模擬中使用的協同進化算法類似于國防應用中廣泛使用的蒙特卡洛模擬,只是它們參與了預測和預報、優化和博弈(minmax)算法等ML/AI。DMO和EABO概念要求處理不斷變化和發展的威脅的能力和資源網絡的靈活性和進化。
圖 1. 每個節點都使用 CLA 注意:每個節點的內容和數據可能包括能力;首先需要對能力進行索引、編目和數據挖掘。
圖 2. TCCM 和兵棋仿真的概念
2019年,美國海軍陸戰隊(USMC)開始進行組織變革,目的是成為西太平洋地區卓越的偵察和反偵察部隊。為了實現這一目標,海軍陸戰隊公布了《2030年部隊設計》,目前正在采購新的作戰系統,并創建一個新的組織表,以便在地理位置偏遠、環境惡劣的地方獲得并保持殺傷力。
《2030年部隊設計》中的主要行動單位之一是海軍陸戰隊濱海團(MLR)。MLR包含步兵、火箭炮、防空、后勤、指揮和控制單位,用海軍陸戰隊司令的話說,是 "為在有爭議的空間進行海軍遠征戰而優化的,專門用于促進海上封鎖和保證進入以支持艦隊"(Berger 2019, p.5)。然而,第一個MLR最近才被激活,因此關于MLR的能力和限制的問題層出不窮。
特別令人感興趣的是在海軍陸戰隊濱海團安全區域內進行偵察和反偵察的海岸警衛隊的使用。這項研究的目的是研究海軍陸戰隊濱海團在各種實際環境中的能力,以及應對當代同行的海軍威脅,以幫助為海軍陸戰隊濱海團的警衛部隊最致命的組成和使用方法提供決策依據。為此,作者試圖回答以下問題:
利用海軍水面作戰中心開發的建模與仿真工具箱(MAST),我們使用最先進的實驗設計,有效地執行了27250次海軍陸戰隊濱海團和中國海軍(PLAN)水面行動組(SAG)之間的模擬戰斗。圖1描述了建模環境和模擬中的一些智能體。
圖 1. MLR 警衛部隊和解放軍水面戰斗人員之間的模擬交戰
在每次模擬交戰中,MLR 的任務是執行海上拒止任務,他們試圖在保持戰斗力的同時最大限度地摧毀敵艦數量。 MLR 使用了一支具有以下基線組成的警衛部隊:四艘輕型載人自主作戰能力(LMACC)艦艇、五艘中型無人水面艦艇(MUSV)和 15 艘遠程無人水面艦艇(LRUSV)。在整個實驗過程中,每次數量都不同,以評估不同組合的功效。警衛部隊的任務是“通過戰斗以贏得時間,同時觀察和報告信息,保護主力免受攻擊、直接火力和地面觀察”(MCDP 1-0,第 11-13 頁)。為了評估警衛部隊對友軍生存能力和殺傷力的影響,我們改變了船只類型的數量、每種船只類型的位置以及船只的傳感器能??力。我們使用有效的實驗設計來探索上述因素的各種組合的影響。
從 27,250 次模擬交戰中,觀察到一些趨勢,這些趨勢不僅回答了研究問題,而且提供了為 2030 年部隊設計決策和倡議提供信息的機會:
警衛部隊組成:LMACC 數量是預測生存能力和殺傷力的主要因素。LMACC 是一種小型導彈戰艦,載人較少,擁有高度自主的艦船系統。它可能被配置為許多角色,但在這種情況下,攻擊。對實驗輸出的分析表明,警衛部隊應該有不少于六個 LMACC。
殺傷力:在更靠近海岸(10-15 海里)的地方使用 LMACC,將 LRUSV 部署在更深的位置(100 海里),導致摧毀的 GBASM 發射器更少,摧毀更多的海軍艦艇。
將 LMACC 與可以充當 LMACC 偵察員的較小平臺配對會產生更有利的友好結果。為此,為 LRUSV 配備探測敵艦的能力——使用被動或視覺傳感器——在更遠的范圍內使 LRUSV 能夠更早、更準確地傳達有關對手的組成和部署的信息。
現代沖突中的雙方都可能出現高損耗。由于戰斗的固有不確定性,確切百分比的可變性很高,但在實驗中摧毀的 GBASM 發射器的平均數量是 36 個中的 15.62 個。
本研究的目的是進一步討論 MLR 的組成、能力和使用,同時激發新的研究,為未來的部隊設計決策、實彈試驗和戰術提供信息。
隨著當前海軍戰爭的趨勢轉向自動化作戰武器系統,美國海軍正將其戰略重點放在人工智能(AI)能力上,以減少作戰人員行動時間。這個系統工程(SE)項目使用約翰-博伊德的觀察、定向、決策和行動(OODA)概念和海軍陸戰隊規劃過程(MCPP)(Angerman 2004;美國海軍部2016)來代表人類-人工智能決策過程。空中和導彈防御(AMD)的殺傷鏈是通過簡化聯合目標定位理論“JP 3-60”(參謀長聯席會議2018)來體現的。殺傷鏈過程中提高操作動化水平被證明可以大大減少執行時間,如果進一步發展和實戰化,將為海員和海軍陸戰隊提供防空的戰術優勢。通過使用專家系統和人工智能加速殺傷鏈將大大縮短交戰時間,有效地擴大戰斗空間。
該項目開發了用于防空和導彈防御的人工智能(AI-AMD)架構,該架構旨在通過對威脅進行優先排序并在人類用戶的最小介入下采取行動來改善作戰決策。該項目專注于理解和評估空空導彈防御(AMD)的殺傷鏈,通過確定使用AI-AMD可以更快地執行行動。項目組確定并評估了與應用于殺傷鏈過程中各個步驟的AI-AMD自動化水平相關的風險。該小組進行了建模和模擬(M&S)分析,以比較低水平自動化("無 "人工智能)的殺傷鏈和高水平自動化("有 "人工智能)的殺傷鏈,根據節省的時間來評估改進。
該團隊在M&S分析的基礎上開發了高度自動化的AI-AMD決策輔助作戰能力的概念,并確定了有可能應用于未來AI-AMD架構的現有和未來人工智能方法。該團隊按照美國防部的架構框架(DODAF)進行了架構分析,以確定AI-AMD的操作過程。該小組采用基于模型的系統工程(MBSE)方法,使用SE工具Innoslate來開發概念架構。架構分析結合了藍軍(BLUFOR)防空傳感器、武器裝備和聯合網絡,創建了一個OV- 5b/6c行動圖,描述了AI-AMD決策輔助輸出與JP 3-60聯合目標定位程序步驟協同應用,以消除敵人的威脅(參謀長聯席會議2018)。為了完成其任務,BLUFOR系統(SoS)執行36項業務活動:AI-AMD內部的17個決策點和外部系統的19個功能(包括傳感器行動和網絡通信)。該團隊使用實驗設計(DOE)、離散事件和隨機模擬分析了架構分析的結果,發現在目標定位過程中高壓力的AMD場景需要完全自動化水平,而低壓力的AMD場景需要最低水平的自動化。該團隊開發了一個決策風險矩陣,顯示出高壓力情況下的風險可以通過完全的自動化水平來降低。目標定位過程中17個步驟中的每個步驟的風險評估都被分為四類:低、中低、中和高。團隊制定了一個相關的風險值來進行風險評估確定。團隊利用Parasuraman的自動化水平(1-10級)來進行風險評估,將決策風險與目標定位過程中各個步驟的自動化水平聯系起來(Parasuraman, Sheridan, and Wickens 2000)。該小組開發并使用了一條效用曲線來幫助確定每個自動化水平所節省的時間。自動化程度越高,節省的時間就越多。
該項目側重于單一威脅的交戰,以了解殺傷鏈過程中AI-AMD的時機。該小組進行了M&S分析,以證明AI-AMD架構的能力。該小組使用Innoslate MBSE工具和Microsoft Excel進行了離散事件模擬。在大量投資于行動圖之前,團隊使用Excel來評估元模型。仿真的主要重點是建立AI-AMD在不同壓力水平下的時間性能,如低、中、高。次要目標是將該模型發展為可交付的設計工具,在NPS用于未來研究。該小組從公開來源的威脅數據中選擇了三個有代表性的交戰:低壓力情景(時間軸為58.65分鐘),中度壓力情景(時間軸為9.72分鐘),以及高壓力情景(時間軸為1.51分鐘)。該小組的M&S分析結果顯示,在低壓力情景下,僅由人類做出的決策(自動化水平1)導致對飛入時間為58分鐘或以上的敵方威脅的AMD殺傷率達到100%。對于中度威脅情景(代表AI-AMD對每個作戰活動決策節點的不同自動化水平(如6到10)),1000次隨機運行的數據結果顯示所有交戰的平均完成時間為8.08分鐘。當AI-AMD系統被設置為較高的自動化水平時,該系統在中等威脅情況下成功地進行了AMD防御。高壓力場景的分解時間線允許每個作戰活動決策節點有0.09分鐘。該小組將人工智能-AMD系統設置為在高壓力情景下僅由人工智能進行決策(自動化水平10)。高壓力場景的結果表明,在自動化程度為10級的情況下,有可能成功應對敵人的威脅。該小組進行了敏感性分析,以探索替代的基本代表分布(基線、對稱變量擴散和高度傾斜)的影響。雖然分布形狀的變化確實影響了結果,但在每一種情況下,只有在人工智能支持的節約率超過97%的情況下,才會在高壓力場景中取得成功。
該項目研究了人工智能方法如何應用于AMD決策,以提高自動化水平,減少人類-人工智能團隊的執行時間(人工智能輔助決策)。該團隊自上而下地分析了AMD殺傷鏈:從OODA到尋找、固定、跟蹤、目標、參與和評估(F2T2EA)。該小組確定了17個關鍵決策點,在這些決策點上,提高自動化水平可以提高AMD的決策速度。潛在的自動化水平與每個不同步驟相關的風險進行了平衡。該小組使用M&S來評估人工智能-AMD系統在低水平的自動化("無 "人工智能)到高水平的自動化("有 "人工智能)下的決策的及時性。由此產生的AI-AMD概念架構的高層次能力被記錄下來,隨著系統技術的成熟,建議利益相關者考慮。該團隊確定了現有和未來的人工智能方法及其在AMD殺傷鏈中的潛在應用。該小組已經確定了未來人工智能-AMD的迭代需求,以研究整個戰場上具有多種威脅和參與的更復雜的情況。
在可視范圍內的空戰涉及執行高度復雜和動態的活動,需要快速、連續的決策以生存和擊敗對手。戰斗機飛行員花費數年時間來完善交戰戰術和機動動作,然而不斷出現的無人自主飛行器技術引起了一個自然的問題--自主無人作戰飛行器(AUCAV)能否被賦予必要的人工智能,以獨立完成具有挑戰性的空戰機動任務?我們制定并解決了空戰機動問題(ACMP),開發了一個馬爾可夫決策過程(MDP)模型來控制一個尋求摧毀對手飛行器的AUCAV。該MDP模型包括一個5自由度、點質量的飛機狀態轉換模型,以準確表示機動時的運動學和能量。ACMP中狀態空間的高維和連續性質使得經典的解決方法無法實施。相反,我們提出了一種近似動態規劃(ADP)方法,其中我們開發并測試了一種近似的策略迭代算法,該算法實現了神經網絡回歸,以實現AUCAV的高質量機動策略。為了計算測試的目的,我們指定了一個有代表性的攔截場景,其中AUCAV的任務是保衛一個責任區,必須與試圖穿透保衛空域的敵方飛機交戰并摧毀它。進行了幾個設計實驗,以確定飛機特性和對手的機動戰術如何影響擬議ADP解決方案的功效。此外,設計的實驗使高效的算法超參數調整成為可能。ADP生成的策略與目前ACMP文獻中發現的兩個公認的基準機動策略進行了比較,一個只考慮位置,一個同時考慮位置和能量。在調查的18個問題實例中,ADP策略在18個實例中的15個超過了只考慮位置的基準策略,在18個實例中的9個超過了位置-能量基準策略,在最能代表典型空中攔截交戰的問題實例中獲得了更好的殺傷概率。作為一個有趣的探索,以及對我們方法的定性驗證,由ADP策略產生的機動與標準的、基本的戰斗機機動和常見的特技飛行機動進行了比較。結果表明,我們提出的ADP解決方法產生了模仿已知飛行動作策略。