亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

在可視范圍內的空戰涉及執行高度復雜和動態的活動,需要快速、連續的決策以生存和擊敗對手。戰斗機飛行員花費數年時間來完善交戰戰術和機動動作,然而不斷出現的無人自主飛行器技術引起了一個自然的問題--自主無人作戰飛行器(AUCAV)能否被賦予必要的人工智能,以獨立完成具有挑戰性的空戰機動任務?我們制定并解決了空戰機動問題(ACMP),開發了一個馬爾可夫決策過程(MDP)模型來控制一個尋求摧毀對手飛行器的AUCAV。該MDP模型包括一個5自由度、點質量的飛機狀態轉換模型,以準確表示機動時的運動學和能量。ACMP中狀態空間的高維和連續性質使得經典的解決方法無法實施。相反,我們提出了一種近似動態規劃(ADP)方法,其中我們開發并測試了一種近似的策略迭代算法,該算法實現了神經網絡回歸,以實現AUCAV的高質量機動策略。為了計算測試的目的,我們指定了一個有代表性的攔截場景,其中AUCAV的任務是保衛一個責任區,必須與試圖穿透保衛空域的敵方飛機交戰并摧毀它。進行了幾個設計實驗,以確定飛機特性和對手的機動戰術如何影響擬議ADP解決方案的功效。此外,設計的實驗使高效的算法超參數調整成為可能。ADP生成的策略與目前ACMP文獻中發現的兩個公認的基準機動策略進行了比較,一個只考慮位置,一個同時考慮位置和能量。在調查的18個問題實例中,ADP策略在18個實例中的15個超過了只考慮位置的基準策略,在18個實例中的9個超過了位置-能量基準策略,在最能代表典型空中攔截交戰的問題實例中獲得了更好的殺傷概率。作為一個有趣的探索,以及對我們方法的定性驗證,由ADP策略產生的機動與標準的、基本的戰斗機機動和常見的特技飛行機動進行了比較。結果表明,我們提出的ADP解決方法產生了模仿已知飛行動作策略。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

美國空軍(USAF)繼續投資研究和開發人工智能技術,通過自主無人駕駛飛行器(AUAVs)產生競爭性攻擊行為。多架AUAVs的使用可以作為一種力量倍增器,確保對敵方的空中優勢,并消除對作戰人員的威脅。我們制定并解決了動態目標到達的多Agent路由問題(MRP-DTA),這是一個隨機系統,其中一隊AUAVs對一個名義上的對手執行了打擊協調和偵察(SCAR)任務。在任務期間發生的動態目標到達為AUAVs團隊提供了一個連續的決策過程,我們通過馬爾科夫決策過程(MDP)來模擬。狀態空間的高維度和連續性質使得經典的動態規劃技術在計算上難以實現。為了應對維度的詛咒,我們構建并實施了一個混合近似動態規劃(ADP)算法框架,該框架采用了參數化成本函數近似(CFA)和直接前瞻性(DLA)模型。我們利用網狀自適應直接搜索(MADS)算法來調整我們的CFA-DLA參數化,并為AUAVs團隊產生高質量的攻擊策略。為了證明我們算法方法的優點,我們設計了一個實驗,在MRP-DTA的多個實例上測試我們的解決方法。我們將超級ADP策略與競爭基準策略進行比較;推薦的ADP策略在測試的20個問題實例中,有19個比重復貪婪的邊際啟發式基準策略有統計學上的顯著改進,在測試的10個問題實例中,有8個比重復順序定向問題基準策略有統計學上的顯著改進。我們表明,高回報目標到達的概率和目標到達的區域是影響結果策略質量的關鍵問題特征。偏移分析的結果顯示,在為我們的CFA-DLA算法選擇基礎優化模型時,要平衡解決方案的質量和計算工作量的價值。

I. 引言

自主系統和機器人技術的不斷發展,為推進和發現有利于美國空軍(USAF)的作戰技術提供了潛力。美國空軍繼續面臨著科學和技術進步的挑戰,因為同行和近鄰的地緣政治競爭者對其力量投射的關鍵組成部分進行競爭(威爾遜,2019;空軍部,2021)。美國空軍認識到,人工智能、自主系統和機器人等新技術將確保它能在未來打仗并贏得戰爭(馬蒂斯,2018;空軍部,2019d)。

友軍和敵軍已經開始將自主無人飛行器(AUAVs)與部隊相互配合,以實現軍事目標并保持空中優勢。土耳其部隊最近在 "春盾行動 "中對敘利亞部隊使用了這種自主飛機,表明他們的AUAVs可以在部署載人資產之前積極機動和削弱各種軍事目標,包括防空系統、榴彈炮和軍事基地(Haider,2019)。美國空軍可以從自主飛機的應用中獲益,作為高度重復、危險行動的潛在力量倍增器(Cahoon, 2021)。自主飛機已經證明了它們在危險環境中的效用,并且可以在不適合載人飛機的飛行狀態(如加速力、高度)下進行機動。運籌學(OR)方法可以應用于自主系統領域,使美國空軍在開發未來自主技術、戰術和程序方面直接受益,以保持競爭優勢。

美國空軍尋求保持空中優勢,以便在沒有敵對作戰部隊干擾的威脅下開展軍事行動。從歷史上看,空中優勢一直是一個行動或戰役成功的必要條件(國防部,2017b)。美國空軍參謀長查爾斯-布朗(Charles Brown)將軍強調,需要將空中優勢本地化并實現聯合效應,作為美國安全的一個組成部分(Brown Jr, 2020)。友軍作戰部隊首先努力建立空中優勢,因此后續行動的執行不會受到其他敵對部隊的干擾(空軍部,2019a)。

在建立空中優勢后,美國空軍必須通過進攻性的攻擊行動來保持對戰斗的控制,以削弱敵人的動員和反擊能力。用來實現這一目標的一個主要任務是空中攔截。美國空軍主要將空中攔截定義為一種多方面的努力,以轉移、破壞、延遲或摧毀敵人的軍事潛力,使其能夠有效地對付友軍或實現聯合部隊指揮官(JFC)的目標。空中攔截必須與環境中的許多敵對條件相抗衡,需要及時和準確的情報報告來告知決策者敵人的能力、部署和意圖(Meilinger,2014)。美國空軍認為反陸作戰是用于完成空中攔截的關鍵任務。

美國空軍執行反陸作戰,攔截和摧毀分散在行動區的敵方地面目標。JFC將空對地攻擊的重點放在敵人的關鍵目標上,以削弱敵人的能力,并在整個行動區完成一套專門的任務目標(空軍部,2020)。美國空軍與其他部門一起使用的一套任務,以最大限度地有效摧毀敵人的資產,被稱為打擊協調和偵察(SCAR)任務。

SCAR任務是一個與反陸作戰相關的衍生任務,支持空中攔截任務目標。在SCAR任務中,美國空軍收集關于潛在敵方目標的情報、監視和偵察(ISR)信息,指導攻擊資產打擊目標,探測更多的目標,并為未來的行動提供戰損評估(BDA)。與載人資產相比,AUAVs提供了增加飛機續航能力、降低作戰人員風險和優越的目標選擇策略的潛力,是SCAR任務的一種潛在資產。美國空軍采用了一種邏輯結構的目標選擇過程,允許JFC進行情報管理。正如Brunson(2007)所介紹的,美國空軍完全依靠JFC的目標來確定攻擊目標或支持偵察工作的優先次序。情報部隊獲得ISR報告,并在攻擊領域的資產部署之前確定蓄意的目標。我們把攻擊領域稱為目標所在的二維地面空間和SCAR任務發生的時間領域。目標的分類是基于多種特性:攻擊窗口的時間敏感性、破壞的價值和對敵方部隊造成的退化(國防部,2017c)。由于這些不同的因素,JFC承認目標之間有不同的優先級別。高回報目標(HPT)是被認為是實現JFC主要目標的必要目標。JFC建立了一個聯合綜合優先目標清單(JIPTL),明確描述了目標服務順序。必須了解的是,JIPTL通常是根據每個目標的價值來構建的;然而,目標位置、目標價值和目標地形特征使清單上的目標的優先次序變得復雜,需要進一步仔細研究。除了為HPT提供服務外,SCAR任務的重點是被稱為命名興趣區(NAIs)的目標。NAIs被添加到JIPTL中,以促進未來關于目標位置的情報,并為JFC提供BDA,這可能為未來的攻擊任務提供信息。在現實中,隨著SCAR任務的進行,目標實時到達(即被識別)是很平常的。

動態目標描述的是在資產部署后確定一個新的目標(空軍部,2019c)。盡管動態目標是在所有蓄意目標被優先考慮后確定的,但如果它們符合JFC的目標,它們仍然是可行的目標。由于瞄準過程的靈活性,攻擊資產仍然可以為動態目標提供服務;然而,這些動態目標的到來有時會改變JIPTL的執行,從而影響行動的效率。與動態目標的到來相關的隨機性代表了我們問題中不確定性的主要來源。雖然資產進入攻擊域執行計劃中的SCAR任務并大步調整以應對動態目標的到來似乎是最佳選擇,但我們相信,通過預測動態目標在攻擊域的到來,我們可以開發高質量的多Agent攻擊策略,通過采用強化學習技術,這些策略將優于反應性的確定性策略。然而,在聯合空域中引入多架攻擊飛機需要額外的問題約束來模仿適當的空域控制。

美國空軍使用空域控制這一術語來定義在聯合攻擊領域內運作的多種資產的運用。空域控制是非常動態的,而且是因地制宜的,但是為了優化空域的使用,控制應該適應具有不同技術能力的用戶。空域控制的必要性是由威脅程度、可用的監視、導航以及空域用戶和控制機構的技術通信能力決定的。這些能力直接告知協調措施的發展(空軍部,2019年b),這些措施是消除空域沖突和確保按照(IAW)JFC的目標安全有效地開展行動的必要條件。

這項研究提出了具有動態目標到達的多Agent路由問題(MRP-DTA),重點是在一個給定的攻擊域中指揮多個自主攻擊Agent。任務目標是在SCAR任務中雇用一隊AUAVs為目標服務。AUAV的主要目標是獲得最高的總獎勵,其中AUAV從服務目標中獲得獎勵。AUAVs團隊必須適應動態目標的到來,并通過不同的通信方案適當地保持空域控制。具體來說,非盟飛行器之間的溝通對于建立一個富有成效的優先攻擊目標的團隊至關重要。為了最好地表現這種情況,我們使用了適當地表現AUAVs之間通信的隨機性和管理的建模技術。

在這項研究中,我們使用馬爾科夫決策過程(MDP)框架對MRP-DTA進行建模,并使用近似動態規劃(ADP)技術獲得了解決方案。MDP框架為定義大量的問題特征提供了一個結構化的表述。MDP框架模擬了現實世界系統中的隨機性。然后可以應用精確算法來解決MDP模型,使其達到最佳狀態。然而,由于問題的規模很大,這些解決技術對于MRP-DTA來說在計算上是不可行的。該問題的無數狀態和結果空間需要一個強大的近似技術,如ADP,以提供高質量的策略,更好地告知決策者在攻擊領域中的攻擊資產的路由。我們在一個二維的攻擊域中表示MRP-DTA。AUAVs小組進入攻擊域,利用JIPTL中包含的蓄意目標的知識尋找要摧毀的地面目標。在沒有動態目標的情況下,JIPTL能夠為每架AUAV確定一條初始的、靜態的、最佳的路線。雖然JFC可能要求首先攻擊蓄意目標,但我們研究了在給定選定的知識,即攻擊領域各部分的動態目標到達的特征時,AUAVs的性能。確定性的攻擊策略提出了激勵性的研究問題;我們認為,通過利用整個攻擊域中動態目標到達的已知概率,這些策略可以得到改進。我們實施了一個設計好的計算實驗來測試問題特征的敏感性及其對策略性能的影響。

本文后續是按照必要問題信息的邏輯表述的。第二章對類似的問題類別、類似的建模框架和適用的解決方法進行了深入的文獻回顧。第三章明確定義了問題描述,MRP-DTA的MDP模型表述,以及用于解決該模型的ADP求解方法。第四章介紹了該分析的結果、有針對性的分析和收集的見解。最后,第5章提供了擴展這項研究的建議。

付費5元查看完整內容

美國空軍正在投資人工智能(AI)以加速分析,努力使自主無人駕駛戰斗飛行器(AUCAVs)在打擊協調和偵察(SCAR)任務中的使用現代化。這項研究探討了AUCAV在SCAR任務中執行目標打擊和提供偵察的能力。一個定向問題被制定為馬爾可夫決策過程(MDP)模型,其中一個AUCAV必須優化其目標路線,以幫助消除時間敏感的目標,并收集所要求的指定興趣區域的圖像,同時躲避作為障礙物的地對空導彈(SAM)電池威脅。AUCAV根據SAM電池和目標進入戰斗空間的位置來調整其路線。開發了一種近似動態規劃(ADP)的解決方案,其中數學規劃技術與成本函數近似(CFA)政策一起被用來開發高質量的AUCAV路由政策,以提高SCAR任務的性能。CFA政策與確定的重復定向問題(DROP)基準政策進行了比較,在四個實例中探討了動態目標和SAM電池的不同到達行為。當AUCAV被分配到120分鐘來完成它的任務,并且防空導彈電池到達戰斗空間時,結果顯示,所提出的CFA政策優于DROP政策。總的來說,擬議的CFA策略在所有四種情況下的表現幾乎與DROP策略相同或更好。

關鍵字:馬爾科夫決策過程(MDP)、近似動態規劃(ADP)、強化學習(RL)、人工智能(AI)、定向問題(OP)、車輛路由問題(VRP)、目標定位、成本函數近似(CFA)、直接前瞻近似(DLA)、網格自適應直接搜索(MADS)

I. 引言

根據美國國防部長(SecDef)的說法,美國(US)軍隊近期的重點是將目前的 "能力現代化,以應對未來的先進威脅",并確保美國軍隊仍然是 "世界上最杰出的戰斗力量"(國防部,2021)。國防部長的重點可以通過美國國防部(DoD)有效調整其資源以應對不斷變化的威脅來實現(國防部,2021)。本論文支持國防部未來的首要任務,這些任務涉及使用自主無人駕駛作戰飛行器(AUCAVs)來壓制敵方防空(SEAD)和打擊任務。這些優先事項包括人工智能(AI)、偵察機能力、作戰司令部(COCOM)策略和威懾對手方面的進步。通過開發用于AUCAV路徑規劃和目標選擇的近似動態規劃(即基于模型的強化學習)算法,我們可以探索空軍打擊深度、時間敏感目標和威懾對手的能力,與國防部的主要倡議直接保持一致(國防部副部長(主計長)/首席財務官辦公室,2021)。這些資產的一個共同點是它們都對司令部的任務至關重要,并且可以與AUCAV打擊高價值目標的能力一起工作。

1.1 美國防部的舉措

AUCAV有多種方式可以用來支持COCOM的任務。一種獨特的方式是對時間敏感目標(TST)的位置進行偵察,使其他盟軍飛機或地面資產能夠打擊該目標。第五代F-35可以在不被發現的情況下遠距離攻擊地面目標,包括地對空導彈(SAM),并使用精確武器成功完成空對地任務(Military Advantage, 2014)。AUCAVs對薩姆導彈可能沒有那么有效,可能會被它們擊落。然而,AUCAVs有能力對要求命名的興趣區(NAIs)或更適合其他軍事資產打擊的目標類型進行偵察,如F-35或B-52。

F-15EX是美國國防部批準的項目,與F-35不同,它不是隱形的,不能在敵后不被察覺。然而,空軍已經考慮將F-15EX與隱形戰斗機配對,并將這對戰斗機作為遠程空對空導彈發射平臺(Mizokami,2021)。盡管F-15EX也有能力進行空對地打擊,但該機的主要優勢在于其雷達和攜帶大量武器載荷的能力,包括二十多枚空對空導彈或高超音速武器(Mizokami, 2021)。這種作戰能力是需要考慮的,因為將一架隱身飛機(如F-35)與一架不具備相同屬性的飛機(如F-15EX)配對,以完成時間敏感的目標打擊任務,作為AUCAV的目標確認能力的結果,可能會達到優越的性能。

在每個COCOM的責任區(AOR),指揮官要求提供NAI和高價值目標打擊的圖像。假設沒有能夠擊落AUCAV的敵方威脅(例如,防空導彈炮臺),AUCAV可以滿足指揮官的要求。然而,這種假設忽略了一個現實,即敵人可能會施加障礙,嚴重影響精心策劃的任務。路徑規劃必須結合禁飛區(NFZ)的情報信息,以達到避免威脅的目的。本論文討論的近似動態規劃(ADP)算法將探討未預見的NFZ或戰斗區(例如,由于防空導彈電池)如何影響AUCAV的目標選擇,以及AUCAV如何隨著時間的推移學會避免這些區域。

美國軍方已經對使用JDAMs打擊目標的無人駕駛作戰飛行器(UCAV)進行了作戰測試和評估(OT&E)(Butler and Colarusso, 2002)。因此,本論文假設AUCAVs使用JDAMs來打擊高價值目標。JDAM能夠使用從聯合監視目標攻擊雷達系統(JSTARS)傳送的飛行中目標更新(IFTU)信息單獨指向其目標(Butler and Colarusso, 2002)。已經完成的測試表明,使用負擔得起的移動水面目標攻擊系統(AMSTE)而不是JSTAR,使UCAV打擊移動目標的能力大大增強。這一發展應作為后續工作進一步探討,但在本論文中不會詳細討論。

美國特種作戰司令部(USSOCOM)正在投資人工智能(AI)以加快分析速度(國防部副部長(主計長)/首席財務官辦公室,2021)。這篇論文的重點是建立一個人工智能算法,使戰斗指揮部,如USSOCOM,能夠及時有效地執行目標打擊,并對要求的國家情報機構進行偵察。除各司令部外,聯合情報支援部隊(JISE)和聯合特遣部隊(JTF)也依賴偵察機,這是因為他們在管理各種形式的偵察和監視敵人方面的作用,這些偵察和監視對了解情況、確定目標和合適的目標以及向部隊提供警告是必要的(國防部,2018a)。如果目前的AUCAV路徑規劃AI算法得到改進,所有這三個適用的軍事組織都可以提供更多的情報信息,從而在目前的限制性資源(如燃料容量、彈藥或在戰區的時間)下,產生更多的目標打擊和NAI的圖像。

1.2 空軍關于目標選擇的學說

鎖定目標是一項指揮職能,需要指揮官的監督和參與,以確保正確執行(美國空軍部,2019年)。它不是某類專業或部門的專屬領域,如情報或行動,而是融合了許多學科的專業知識(美國空軍部,2019)。本論文通過將AUCAV任務前收到的情報與美軍的聯合、戰術和空軍理論相結合,探索這種專業知識的融合。最好同時考慮聯合學說和空軍學說,以更好地理解空軍如何定義目標。根據聯合學說,目標是一個實體或物體,被視為可能的交戰或其他行動(國防部,2018b)。實體可以被描述為設施、個人、虛擬(非物質)事物、設備或組織(美國空軍部,2019)。

有兩類目標:故意的和動態的(美國空軍部,2019年)。當有足夠的時間將目標添加到空中任務單或其他計劃中時,故意瞄準適用。蓄意的目標定位包括計劃由待命資源攻擊的目標。動態目標定位包括那些發現得太晚或沒有及時選擇而被列入蓄意目標定位的目標,但當發現或定位時,符合實現目標的特定標準。

本論文試圖確定AUCAV的最佳路線,以選擇故意和動態目標的組合。AUCAV進入戰斗空間時,有一組要求攻擊或偵察的故意目標。一旦進入戰斗空間,AUCAV就會遇到新的目標請求(即動態目標到達),必須重新計算其最佳目標選擇路線,并考慮到新到達的目標。

需要特別考慮的兩個目標子集是敏感和時間敏感(Department of the United States Air Force, 2019)。敏感目標是指指揮官估計在軍事行動中發生的對平民和/或非戰斗人員、財產和環境的實際影響和附帶影響超過既定的國家級通知門檻的目標(Department of Defense, 2018b)。敏感目標并不總是與附帶損害相關(美國空軍部,2019)。它們也可能包括那些超過國家一級交戰規則閾值的目標,或者作戰指揮官確定打擊目標的效果可能會產生不利的政治影響(美國空軍部,2019)。時間敏感目標是聯合部隊指揮官確認的目標或需要立即做出反應的目標集,因為它們是高度有利可圖的、轉瞬即逝的機會目標,或者它們對友軍構成(或即將構成)危險(國防部,2018b)。

這篇論文的重點是AUCAV對時間敏感的目標進行打擊,并對可能包括敏感目標的NAI進行偵察,同時避開代表薩姆電池威脅區的NFZ。這是通過使用ADP方法、整數規劃技術和馬爾科夫決策過程(MDP)模型框架解決具有隨機目標到達的無人駕駛飛機定向問題,同時避開障礙物來實現的。車輛路由問題MDP模型框架被用來對AUCAV的目標選擇進行基線分析,同時避開障礙物(即防空導彈電池),并確定哪些時間敏感的目標應該在指定的時間段內被摧毀。然后,采用CFA策略的ADP解決方法來優化AUCAV的目標路線,在做決定時利用未來動態時間敏感目標和障礙物到達的預測位置。

本論文的其余部分的結構是:第二章討論類似于具有隨機目標到達的自主車輛定向問題的文學作品,第三章討論問題的制定框架和解決方法,第四章討論計算測試和結果,第五章討論結論。第二章從ADP的角度詳細探討了具有隨機到達、服務時間和等待時間的類似路徑規劃問題。第三章對用于建模和解決問題的方法進行了深入探討。第4章揭示了分析的結果和建議。第5章是本論文的結論,提出了為AUCAV選擇目標和躲避敵人威脅而產生改進的解決程序的未來建議。

付費5元查看完整內容

在可視范圍內執行空戰,需要飛行員在接近1馬赫的飛行速度下,每秒鐘做出許多相互關聯的決定。戰斗機飛行員在訓練中花費數年時間學習戰術,以便在這些交戰中取得成功。然而,他們決策的速度和質量受到人類生物學的限制。自主無人駕駛戰斗飛行器(AUCAVs)的出現利用了這一限制,改變了空戰的基本原理。然而,最近的研究集中在一對一的交戰上,忽略了空戰的一個基本規則--永遠不要單獨飛行。我們制定了第一個廣義的空戰機動問題(ACMP),稱為MvN ACMP,其中M個友軍AUCAVs與N個敵軍AUCAVs交戰,開發一個馬爾可夫決策過程(MDP)模型來控制M個藍軍AUCAVs的團隊。該MDP模型利用一個5自由度的飛機狀態轉換模型,并制定了一個定向能量武器能力。狀態空間的連續和高維性質阻止了使用經典的動態規劃解決方法來確定最佳策略。相反,采用了近似動態規劃(ADP)方法,其中實施了一個近似策略迭代算法,以獲得相對于高性能基準策略的高質量近似策略。ADP算法利用多層神經網絡作為價值函數的近似回歸機制。構建了一對一和二對一的場景,以測試AUCAV是否能夠超越并摧毀一個優勢的敵方AUCAV。在進攻性、防御性和中立性開始時對性能進行評估,從而得出六個問題實例。在六個問題實例中的四個中,ADP策略的表現優于位置-能量基準策略。結果顯示,ADP方法模仿了某些基本的戰斗機機動和分段戰術。

付費5元查看完整內容

在未來的軍事行動中,通過協調多智能體系統(MAS)來實施戰略機動以獲得對對手的優勢,是一個很重要的途徑。最近探索MAS協作的工作主要集中在識別、分類、驗證、實施,以及通過多智能體強化學習(RL)來研究新興的協作方式。強化學習方法可以通過探索和利用選定行動來響應特定環境中的突發行為,這有可能抑制對抗性協作,反過來又可以為各種情報、監視、目標獲取和偵察任務提供機會窗口。本報告簡要介紹了RL領域的突出工作及其在自主戰略機動協作式MAS中的潛在應用。

1 引言

美國陸軍現代化激增是由對手在多個領域(如陸地、海洋、空中、網絡、電磁和空間)對美國構成的威脅所推動的,這對美國利益的威脅超出了常規戰爭。預計未來的戰斗將在這些復雜的多領域環境中進行,人工智能(AI)將指導與人類士兵一起協同工作的機器人Agent的戰術、技術和過程(TTPs)。這些機器人將聚集在一起,形成智能多Agent團隊,與人類士兵有效協作,完成任務。

美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)的基本研究計劃(ERPs)構建了開發和實施智能多Agent系統(MAS)的具體計劃路徑。此類陸軍計劃為美國國防行動提供了關鍵研究問題的答案,這些問題匯聚在一起,指明陸軍未來司令部的現代化努力方向。人工智能用于自主機動性(AIMM)和新興超限技術(EOT)是ERP的例子,明確側重于使下一代戰車具有自主感知、學習、推理、規劃和機動能力。這些未來的自主系統將與人類智能體合作進行預測和規劃,并通過戰場上的自主機動(AIMM)和保護(EOT)向士兵提供支持。本報告重點關注需要進行的自主協作,以使多智能體系統(即人類、智能體或人類和智能體混合)在未來的軍事行動中取得成功。

集成和協調的MAS將需要技術的進步,重點是超越我們目前的能力,以有效地對付同等裝備的對手(同行或接近同行)的協作戰略機動性。一個直接的挑戰是開發能夠以良好協調方式自主和智能地工作的智能體團隊。這種能力要求智能體在執行關鍵任務時與士兵一起觀察、定位、決定和行動(OODA-Loop)。雖然新的努力促進了對多智能體范式中情報的一般理解,但目前對情報的解釋并不明確。最近的文獻表明,基于強化學習(RL)的方法可能為實現這種技術進步提供了一條可行的途徑,本文介紹的一系列工作就是證明。

在本報告中,介紹了RL領域的貢獻,以及它們在軍事環境中的潛在應用--特別是通過戰略編隊機動來抑制對手的協作,以實現戰場上的超越。最小化、限制或完全抑制對抗性多Agent行為中的協作是探索和執行在模擬情況下通過RL實驗得出戰略機動的一種手段。此外,協作的戰略機動可以通過各種RL方法學習,以告知防御部隊創造機會或優勢窗口的潛在途徑。

為了在模擬環境中通過戰略機動的RL方法實現MAS協作,我們首先介紹了近年來一些最突出的RL研究。最近在RL領域的進展(如alphago)促進了更復雜的多智能體強化學習(MARL)算法在現實世界應用。此外,近年來也有一些框架來實現多智能體協作。這些努力加在一起,可以為開發和實施多機器人協作提供一條道路,以便在為未來戰場設計的多機器人系統中實現戰略機動。

在下面的章節中,對近年來突出的RL方法進行了分類和概述,并表明這些方法與DEVCOM陸軍研究實驗室目前的研究和開發項目相一致。具體來說,本報告的重點是確定戰略機動的特定算法的優勢和劣勢。此外,對選定的RL方法類別進行了分類,以深入了解戰略機動的潛在實施,并考慮到情報、監視、目標獲取和偵察(ISTAR)任務。

2. 多域作戰中多智能體系統的戰略機動

簡單地說,戰略機動可以解釋為一組智能體協調他們的行動,通過戰勝對手來實現一個共同的目標。破壞,是戰略機動的一個特例,可以表示為對對手協作戰略機動的抑制。因此,戰略機動一詞的使用意味著至少存在兩個對立的或敵對的雙方,他們處于動態的斗爭中,通過限制、抑制或以其他方式破壞對手的協調或戰術,并強加自己的協作戰術來獲得對對方的優勢。

在本節中,提供了一個對抗性的交戰場景,其核心是使用選定的遠程資產,這些資產本質上破壞了友好部隊的交戰。圖1顯示了一個圖例,描述了與所述多域作戰(MDO)情景相關的選定資產和部隊的軍事符號學。根據MDO理論,在武裝沖突中,對手的遠程反介入和區域拒止(A2AD)火力系統可以被用來拒絕友軍在戰區的機動自由(見圖1)。這是通過將情報、監視和偵察(ISR)資產與致命性和非致命性火力相結合來實現的,以攻擊戰略和行動支持區的友軍指揮結構、維持能力和部隊編隊。這些地區是近距離地區作戰資產(如部隊和裝備)的傳統集結地(見圖2)。對手有能力在友軍后方深處識別和攻擊目標,導致這些實體在地理上與戰術支持區和近距離區分離,這有效地提高了友軍的損耗率,即所謂的對峙。鑒于前線部隊與戰略和作戰機動支援相分離,敵對勢力可以利用這種友軍孤立無援的情況,將其消滅。

圖1 友軍(BLUEFOR,左)和敵軍(OPFOR,右)部隊的資產和資源。在所描述的MDO情景中,假設BLUEFOR和OPFOR的所有資產都是自主化的編隊。

圖2 敵軍(OPFOR)使用遠程導彈和火箭炮干擾或破壞友軍(BLUEFOR)戰略支援區的維持行動,這使得友軍無法以有利的條件與近距離地區的敵軍機動部隊交戰。為了應對這一戰略,BLUEFOR執行反擊任務,以摧毀位于深火區的OPFOR遠程火力系統(藍色箭頭)。從深層機動區的BLUEFOR SOF發出的三叉箭頭代表了一種 "破壞 "戰術,它打破了對手的隊形和節奏。

圖3 壓制(S)或解除(N)敵方遠程火力系統和ISR資產,使友軍能夠穿透敵方的A2AD保護傘。這使友軍能夠在近距離地區擊敗敵人,并使機動指揮官有能力利用他們的成功,迅速將部隊轉移到深度機動區,摧毀(D)脆弱的敵方資產并追擊撤退的敵軍。F表示 "固定",可有效減緩敵軍的行動。粗箭頭代表部隊移動的方向。

MDO理論規定了擊敗對手A2AD能力的計劃(即對峙),以便戰略和作戰機動能夠使前沿部署的友軍以有利的條件與對手交戰(即穿透和瓦解A2AD系統以利用機動自由)。在這里,我們只關注友軍(BLUEFOR)野戰軍和軍團與敵方A2AD系統交戰時的滲透和瓦解部分,這可能需要在未來的戰斗中使用自主MAS。此外,據推測,圖1中友軍(BLUEFOR)和敵軍(OPFOR)的所有符號都將包含自主化的編隊(例如,機器人戰車、自動瞄準系統、地面和空中的機器人ISR資產)。圖2和圖3分別顯示了利用這種符號學與自主化編隊進行戰略機動的情景圖。

如圖2所示,敵對的A2AD火力系統通過攻擊戰略和作戰支持區來創造對峙局面。友軍火力和防空部隊從太空和高空監視(未顯示)接收有針對性的情報,在狹窄的時間窗口內打擊高價值目標(即多管火箭系統[MLRS]),以減少對手的位置調整。除了監視之外,還可以采用戰略刺激--打擊來穿透和瓦解對手的遠程火力系統。

在ISTAR任務中,MARL可以通過利用敵軍理論和敵軍行動中的局部觀察,戰略性地照亮和跟蹤敵軍目標的位置。此外,經過MARL訓練的具有自主能力的編隊,結合高度機動和分散的空中和地面火力,可以開始壓倒對手的遠程防空。友軍可以利用經過訓練的MARL方法來利用對手的TTP,進行防空和地面火力的戰略機動。這些具有自主能力的編隊根據從戰略空基刺激收集的監視數據選擇地理位置。隨著對手的遠程火力系統被消滅,戰略和作戰支援部隊能夠向前方的作戰部隊推進(機動)(見圖2)。

敵軍利用ISR資產識別作戰支援區的友軍資產,并從作戰縱深火力區用遠程火力系統(即多管火箭炮)攻擊友軍。這些敵方火力擾亂了友軍在該地區進行傳統支援行動的能力,這反過來又導致這些活動在離部隊前線更遠的地方進行。這通過擴大戰場和緊張的補給線而造成地理上的對峙。此外,這還允許敵方機動部隊以有利于敵方既成事實的條件與近距離地區的友軍作戰。根據MDO的理論,為了消除對峙,友軍的炮兵系統必須在敵軍的火力和ISR資產部署之前識別、交戰并摧毀它們。友軍SOF通過破壞補給和指揮與控制(C2)節點以及為聯合火力提供目標數據來協助這項工作。這在敵人的A2AD保護中創造了缺口,可以被機動指揮官所利用。在這種覆蓋下,友軍機動部隊穿透并利用近距離和深層機動區域的缺口。

在作戰區,近距離和縱深地區的聯合部隊的戰略編隊可能是自主啟用的編隊(即MAS),利用MARL訓練的策略來利用對手的TTP(來自理論)、本地觀察和ISR收集的信息。如圖2所示,聯合部隊將協調其ISR和遠程精確火力的能力,為前沿部署的BLUEFOR部隊提供支持。在戰略和作戰單位的支持下,擁有自主能力的前線部隊可以在近距離和縱深地區進行協調,以分離和擊敗敵方資產。這將促進消滅敵對的前沿機動部隊(OPFOR),使遠程火力系統容易受到地面攻擊(瓦解),如圖2所示。

聯合火力(即友軍或BLUEFOR)壓制或消滅對手的遠程火力系統,使友軍機動部隊能夠進入并擊敗近距離區域的作戰部隊(見圖3)。然后,友軍機動部隊利用這一優勢,在深度機動區(見圖3中的D區)摧毀敵方的助推器。這將導致剩余的敵對機動編隊從近距離區域撤出,并在深層機動區域建立一個新的戰線。這個過程不斷重復,直到達到戰略目標或打敗OPFOR。這些協調活動在理論上可以通過人類士兵和自主多智能體系統之間的合作來實現。此外,鑒于目前正在積極研究開發和部署這種自主系統,預計未來的戰場將需要考慮像這樣的場景來規劃戰略機動。

本節提供了一個可以應用MARL方法訓練自主化編隊的場景;然而,在這種復雜的MDO環境中執行的具體RL方法還沒有經過測試,或者可能還不存在。下一節闡明了與利用RL方法為未來的MDO交戰訓練MAS有關的一些挑戰。

3 挑戰

在這項工作中,我們將重點聚焦到可以指導MAS克服與軍事防御MDO中戰略機動相關挑戰的RL方法。從技術上講,RL是機器學習(ML)的一個分支,它超越了從數據中建立精確的預測,通過在環境中產生行動來展示學習。這種學習的展示可以被認為是一種決策形式,但更準確的描述是通過狀態空間探索進行戰略行動選擇。

RL智能體在獎勵函數的基礎上進行學習(或訓練),最終確定在當前情況下(即該智能體在環境中的狀態),哪一個是智能體要選擇的最佳行動。例如,RL智能體可以與環境互動,產生與獎勵掛鉤的經驗,這將形成學習的策略(即一系列的狀態-行動對)。然而,在后面的章節中強調,目前的RL方法可能還不夠成熟,無法克服與人類類似的適應性相關的挑戰,以便在新情況或環境中進行智能決策。盡管RL算法有其缺點,但它們似乎是在軍事防御MDO中實現協調的MAS執行戰略機動的最有希望的途徑之一。

在多智能體任務中,協作通常是定義不清的,而且經常被用來表示一組智能體在某些合作任務領域中成功地執行了任務。在以前的工作中,開發并采用了各種新方法來測量執行合作任務時智能體行動之間的相互依賴性,以確認這些智能體事實上已經學會了協作。對協作的確認是確定MAS有能力與其伙伴合作的先決條件,而不是簡單地采取導致某種程度的優化行動。雖然在某些情況下,最佳行為可能是可取的,但如果任務以某種不可預見的方式發生了變化,一個簡單的最佳行為的智能體可能會在戰場上導致災難性的損失。因此,未來防御行動的MAS必須具有明確協作的能力。

在本節的其余部分,描述了與開發戰略機動MAS有關的一些挑戰,其中時間尺度、能力和局部目標可能有很大的不同(例如,MDO),但需要某種程度的協作。此外,假設更大程度的靈活協作可以促進任務執行的改進(例如,更快、更少的損失、非直觀的策略、有效處理不斷變化的能力/團隊組成)。

隨著環境在動態戰場上的變化,敵對雙方(至少)可能需要重復規劃和預測,以便1)跟上,或2)領先于對手的規劃和預測。經過RL訓練的MAS能夠學習這種動態的規劃和預測循環。另外,如果學習智能體建立了一個關于對手協作行動的適當模型,然后采取行動破壞這種協作,也可以實現這一目標。

在一個理想的情況下,一個被選來指導MAS行為的算法將學會處理環境、對手戰術和能力、自身能力(獲得新的能力或失去以前的能力)、團隊組成(例如,改變合作者)和局部目標的變化。然而,大多數最先進的(sota)方法受到經驗的限制(正如許多RL方法的情況一樣)。此外,在大多數模擬中,團隊的能力和組成通常是固定的,不能為算法提供足夠的數據來操作和處理任何上述的特征變化。因此,在選擇一種算法來指導旨在產生戰略機動的MAS的行為時,必須考慮新的或動態的事件、行為、資產和實體。

總之,目前的算法方法在復雜的軍事防御MDO環境中沒有達到所需的能力。目前的缺點可以分為三類。1)數據要求,由于情況的新穎性,數據是有限的,數據集不足以產生準確的預測,或者數據以某種方式被污染(例如,嘈雜、臟亂或對手的改變),2)有限的計算資源,以及3)算法不能泛化到訓練期間遇到的情況之外(例如,不同的目標、改變的能力或修改的團隊組成),導致狹隘或脆弱的MAS解決方案。

在下一節中,我們將更詳細地討論RL的缺點,以闡明如何克服這些問題,為軍事防御MDO環境提供解決方案。為此,我們介紹了現有的RL算法的分類法。這一努力應提供對有前途的RL技術更好的洞察力,這可能有助于確定最終應用于美國國防MDO的可行途徑。

4. RL技術和方法

學習算法的可擴展性是MDO中軍事任務的主要關注點之一,特別是因為這種任務可能需要大量的智能體來完成一個目標。此外,軍事任務可能涉及多個子任務,每個子任務都有自己的子目標,從而進一步復雜化了場景。在MDO中,預計一個子目標由無數復雜的戰略演習組成,這需要MAS的快速計算,以及使用最小計算資源(如在戰術邊緣計算)的最佳(或至少足夠)戰略。因此,一個可擴展的RL算法必須考慮到:1)環境和任務的復雜性;2)智能體(伙伴和對手)的數量,以便每個智能體能夠在通過RL學習過程中收集經驗時正確選擇行動。

環境復雜性(即智能體的狀態和行動空間的大小)可以指環境的狀態空間中可用的狀態數量,以及該環境中智能體可用的行動方案數量。RL算法的可擴展性是指在足夠復雜的狀態和行動空間中,在合理的時間和計算能力內計算最優策略的能力。環境的復雜性還包括納入額外的智能體(例如,擴展到MAS),其中狀態空間被放大以考慮到額外的智能體,而行動空間的大小被乘以該之智能體的數量。

通過使用狀態-動作對的表格來解決RL的可擴展性問題是不實際的,因為連續的領域會使表格無法維持,而且在合理的時間內同時更新所有智能體的表格條目是不可行的。即使有足夠大的計算資源(如過多的計算機內存)來包含所有的狀態,在每個狀態-動作對之間的學習也會太慢。與利用表格跟蹤狀態-動作對相反,一個解決方案是使用非參數函數近似器(例如,權重為參數的深度神經網絡)來近似整個狀態空間的值。然而,函數近似器必須是可微分的,這樣就可以計算出一個梯度,以提供參數調整的方向。

有兩種方法來訓練值函數近似器:1)增量方法和2)批量方法。增量方法使用隨機梯度,在梯度方向上調整近似器的參數,使估計值和目標值之間的誤差最小。然而,增量方法的樣本效率不高,因此不具備可擴展性。相比之下,批量處理方法從一組經驗中保存數據,并使用它們來計算函數近似值估計和目標值之間的誤差。批量方法與傳統的監督學習有共同之處,即結果是已知的(例如,數據被標記),計算近似值的估計值和實際結果值之間的誤差。這種類型的批量學習通常被稱為經驗重放。重復這個過程將導致最小平方誤差的解決方案。最近一個成功的經驗重放的例子是用深度Q網絡(DQN)玩雅達利游戲演示的。盡管函數近似法在復雜的環境中顯示出了成功,但如果不考慮額外智能體的加入(即非平穩性或部分可觀察性),單靠這種方法不太可能足以訓練出MDO場景的MAS。

與價值函數近似法相比,策略學習方法依靠策略梯度(PG)的計算來明確優化策略,而不是間接依靠價值函數。與函數近似方法相比,PG具有更好的收斂特性。PG方法比價值近似方法更受歡迎的主要原因是它們能夠在高維和連續的行動空間中有效(即在復雜環境中可擴展)。在蒙特卡洛(MC)策略梯度(例如REINFORCE算法)中,實際回報(選擇行動)與一個分數函數相乘,以計算梯度。該梯度被用于策略調整(通過改變參數值)以找到最大的回報行動。MC策略梯度具有高方差,收斂速度慢,因為它使用智能體的狀態-行動對在不同時間的整個軌跡來獲得一個返回值。另一種可能超越傳統函數近似方法缺點的解決方案是利用 "演員評論"方法。

在演員-評論家方法中,PG方程被修改為使用價值函數的近似值,而不是使用真實的行動-價值函數乘以分數(如REINFORCE算法)。這表明行為者按照評論者所指向的方向調整策略,以便使總的累積獎勵能夠達到最大。評論者的這一策略評估步驟可以通過使用組合值近似方法(即MC、時差-TD(0)和TD(λ))來完成。為了減少策略梯度的差異,可以使用一個優勢函數。優勢函數告訴我們,與一般的狀態值函數相比,一個行動比另一個行動(Q值)好多少。這意味著評論者必須估計Q值。一個有效的方法是使用TD-error,它是優勢函數的無偏樣本,評論者對一組參數進行近似。TD(λ)資格跟蹤也可用于評論者估計不同時間步長的值。有趣的是,MC(高方差)和TD方法可以與行為人一起使用,隨著時間的推移(即收集的經驗)修改策略。

由于MDO涉及軍事任務,RL算法必須有能力與許多其他智能體協調,以實現最佳的戰略機動,因此MAS的算法必須能夠與大量的智能體和異質資產一起擴展。算法的另一個重要能力是處理復雜狀態空間(即許多智能體)和多領域環境的大量觀察能力。在接下來的章節中,我們將討論在MDO中使用不同種類的RL算法對戰略機動的影響。

無模型算法可分為非策略性和策略性算法,其中狀態行動空間可以是連續的或離散的。在這一節中,討論了無模型算法的優勢和劣勢,以及它們如何與戰略機動相一致,從而實現MDO的目標。這一分析的目的是為尋找在MDO環境中實現戰略機動性的潛在算法方法提供方向。

4.1 深度Q網絡(DQN)

深度Q網絡(DQN)是一種單一的RL智能體算法,它被訓練用來玩行動空間離散、狀態空間連續的Atari 2600游戲。DQN使用一個用Q-learning訓練的卷積神經網絡,從高維輸入(連續圖像)中學習。

DQN算法是一種有效的樣本方法,因為它利用所有收集到的經驗來提取盡可能多的信息。DQN足夠強大,可以使用相同的超參數進行訓練,玩六種不同的Atari游戲,其中智能體在其中三個游戲中的表現比人類專家更好。

然而,DQN的一個缺點是,在理論上不能保證訓練好的神經網絡實現穩定的Q值預測(即在不同的獨立模型中,訓練好的策略可能會有很大的差異)。

鑒于DQN本質上是一個單一的RL智能體模型,它應該不足以在MDO中進行戰略機動。在MDO中,多智能體RL算法可能更適合,因為智能體在執行時間內典型的分散化,允許智能體彼此獨立運作。此外,DQN的原始實現只利用了四個觀察序列來學習Q值,這對于MDO中的戰略機動來說是不夠的。多個資產的戰略機動通常不能在如此短的時間間隔內被捕獲。事實上,這是DQN在評估的三個Atari游戲(即Q*bert、Seaquest和Space Invaders)中與人類相比表現不好的主要原因。然而,存在一些DQN的變體來解決這個問題和其他弱點。

Bootstrap DQN就是這樣一個變體,它學習了一個Q網絡的集合,以提高采樣效率,并克服了傳統DQN的不足之處。行動消除是另一種與DQN一起使用的方法,以解決大的行動空間。帶有記憶類型的DQN(即循環神經網絡)也可以用來處理部分可觀察性。如果一個智能體需要為完成任務而導航環境,這種方法就特別有用。另外,分布式DQN返回一個分布信息,可用于評估策略風險和減少最佳解決方案周圍的方差或噪音。

盡管DQN及其修改后的變體在處理比簡單的Atari游戲更復雜的任務方面很有前途,但DQN方法本質上缺乏一個多智能體預測機制來進行協作戰術,而這是MDO中戰略機動的需要。此外,DQN在大多數情況下計算量太大,無法用于軍事相關環境。最后,DQN算法方法對未見過的例子(例如,伙伴的新行為或環境中出現的實體/障礙)缺乏足夠的適應性。

4.2 深度確定性策略梯度(DDPG)

在現實世界中,大多數常規任務涉及連續狀態和行動空間。然而,DQN只考慮離散的狀態空間和低維的行動空間。處理連續狀態和行動空間的DQN的另一種方法是深度確定型策略梯度(DDPG)方法。DDPG通過結合價值函數近似和確定性策略梯度(DPG),推進了DQN方法的進展。DDPG利用行為批判的方法,可以克服連續空間的復雜性。這種無模式、非策略預測和控制算法可以執行物理控制任務(如車桿、靈巧的操縱、腿部運動或汽車駕駛)。

另一種使用深度神經網絡的方法是信任區域策略優化(TRPO)。這種方法直接構建一個隨機策略,而不需要演員-評論者模型(不要與環境模型混淆,這將使其成為一種基于模型的方法)。與TRPO類似,引導式策略搜索(GPS)不需要角色評論模型,而是使用軌跡引導的監督式策略學習以及一些額外的技術(例如,減少視覺特征的維度,在網絡的第一層增加機器人配置動態的信息)。因此,GPS的數據效率很高,如果需要的話,可以改編成DDPG。另一方面,PILCO首先學習一個概率模型,然后找到一個最佳策略。PILCO在某些問題領域具有很高的數據效率;然而,它的計算量很大。此外,D4PG對DDPG算法提出了一些改進:分布式評論者更新、分布式并行演員、N步返回和經驗重放的優先級,以實現對不同類別任務的更穩定和更好的解決方案。

從戰略機動的角度來看,DDPG算法的主要缺點是它被設計成一個完全分散的單一智能體算法(即獨立學習者)。因此,DDPG算法不便于在多智能體場景中進行協作。因此,使用DDPG所產生的戰略機動將不會產生協作的團隊行為。此外,DDPG不具備處理基于角色的多目標任務的能力,而這是軍事行動中戰略機動的要求。

4.3 多智能體深度確定性策略梯度(MADDPG)

RL智能體互動對于戰略機動的人工智能系統至關重要,不同的智能體可能需要組成團隊來抑制對手的戰略合作或抑制對手的協調。Q-Learning和PG方法分別受到非平穩性和高方差的影響。為了克服這些問題,多智能體深度確定性策略梯度(MADDPG)算法擴展了一個演員評論家方法,這使得它可以通過集中智能體訓練而對多智能體系統發揮作用。MADDPG框架采用集中式評論家家進行訓練,并在測試期間部署分散的演員。一個評論者(每個智能體都有一個)接收每個智能體的策略,這允許開發具有潛在不同獎勵功能的依賴性策略(例如,MADDPG允許訓練具有相反獎勵功能的對抗性團隊)。相反,演員(即策略網絡)在訓練和測試期間只擁有本地知識。演員(通過訓練)在與評論者評價一致的方向上反復改進策略。

MADDPG的一個主要弱點是,對Q函數的輸入隨著環境中智能體數量的增加而增加(不可擴展)。這給MDO中的戰略機動性帶來了問題。如果智能體需要被替換、添加、修改或移除,可能需要進行再訓練。在戰略機動中,智能體可能需要定期轉換角色或改變能力,這對MADDPG適應軍事領域構成了重大挑戰。此外,頻繁的再訓練將使快速戰略機動變得不可能。縮短訓練時間將減少邊緣的計算負荷,使快速戰略機動成為可能。MADDPG不能適應這種極端情況。對于軍事應用,希望有一個強大的對手或智能體模型,以便使作戰時間最大化(即有足夠的時間來執行戰略機動)。

為解決其可擴展性問題,對MADDPG的一個潛在修改是形成智能體集群,為集群而不是每個智能體單獨學習一個策略。在發生新事件的情況下,可以推遲重新訓練的需要,因為從理論上講,一個智能體集群將有一套處理動態情況的可變能力。此外,這將避免隨著智能體的修改或新智能體的引入而增加Q函數的輸入空間。然而,問題來了。我們怎樣才能將一個任務分解成部分獨立的子任務,并使最優分組策略的退化程度最小?

雖然MADDPG可以形成一組異質的多智能體策略,能夠完成不同的任務,但這種方法不能很好地擴展到十幾個智能體。隨著智能體數量的增加,策略梯度的方差會呈指數級增長。因此,這種方法不太適合MDO中的戰略機動,在這種情況下,必須考慮到40多個異質智能體的對抗情況。克服這一可擴展性問題的方法是均值場多智能體RL算法,該算法計算鄰近智能體Q值的均值估計,當智能體之間的鄰近互動變得復雜時,可能導致高誤差率。此外,進化種群課程算法的設計是為了通過將遺傳算法方法與RL相結合,使MADDPG具有可擴展性。隨著MADDPG的進步和該方法所顯示的成功,可以想象這些算法的進步會導致在模擬實驗中對MDO內的戰略機動性進行強有力的演示。

與MADDPG不同的是,反事實多智能體(COMA)方法對所有智能體使用一個集中的評論家,但被設計用于離散的行動空間。COMA比MADDPG更具可擴展性,但它可能導致一套同質的策略,在智能體能力充分不同、局部目標不同或獎勵函數不同的情況下可能失敗。與MADDPG類似,Minmax多智能體DDPG(M3DDPG)比MADDPG的原始版本增加了一項改進,允許智能體制定更穩健的策略來對抗對手(即具有對立獎勵結構的競爭游戲)。然而,M3DDPG仍然無法處理異質智能體被引入系統的情況。

在具有連續狀態和行動空間的環境中實施算法,有時需要利用常見的技術來操作輸入或輸出,如離散化狀態和行動空間或將離散的策略輸出轉換為連續輸出。轉換策略輸出的一個例子是OpenAI多智能體粒子環境中MADDPG的實現。在這個例子中,離散的策略組件被用來計算連續的行動。從另一個角度來看,多智能體轉化器軟雙Q學習算法將連續行動空間離散為一組速度和角速度控制,然后可以在運動模型中使用。盡管這些技術允許在連續環境中使用這種算法,但這些算法方法沒有用連續信息進行訓練,這可能會限制它們在物理環境中進行戰略機動的功效。

4.4 價值為本

最近的一個基于價值的MARL算法系列在非常復雜的《星際爭霸2》模擬環境中被證明是相當成功的,其中根據智能體的本地Qa值學習了一個集中的聯合行動值Qtot。然后通過線性argmax算子從Qa中提取一個分散的策略。這種非常簡單而有效的分解方法避免了學習聯合行動值,而聯合行動值的規模并不大。如果增加新的智能體或用新的能力替換智能體,仍需進行再訓練。然而,與MADDPG相比,它更具有可擴展性,因為單個Q值僅從局部觀察中學習,避免了通過學習因子化的Qtot來學習聯合行動值。但是,當有超過40個智能體時,這個系列的算法的可擴展性可能會受到挑戰。為了使其更具可擴展性,已經提出了基于角色的算法RODE,其中智能體的角色是根據他們對環境的影響對他們的行動進行聚類來確定。該算法對于大量的智能體顯示了非常有希望的結果。

對于戰略機動,RODE算法是非常有前途的,因為各組智能體可以被分配到不同的角色,其中角色可以基于他們的行動和對環境的影響或任何其他固定的行為(對于盟友或甚至敵人)。然后,該算法可用于不同群體的戰略角色轉換。由于不同角色的行動空間受到限制,該算法收斂得非常快。這種算法也適合于基于角色的技術的戰略使用,這可能會在未來的工作中進行研究。即使RODE是非常可擴展的,我們也不清楚當新的智能體將被添加到環境中時如何調整它;需要學習一個集中的策略以實現最佳協作。

與RODE算法相比,一種可擴展的多智能體強化學習方法部署了一種熵-規則化的非策略方法來學習隨機價值函數策略,實驗表明它能夠擴展到1000多個智能體。如前所述,可擴展的RL算法關注環境的復雜性--系統或團隊中的智能體越多,狀態空間越大。RODE是有限的,因為它使用一個集中的策略,當更多的智能體被引入到環境中時必須重新訓練。多智能體轉化器軟雙Q學習算法是一種集中訓練的非策略學習算法(即共享一個中央經驗重放緩沖器),其執行是分布式的(即每個智能體根據其本地觀察做出自己的控制決定),而不是來自中央控制器。由于這種分布式的方案,當智能體被添加或從系統中移除時,團隊不受影響,繼續執行他們的策略。

在可擴展性方面,訓練大型MAS(即許多智能體)是很困難的,而且已經表明,即使是最先進的算法也不能為復雜的MARL任務學習到高性能的策略。多智能體變換器軟雙Q學習通過在訓練期間利用啟發式方法緩解了這一可擴展性問題,該方法允許在較小的智能體集合上訓練策略(例如,在目標追蹤場景中,四個智能體追蹤四個目標),并且該策略已被證明可以在執行中與更多的智能體一起工作而不需要任何調整(即用1000個智能體測試和評估)。訓練和執行過程中使用的啟發式方法使算法能夠解決智能體數量的巨大分布變化:它基本上將測試時的大型復雜觀察空間縮減為接近智能體策略最初訓練的內容。從軍事角度看,這種提法是戰略機動的理想選擇,因為現場的智能體可能會在原地丟失或獲得,可能要考慮額外的戰略信息。一個靈活和可擴展的算法提供了MDO中所需要的能力。

5. 洞察力和結論

由于一些因素,包括科技進步,美國的對手正在變得更加先進。在未來的MAS自主戰爭中,協作的戰略機動可以為國防軍帶來某些優勢。在這篇文章中,我們討論了一些最突出的RL算法,以發現訓練MAS的可行候選策略,這些MAS可以有效地進行戰略機動,從而在未來潛在的軍事行動中打開機會之窗。本文描述了RL方法的分類法,并對最突出的RL算法進行了概述。研究發現,由于訓練和測試因素的不同,大多數RL算法缺乏處理與未來潛在沖突相關的復雜性的能力。

DEVCOM ARL ERPs為開發和實施智能MAS提供了一個規劃性的路徑。鑒于陸軍研究項目為美國國防行動提供了關鍵研究問題的答案,AIMM和EOT ERPs特別促成了研究,可以為協作的自主MAS提供一個路徑,可以克服與1)環境,2)對手戰術和能力,3)自身能力(即,獲得新的能力,失去以前的能力,或能力被改變),4)團隊組成(例如,增加、刪除或交換隊友),5)戰略團隊定位、進入、導航(機動)以支持部隊并壓倒對手,以及6)任務目標。最近,AIMM和EOT ERP在這一領域的工作闡明了衡量MAS協調性的方法,并允許開發一個框架來訓練和測試執行各種任務的MAS的協調性,此外還評估了利用一系列集中訓練技術的新算法方法。

此外,還需要進行更多的調查,以闡明有利于在ISTAR任務和其他交戰場景中利用MAS的軍事戰略。在淺顯的情況下,將完全自主的MAS送入高風險情況(即預期因果率高的情況)是可取的;然而,由于目前的技術限制,僅僅期望MAS能夠在沒有人類監督或干預的情況下完成任務是不夠的。因此,在未來的工作中,將進行研究以確定一套強有力的交戰方案。最后,這項工作將導致自主MAS的最終整合,以便在未來的軍事行動中盡可能地協調戰略機動。

付費5元查看完整內容

人工智能(AI)的進展,特別是深度強化學習(RL),已經產生了能夠達到或超過專業人類水平的系統。這項研究探索了RL訓練人工智能agent的能力,以實現小型戰術交戰中的最佳進攻行為。agent在一個簡單的、總體級別的軍事建設性模擬中接受了訓練,其行為得到了規模和經濟力量戰術原則的驗證。結果顯示,所應用的戰斗模型和RL算法對訓練性能的影響最大。此外,特定的超參數訓練也有助于行為的質量和類型。未來的工作將尋求在更大和更復雜的戰斗場景中驗證RL的性能。

付費5元查看完整內容

移動機器人的自主控制和導航受到了很多關注,因為機器人有能力在復雜的環境中以高精度和高效率完成復雜的任務。與移動機器人有關的經典控制問題涉及到目標導航、目標跟蹤和路徑跟蹤,他們都有一個預先定義行為的目標。因此,控制設計沒有考慮到目標的未來行為。在監視、攔截、追擊-規避問題中,必須考慮到目標的未來行為。這些玩家(控制系統)與對手交戰的問題最好用博弈論來解決,博弈論提供了獲勝的最佳策略。然而,博弈論算法需要大量關于對手的信息來考慮對手的最優策略,從玩家的角度來看,這是最糟糕的情況。這種信息要求往往限制了博弈論在移動機器人上的應用。另外,在文獻中發現的大多數作品提出的離線解決方案只適用于整體系統。這篇博士論文提出了三種不同的解決方案,以每個玩家可獲得的對手信息為基礎,解決非合作性博弈問題。所提出的解決方案在本質上是在線的,并能納入避開障礙物的能力。此外,所設計的控制器首先在模擬中應用于非holonomic移動機器人,然后在類似環境中進行實驗驗證。在工作的第一部分,復雜環境中的點穩定問題是用非線性模型預測控制(NMPC)處理的,其中包括圍繞目標位置的靜態和動態避障。其次,該問題被轉換為涉及具有沖突的移動目標,以形成追逐-逃避博弈。該問題采用非線性模型預測控制來解決,其中比較了兩種穩定方法。NMPC方法的工作原理是,每個玩家只知道對手的當前狀態。然后提出了博弈論的算法來解決同樣的問題。第一種方法需要對手的所有信息,而另一種方法只需要對手的當前位置。這些方法在捕獲時間、計算時間、納入障礙物規避的能力以及對噪聲和干擾的魯棒性方面進行了比較。利用博弈論模型預測控制,提出并解決了一個位于點穩定和追逃問題的交叉點的新問題。這個問題被稱為目標防御的差分博弈(DGTD),它涉及到在到達靜態目標之前攔截一個移動物體。最后,所有提出的控制器都使用兩個移動機器人和實驗室的運動捕捉平臺進行了實驗驗證。

Keywords: 非線性模型預測控制,博弈論,自主系統,非完整移動機器人,避障,實時實驗驗證。

付費5元查看完整內容

人工智能(AI)正在成為國防工業的一個重要組成部分,最近美國DARPA的AlphaDogfight試驗(ADT)證明了這一點。ADT試圖審查能夠在模擬空對空戰斗中駕駛F-16的人工智能算法可行性。作為ADT的參與者,洛克希德-馬丁公司(LM)的方法將分層結構與最大熵強化學習(RL)相結合,通過獎勵塑造整合專家知識,并支持策略模塊化。該方法在ADT的最后比賽中取得了第二名的好成績(共有8名競爭者),并在比賽中擊敗了美國空軍(USAF)F-16武器教官課程的一名畢業生。

1 引言

由DARPA組建的空戰進化(ACE)計劃,旨在推進空對空作戰自主性并建立信任。在部署方面,空戰自主性目前僅限于基于規則的系統,如自動駕駛和地形規避。在戰斗機飛行員群體中,視覺范圍內的戰斗(dogfighting)學習包含了許多成為可信賴的機翼伙伴所必需的基本飛行動作(BFM)。為了使自主系統在更復雜的交戰中有效,如壓制敵方防空系統、護航和保護點,首先需要掌握BFMs。出于這個原因,ACE選擇了dogfight作為建立對先進自主系統信任的起點。ACE計劃的頂峰是在全尺寸飛機上進行的實戰飛行演習。

AlphaDogfight Trials(ADT)是作為ACE計劃的前奏而創建的,以減輕風險。在ADT中,有八個團隊被選中,其方法從基于規則的系統到完全端到端的機器學習架構。通過試驗,各小組在高保真F-16飛行動力學模型中進行了1對1的模擬搏斗。這些比賽的對手是各種敵對的agent。DARPA提供了不同行為的agent(如快速平飛,模仿導彈攔截任務),其他競爭團隊的agent,以及一個有經驗的人類戰斗機飛行員。

在本文中,我們將介紹環境、agent設計、討論比賽的結果,并概述我們計劃的未來工作,以進一步發展該技術。我們的方法使用分層強化學習(RL),并利用一系列專門的策略,這些策略是根據當前參與的背景動態選擇的。我們的agent在最后的比賽中取得了第二名的成績,并在比賽中擊敗了美國空軍F-16武器教官課程的畢業生(5W - 0L)。

2 相關工作

自20世紀50年代以來,人們一直在研究如何建立能夠自主地進行空戰的算法[1]。一些人用基于規則的方法來處理這個問題,使用專家知識來制定在不同位置背景下使用的反機動動作[2]。其他的探索以各種方式將空對空場景編成一個優化問題,通過計算來解決[2] [3] [4] [5] [6]。

一些研究依賴于博弈論方法,在一套離散的行動上建立效用函數[5] [6],而其他方法則采用各種形式的動態規劃(DP)[3] [4] [7]。在許多這些論文中,為了在合理的時間內達到近似最優的解決方案,在環境和算法的復雜性方面進行了權衡[5] [6] [3] [4] [7] 。一項值得注意的工作是使用遺傳模糊樹來開發一個能夠在AFSIM環境中擊敗美國空軍武器學校畢業生的agent[8]。

最近,深度強化學習(RL)已被應用于這個問題空間[9] [10] [11] [12] [13] [14]。例如,[12]在一個定制的3-D環境中訓練了一個agent,該agent從15個離散的機動動作集合中選擇,并能夠擊敗人類。[9]在AFSIM環境中評估了各種學習算法和場景。一般來說,許多被調查的深度RL方法要么利用低保真/維度模擬環境,要么將行動空間抽象為高水平的行為或戰術[9] [10] [11] [12] [13] [14]。

與其他許多作品相比,ADT仿真環境具有獨特的高保真度。該環境提供了一個具有六個自由度的F-16飛機的飛行動力學模型,并接受對飛行控制系統的直接輸入。該模型在JSBSim中運行,該開源軟件被普遍認為對空氣動力學建模非常精確[15] [16]。在這項工作中,我們概述了一個RL agent的設計,它在這個環境中展示了高度競爭的戰術。

3 背景-分層強化學習

將一個復雜的任務劃分為較小的任務是許多方法的核心,從經典的分而治之算法到行動規劃中生成子目標[36]。在RL中,狀態序列的時間抽象被用來將問題視為半馬爾科夫決策過程(SMDP)[37]。基本上,這個想法是定義宏觀行動(例程),由原始行動組成,允許在不同的抽象層次上對agent進行建模。這種方法被稱為分層RL[38][39],它與人類和動物學習的分層結構相類似[40],并在RL中產生了重要的進展,如選項學習[41]、通用價值函數[42]、選項批評[43]、FeUdal網絡[44]、被稱為HIRO的數據高效分層RL[45]等。使用分層RL的主要優點是轉移學習(在新的任務中使用以前學到的技能和子任務),可擴展性(將大問題分解成小問題,避免高維狀態空間的維度詛咒)和通用性(較小的子任務的組合允許產生新的技能,避免超級專業化)[46]。

我們使用策略選擇器的方法類似于選項學習算法[41],它與[47]提出的方法密切相關,在這些方法中,子策略被分層以執行新任務。在[47]中,子策略是在類似環境中預訓練的基元,但任務不同。我們的策略選擇器(類似于[47]中的主策略)學習如何在一組預先訓練好的專門策略下優化全局獎勵,我們稱之為低級策略。然而,與關注元學習的先前工作[47]不同,我們的主要目標是通過在低級策略之間動態切換,學習以最佳方式對抗不同的對手。此外,考慮到環境和任務的復雜性,我們不在策略選擇器和子策略的訓練之間進行迭代,也就是說,在訓練策略選擇器時,子策略agent的參數不被更新。

4 ADT仿真環境

為dogfighting場景提供的環境是由約翰霍普金斯大學應用物理實驗室(JHU-APL)開發的OpenAI體育場環境。F-16飛機的物理特性是用JSBSim模擬的,這是一個高保真的開源飛行動力學模型[48]。環境的渲染圖見圖1。

圖1: 仿真環境的渲染圖

每個agent的觀察空間包括關于自己的飛機(燃料負荷、推力、控制面偏轉、健康狀況)、空氣動力學(α和β角)、位置(本地平面坐標、速度和加速度)和姿態(歐拉角、速率和加速度)的信息。agent還獲得其對手的位置(本地平面坐標和速度)和態度(歐拉角和速率)信息以及對手的健康狀況。所有來自環境的狀態信息都是在沒有建模傳感器噪聲的情況下提供的。

每一模擬秒有50次行動輸入。agent的行動是連續的,并映射到F-16的飛行控制系統(副翼、升降舵、方向舵和油門)的輸入。環境給予的獎勵是基于agent相對于對手的位置,其目標是將對手置于其武器交戰區(WEZ)內。

圖2:武器交戰區(WEZ)

WEZ被定義為位于2度孔徑的球形錐體內的點的位置,該錐體從機頭延伸出來,也在500-3000英尺之外(圖2)。盡管agent并沒有真正向其對手射擊,但在本文中,我們將把這種幾何形狀稱為 "槍響"。

5 agent結構

我們的agent,PHANG-MAN(MANeuvers的自適應新生成的策略層次),是由兩層策略組成的。在低層,有一個策略陣列,這些策略已經被訓練成在狀態空間的一個特定區域內表現出色。在高層,一個單一的策略會根據當前的參與情況選擇要激活的低層策略。我們的架構如圖4所示。

圖4:PHANG-MAN agent的高層結構

付費5元查看完整內容

在不確定性下進行的決策序列出現在各種環境中,包括交通、通信網絡、金融、國防等。為序列決策問題找到最優決策策略的經典方法是動態規劃;然而,由于維度詛咒和建模詛咒,它的用處有限,因此許多現實世界的應用需要另一種方法。在運籌學中,過去的 25 年中,使用近似動態規劃 (ADP)(在許多學科中被稱為強化學習)來解決這些類型的問題越來越受歡迎。通過這些努力,成功部署了 ADP 生成的卡車運輸行業駕駛員調度、機車規劃和管理以及制造中高價值備件管理的決策策略。在本文中,我們首次回顧了 ADP 在國防背景下的應用,特別關注那些為軍事或文職領導層提供決策支持的應用。本文的主要貢獻是雙重的。首先,我們回顧了 18 個決策支持應用程序,涵蓋了部隊發展、生成和使用的范圍,它們使用基于 ADP 的策略,并針對每個應用重點介紹了其 ADP 算法的設計、評估和取得的結果。其次,基于所確定的趨勢和差距,我們討論了與將 ADP 應用于國防決策支持問題相關的五個主題:所研究的問題類別;評估 ADP 生成策略的最佳實踐;與當前實施的策略相比,設計漸進式策略與徹底改進策略的優勢;情景變化時策略的穩健性,例如從高強度沖突到低強度沖突的轉變;以及尚未在國防中研究的,可能從 ADP 中受益的順序決策問題。

關鍵詞:序列決策問題、馬爾可夫決策過程、近似動態規劃、強化學習、軍事

1 引言

許多決策不是孤立地做出的;觀察到以前不確定的新信息;鑒于這些新信息,將做出進一步的決策;更多新信息到來;等等。這些類型的決策被恰當地描述為順序決策問題、不確定性下的順序決策或多??階段決策問題,其特點是決策對未來獲得的回報或產生的成本、未來決策的可行性以及在某些情況下的外生時間對決策的影響[1],[2],[3]。本質上,“今天的決策影響明天,明天的決策影響下一天”[2, p.1],如果不考慮決策之間的關系,那么所取得的結果可能既沒有效率也沒有效果。

自20世紀50年代以來,人們就知道這種順序決策可以被建模為馬爾科夫決策過程(MDP),它由五個部分組成:一組候選行動;選擇行動后得到的獎勵;做出決策的歷時;狀態,即選擇行動、確定獎勵和告知系統如何演變所需的信息;以及定義系統如何從一個狀態過渡到下一個狀態的過渡概率[4]。給定一個MDP,目標是找到一個決策策略--"一個規則(或函數),根據現有的信息確定一個決策"[3,p.221],也被稱為應急規劃、規劃或戰略[2,p.22]--作出的決策使得系統在給定的標準下表現最佳。尋找最優決策策略的經典方法是通過動態規劃(DP)解決貝爾曼的最優方程[5]。在國防背景下,DP已被應用于確定各種連續決策問題的決策策略,包括艦隊維護和修理[6]、基本訓練安排[7]、研究和開發項目選擇[8]、軍事人員的去留決策[9]以及醫療后勤資產調度[10]。

盡管DP為解決順序決策問題提供了一個巧妙的框架,但它在許多現實世界的應用中的作用有限,這一點早已得到認可。這是由于維度的詛咒[5]--"隨著變量(或維度)數量的增加,問題的難度異常快速增長"[11]--以及建模的詛咒,即需要一個明確的模型來說明系統如何從一個狀態過渡到下一個狀態[12]。雖然今天的計算機可以解決有數百萬個狀態的順序決策問題[13],但許多問題仍然太大,無法通過經典的DP方法有效解決。此外,通常的情況是,狀態之間的過渡概率根本不知道。具有這些特征的順序決策問題貫穿于整個國防領域,跨越了軍力發展、生成和使用的范圍。比如說:

  • 在軍力發展中,關于能力投資的決策可能多達數百項,通常在業務規劃周期內的固定時間進行,并且每年重復。決策者必須考慮所選擇的投資的短期和長期影響,以及未選擇的投資,同時考慮到未來軍事合同的不確定性,聯盟和對手能力的變化,國防特定通脹,等等。

  • 在軍力組建中,決定招募多少名軍人和軍士,以滿足各種軍事職業的要求,同時尊重國家的授權力度,并考慮到各種不確定因素,包括每年的退休、晉升、自然減員等等;

  • 在軍力雇傭范圍內,在大規模疏散行動中決策,如重大海難期間,將哪些人裝上直升機,同時考慮到包括天氣變化、個人健康、直升機故障等不確定因素。

由于這些挑戰,在這些類型的問題中,通常不可能找到一個最優的決策策略,需要采用其他的方法,重點是找到一個好的或接近最優的策略。第一個方法是由Bellman和Dreyfus[14]提出的,在接下來的幾十年里,包括運籌學、控制論和計算機科學在內的各個領域都發展了更多的方法,詳細的討論和相關的參考文獻列表見Powell[15]。此外,數學規劃領域,特別是隨機規劃,已經開發了復雜的算法來解決高維決策和狀態向量的問題,這在現實世界的順序決策問題中經常看到[16]。

在運籌學中,這些方法以各種名義被開發出來;尤其是神經動態規劃、自適應動態規劃和近似動態規劃(ADP)。如圖1所示,這些方法在過去的25年里越來越受歡迎,從1995年到2021年4月9日,共發表了2286篇文章,年發表率從一篇文章增長到每年近250篇。最近,ADP--"一種在模擬中做出智能決策的方法"[17,p.205],其中 "產生的策略不是最優的,所以研究的挑戰是表明我們可以獲得在不同情況下穩健的高質量決策策略"[18,p.3]--已經成為更常用的術語[3]。作者們最近也開始使用強化學習這個標簽,最近出版的《強化學習和最優控制》一書[19]和即將出版的《強化學習和隨機優化:隨機決策的統一框架》一書[20]就是證明。值得注意的是,ADP生成的決策策略已經成功部署到工業領域,包括卡車行業的司機調度策略[21],[22],[23], 機車規劃和管理[24],[25], 以及制造業內高價值備件的管理[26]。

圖1. 1995年至2021年4月9日期間每年發表的ADP相關文章的數量。

在這篇文章中,我們首次回顧了ADP在國防背景下的應用。特別是,我們專注于軍事運籌學領域的同行評議文獻;也就是 "應用定量分析技術為軍事[或民事]決策提供信息"[27]。本文的主要貢獻有兩個方面。首先,我們回顧了18個決策支持應用,這些應用跨越了部隊發展、生成和使用的范圍,使用了基于ADP的策略,并為每個應用強調了其ADP算法是如何設計、評估和取得的結果。其次,基于所發現的趨勢和差距,我們討論了與將ADP應用于國防決策支持問題有關的五個主題:所研究的問題類別;評估ADP生成策略的最佳做法;與目前實行的策略相比,設計策略是漸進式的,而不是完全徹底的;隨著情景的變化,策略的穩健性,如沖突中從高強度到低強度的轉變;我們還建議提出國防內部可能受益于ADP生成策略的其他順序決策問題

本文的其余部分組織如下。第2節提供了相關的背景信息。第3節介紹了進行此次審查的方法。第4節和第5節是審查的主要內容。第4節回顧了18個已確定的ADP在國防領域的決策支持應用,第5節介紹了與在國防領域應用ADP相關的五個主題。最后,第6節給出了總結性意見。

4. 近似動態規劃 (ADP)在軍事作戰研究中的應用

在本節中,我們介紹了通過上述文獻搜索確定的18篇基于應用的文章的摘要。表2列出了每項研究,其應用領域,以及所實施的ADP策略和算法的特征。所列的特征主要集中在第2.3節中討論的那些特征,即:

  • 決策策略的類型--短視CFA、PFA、VFA、DLA或混合。

  • 價值函數近似策略--查詢表、參數化或非參數化。

  • 價值函數模型--層次聚合、線性結構、NN等。

  • 算法策略-狹義搜索、數學規劃、隨機規劃、AVI、API。

  • 更新價值函數模型參數的方法--時差學習、LSTD、LSPE、SVR,等等;

  • 步長--常數、廣義調和、多項式等。

對于所列出的一些文章,沒有提供足夠的信息來確定作者是如何處理某些特征的。在這種情況下,該特征被列為未說明。此外,有些文章中的某些特征并不適用。在這種情況下,該特征被列為不適用。下面給出了進一步的細節。研究報告分為三類--軍力發展、軍力組建、軍力使用,然后按時間順序排列。

表2. 1995-2021年期間ADP在軍事作戰研究中的應用。文章按橫線分為三組:部隊發展(上組)、軍力組建(中組)和軍力使用(下組)。

付費5元查看完整內容

美國的空中優勢是美國威懾力的基石,正受到競爭對手的挑戰。機器學習 (ML) 的普及只會加劇這種威脅。應對這一挑戰的一種潛在方法是更有效地使用自動化來實現任務規劃的新方法。

本報告展示了概念驗證人工智能 (AI) 系統的原型,以幫助開發和評估空中領域的新作戰概念。該原型平臺集成了開源深度學習框架、當代算法以及用于模擬、集成和建模的高級框架——美國國防部標準的戰斗模擬工具。目標是利用人工智能系統通過大規模回放學習、從經驗中概括和改進重復的能力,以加速和豐富作戰概念的發展。

在本報告中,作者討論了人工智能智能體在高度簡化的壓制敵方防空任務版本中精心策劃的協作行為。初步研究結果突出了強化學習 (RL) 解決復雜、協作的空中任務規劃問題的潛力,以及這種方法面臨的一些重大挑戰。

研究問題

  • 當代 ML 智能體能否被訓練以有效地展示智能任務規劃行為,而不需要數十億可能情況組合的訓練數據?
  • 機器智能體能否學習使用攻擊機、干擾機和誘餌飛機的組合來對抗地對空導彈 (SAM) 的策略?干擾機需要離地空導彈足夠近才能影響它們,但又要保持足夠遠,以免它們被擊落。誘餌需要在正確的時間分散 SAM 對前鋒的注意力。
  • 是否可以建立足夠泛化的表示來捕捉規劃問題的豐富性?吸取的經驗教訓能否概括威脅位置、類型和數量的變化?

主要發現

RL 可以解決復雜的規劃問題,但仍有局限性,而且這種方法仍然存在挑戰

  • 純 RL 算法效率低下,容易出現學習崩潰。
  • 近端策略優化是最近朝著解決學習崩潰問題的正確方向邁出的一步:它具有內置約束,可防止網絡參數在每次迭代中發生太大變化。
  • 機器學習智能體能夠學習合作策略。在模擬中,攻擊機與 SAM 上的干擾或誘餌效應協同作用。
  • 經過訓練的算法應該能夠相當容易地處理任務參數(資產的數量和位置)的變化。
  • 很少有關于成功和不成功任務的真實數據。與用于訓練當代 ML 系統的大量數據相比,很少有真正的任務是針對防空飛行的,而且幾乎所有任務都取得了成功。
  • 對于涉及使用大型模擬代替大型數據集的分析,所需的計算負擔將繼續是一個重大挑戰。針對現實威脅(數十個 SAM)訓練現實能力集(數十個平臺)所需的計算能力和時間的擴展仍不清楚。
  • 建立對人工智能算法的信任將需要更詳盡的測試以及算法可驗證性、安全性和邊界保證方面的根本性進步。

建議

  • 未來關于自動化任務規劃的工作應該集中在開發強大的多智能體算法上。RL 問題中的獎勵函數可以以意想不到的方式徹底改變 AI 行為。在設計此類功能時必須小心謹慎,以準確捕捉風險和意圖。
  • 盡管模擬環境在數據稀缺問題中至關重要,但應調整模擬以平衡速度(較低的計算要求)與準確性(現實世界的可轉移性)。
付費5元查看完整內容

當前的海軍作戰要求水手們根據動態作戰環境中的不確定態勢信息做出時間緊迫和高風險的決策。最近的悲慘事件導致了不必要的傷亡,海軍行動中涉及決策復雜性,并特別突出了 OODA 循環(觀察、定向、決策和評估)中的挑戰。涉及使用武器系統的殺傷鏈決策是 OODA 循環中一個特別緊張的類別——具有難以確定的意外威脅、縮短的決策反應時間和致命的后果。有效的殺傷鏈需要正確設置和使用船上傳感器;未知接觸者的識別和分類;基于運動學和智能的接觸意圖分析;環境意識;以及決策分析和資源選擇。

該項目探索了使用自動化和人工智能 (AI) 來改進海軍殺傷鏈決策。該團隊研究了海軍殺傷鏈功能,并為每個功能制定了特定的評估標準,以確定特定 AI 方法的功效。該團隊確定并研究了 AI 方法,并應用評估標準將特定的 AI 方法映射到特定的殺傷鏈功能

圖:利用人工智能改進海軍殺傷鏈的作戰概念

總結

當前的海軍行動通常是快節奏的、關鍵的,并且需要做出高風險的決策,這些決策有時基于非常動態的戰區中的不確定信息。許多例子強調了提高決策效率的必要性以及減輕觀察團隊負擔的必要性。缺乏上述情況的例子包括 2017 年的菲茨杰拉德號航空母艦 (DDG 62) 和 MV ACX Crystal相撞,以及 2009 年皇家港口號航空母艦 (CG 73) 的擱淺。一些根本原因是相關人員缺乏經驗、疲勞和壓力.

上述事故展示了軍事行動的難度,并展示了 OODA(觀察、定向、決策和評估)循環中的挑戰(Jones 等人,2020 年)。人為錯誤、人的認知限制和海軍作戰固有的決策復雜性導致了 OODA 循環中的挑戰,更具體地說,是殺傷鏈過程中的挑戰。

現代戰斗空間由來自常規陸地、空中和海洋等多個領域以及來自太空和網絡空間的大量數據組成。決策者需要考慮許多因素,包括交戰規則 (ROE)、要使用的武器、傳感器和意圖評估。發現、修復、跟蹤、瞄準、參與、評估 (F2T2EA) 殺傷鏈模型緩解了該過程的一些困難(參謀長聯席會議,2013 年)。人工智能 (AI) 和機器學習 (ML) 可以通過分析備選方案和使用評估標準將 AI 方法映射到殺傷鏈功能,從而幫助海軍在戰術領域做出殺傷鏈決策。這是在本報告的五個章節中分三個階段完成的。

本報告利用了數百個資源,主要利用了美海軍研究生院 AI-OODA 團隊在其 Capstone 報告(2020 年)中進行的先前研究,“利用人工智能 (AI) 進行空中和導彈防御 (AMD):以結果為導向的決策援助。”他們將他們的工作與 John Boyd 的觀察、定向、決定和行動決策框架相結合。作為他們分析的初步步驟,AI-OODA 團隊將特定的 OODA 功能明確且緊密地耦合到特定的 F2T2EA 功能。然而,本報告斷言 OODA 循環是一個決策循環,它嵌套在殺傷鏈的每個功能中,而不是在高壓力或低壓力情況下專門映射到一個或多個殺傷鏈功能。團隊基于 F2T2EA 模型開發了一組 28 個殺傷鏈功能。

在制定將 AI 方法映射到殺傷鏈的評估標準時,很難確定一個好的決策,這對于決策評估至關重要。在評估決策時,必須考慮選擇行動時的知識意識狀態以及解釋能力。使用了幾種對決策進行評分的方法,從定義和優先考慮感興趣的“武器-目標”到制定評分標準和報告評估結果,以供其他人審查。

目前,人工智能的狀態非常廣泛,必須對其進行解釋,以了解人工智能對殺傷鏈中功能的適用性。本報告討論了所選 AI 方法的高級概述,并突出顯示了部分最流行的方法。首先,沒有普遍接受的定義,這很難定義人工智能。其次,人工智能與機器學習 (ML) 存在差異。 ML 允許在準確性和可預測性方面取得增量收益; AI 接收數據并通過算法提供輸出。人工智能的歷史從 1940 年代艾倫·圖靈 (Alan Turing) 的加密機器到 1980 年代美國政府在戰略計算計劃中的使用,再到今天在聯合人工智能中心 (JAIC) 中的人工智能戰略五個支柱,從領先的人工智能人力到安全和倫理。美國國防高級研究計劃局 (DARPA) 在 3-wave 框架中描述了 AI 的發展方向,分為手工知識 (Wave 1)、統計學習 (Wave 2) 和上下文推理 (Wave 3) 在 1-4 個維度內情報參數的屬性(Launchbury 2017)。這些屬性包括感知、推理、抽象和學習。

人工智能涉及可以根據輸入值預測結果的監督學習。有幾種使用監督學習進行學習的技術。包括線性回歸和分類。此外,許多數值方法可以分析發生的學習有效性,例如 F-score 和 Accuracy score。人工智能還可以使用無監督學習,它使用算法來發現未標記數據集中的數據模式或分組。在分析未知(y)響應以揭示標記(x)數據中的模式時,無監督學習是有益的。數據分析界的一個著名例子是鳶尾花(Iris flower)數據集。僅使用標記的數據,可以看到響應聚集在一起,并且可以確定響應中存在模式(花的種類)。無監督學習的方法包括聚類和 K-means,但還有其他方法。強化學習有一個代理能夠接收來自環境的反饋并理解基本目標。此外,正如 Sutton 和 Barto 在(2018 年)中解釋的那樣,探索和開發之間存在權衡。最后,生成對抗網絡 (GAN) 利用無監督學習和強化學習,通常用于神經網絡 (NN)。神經網絡是機器學習算法的極好來源,它有大量的輸入,而這些輸入又會產生大量的計算。 NN 非常適合用于模擬、自然語言處理、博弈論和計算機視覺。 NN 只是一種將輸入映射到輸出的簡單方法,可以在此過程中進行學習。然而,NN 可以被描述為一種“黑盒”學習技術,因為很難解釋正在發生的事情,并且通常需要一種可解釋的 AI (XAI) 技術。 XAI 的三個主要組成部分是可解釋模型、解釋界面和解釋心理學(Gunning 2019)。數據安全必須與“大數據”一起考慮,“大數據”是指非結構化、復雜和大型數據集,具有五個 v 特征:數量、速度(數據量隨時間變化的增加)、多樣性、真實性和價值。其他理論包括決策理論、模糊邏輯和效用函數

使用上述文獻綜述,該團隊開發了一個框架,用于將 AI/ML 映射到 AMD(空中導彈防御)殺傷鏈。采取了四個步驟:1) 建立模型框架,2) 確定決策點,3) 應用 AI/ML 方法,以及 4) 分析結果。該團隊確定了以下用于殺傷鏈映射分析的 AI/ML 方法:線性回歸、邏輯回歸、聚類、關聯、隨機森林、神經網絡、GAN 和樸素貝葉斯。評估標準被稱為“決策點”并提出四個問題:(1)所需輸出的類型是什么,(2)所需的學習類型是什么,(3)可解釋性(XAI)是什么水平需要,以及 (4) 需要多少個預測變量?該團隊通過基于一組決策點和評分過程評估每個殺傷鏈功能的每種方法來執行映射。對于被認為非常適合某項任務的方法,得分為+1,如果該方法適合但次優,則為0,如果該方法不適合該任務,則為–1。

該團隊進行了映射分析,根據與殺傷鏈的 28 個功能中的每一個功能相關的評估標準(決策點)分析 AI 方法。該團隊使用評分方法來確定每個殺傷鏈功能的最佳整體 AI/ML 分數。團隊的映射顯示為 0。

該團隊的 AI/ML 映射到殺傷鏈功能為國防部和海軍提供了兩個關鍵好處。首先,映射本身是設計和開發支持殺傷鏈決策的人工智能戰術決策輔助工具的重要起點和基礎。其次,該團隊將 AI 方法映射到殺傷鏈的分析過程可用于了解 AI 在許多其他軍事和非軍事領域的應用。識別適當的人工智能方法、制定評估標準和評分過程以及制定過程功能以進行分析映射的過程對于支持許多不同人工智能系統的工程具有深遠的潛力。

表1:AI/ML方法到殺傷鏈的映射

付費5元查看完整內容
北京阿比特科技有限公司