本文將圖上定義的神經網絡轉換為消息傳遞神經網絡(MPNNs),以研究這類模型的不同分類的區分能力。我們感興趣的是某些架構何時能夠根據作為圖輸入的特征標簽區分頂點。我們考慮了兩種不同的MPNNs: 匿名MPNNs,其消息函數只依賴于所涉及的頂點的標簽; 以及程度感知的MPNNs,其消息函數可以額外使用關于頂點度數的信息。前一類涵蓋了流行的圖神經網絡(GNN)形式,其優異的能力是已知的。后者包括Kipf和Welling提出的圖卷積網絡(GCNs),其區分能力未知。利用Weisfeiler-Lehman (WL)算法的辨識能力,得到了(匿名和程度感知)多神經網絡辨識能力的上界和下界。我們的主要結果表明: (1) GCNs的分辨能力受到WL算法的限制,但它們可能領先一步; (ii) WL算法不能用普通的GCNs模擬,但通過在頂點和其鄰居的特征之間添加一個權衡參數(Kipf和Welling提出的)可以解決這個問題。
雖然許多現有的圖神經網絡(gnn)已被證明可以執行基于?2的圖平滑,從而增強全局平滑,但在本工作中,我們旨在通過基于?1的圖平滑進一步增強GNN的局部平滑自適應。在此基礎上,提出了一種基于?1和?2圖平滑的彈性GNN。特別地,我們提出了一種新的、通用的消息傳遞方案。該消息傳遞算法不僅有利于反向傳播訓練,而且在保證理論收斂的前提下達到了預期的平滑特性。在半監督學習任務上的實驗表明,所提出的彈性GNN在基準數據集上具有較好的自適應能力,對圖對抗攻擊具有顯著的魯棒性。
圖表示學習算法的歸納偏差通常被編碼在其嵌入空間的背景幾何中。在本文中,我們證明了一般有向圖可以有效地用一個包含三個成分的嵌入模型來表示: 一個偽黎曼度量結構,一個非平凡的全局拓撲,以及一個明確包含嵌入空間中首選方向的唯一似然函數。我們將該方法應用于自然語言應用和生物學中一系列合成的和真實的有向圖的鏈接預測任務,從而證明了該方法的表征能力。特別地,我們證明了低維柱面閔可夫斯基和反Sitter時空可以產生與高維彎曲黎曼流形相同或更好的圖表示。
由于消息傳遞—圖神經網絡(MPNN)應用在稀疏圖時相對于節點數量具有線性復雜性,因此它們已被廣泛使用, 不過它們的理論表達能力bounded by一階 Weisfeiler-Lehman 檢驗 (1-WL)。
在本文中,我們表明,如果自定義特征值相關的非線性函數設計圖卷積supports并使用任意大的感受野進行掩蔽,則 MPNN 在理論上比 1-WL 測試更強大。實驗表明該方法與3-WL 同樣強大,同時能夠保持空間局部化(spatially localized)。此外,通過設計自定義濾波器函數,輸出可以具有各種頻率分量,從而允許卷積過程學習給定輸入圖信號與其相關屬性的不同關系。
目前,最好的 3-WL 等效圖神經網絡的計算復雜度為 O(n^3 ),內存使用量為 O(n^2 ),考慮非局部更新機制,并且不提供輸出的頻譜。但是本文所提出的方法克服了所有上述問題,并在許多下游任務中達到了最先進的結果。
題目: Lorentzian Graph Convolutional Networks 會議: WWW 2021
圖卷積神經網絡(GCN)最近受到了大量研究者的關注。大多數GCN使用歐幾里得幾何學習節點的特征表示,但是對于具有無標度或層次結構的圖,歐幾里得幾何可能會產生較高的失真。近來,一些GCN使用非歐幾里得幾何,例如雙曲幾何,解決以上問題。盡管雙曲GCN展示了其性能,但是現有的雙曲圖操作實際上不能嚴格遵循雙曲幾何,這可能會限制雙曲幾何的能力,從而損害雙曲GCN的性能。 在本文中,我們提出了一種新穎的洛倫茲圖卷積網絡(LGCN),它在雙曲空間的雙曲面模型上設計了統一的圖操作框架。從該框架派生出嚴格的雙曲圖操作,包括特征變換和非線性激活,以確保變換后的節點特征遵循雙曲幾何。此外,基于洛倫茲距離的質心,我們提出了一種優雅的雙曲鄰居聚合方式,以確保被聚合的節點特征滿足數學意義。并且,我們從理論上證明了一些提出的操作等同于在另一類雙曲幾何中的定義,表明所提出的方法填補了雙曲面模型缺乏嚴謹的圖操作的空白。
圖神經網絡(GNN)中缺乏各向異性核極大地限制了其表達能力,導致了一些眾所周知的問題,如過度平滑。為了克服這個限制,我們提出了第一個全局一致的各向異性核GNN,允許根據拓撲導出的方向流定義圖卷積。首先,通過在圖中定義矢量場,我們提出了一種方法應用方向導數和平滑投影節點特定的信息到場。然后,我們提出用拉普拉斯特征向量作為這種向量場。在Weisfeiler-Lehman 1-WL檢驗方面,我們證明了該方法可以在n維網格上泛化CNN,并證明比標準的GNN更有分辨力。我們在不同的標準基準上評估了我們的方法,發現在CIFAR10圖數據集上相對誤差減少了8%,在分子鋅數據集上相對誤差減少了11%到32%,在MolPCBA數據集上相對精度提高了1.6%。這項工作的重要成果是,它使圖網能夠以一種無監督的方式嵌入方向,從而能夠更好地表示不同物理或生物問題中的各向異性特征。
隨著深度學習的成功,基于圖神經網絡(GNN)的方法[8,12,30]已經證明了它們在分類節點標簽方面的有效性。大多數GNN模型采用消息傳遞策略[7]:每個節點從其鄰域聚合特征,然后將具有非線性激活的分層映射函數應用于聚合信息。這樣,GNN可以在其模型中利用圖結構和節點特征信息。
然而,這些神經模型的預測缺乏透明性,人們難以理解[36],而這對于與安全和道德相關的關鍵決策應用至關重要[5]。此外,圖拓撲、節點特征和映射矩陣的耦合導致復雜的預測機制,無法充分利用數據中的先驗知識。例如,已有研究表明,標簽傳播法采用上述同質性假設來表示的基于結構的先驗,在圖卷積網絡(GCN)[12]中沒有充分使用[15,31]。
作為證據,最近的研究提出通過添加正則化[31]或操縱圖過濾器[15,25]將標簽傳播機制納入GCN。他們的實驗結果表明,通過強調這種基于結構的先驗知識可以改善GCN。然而,這些方法具有三個主要缺點:(1)其模型的主體仍然是GNN,并阻止它們進行更可解釋的預測;(2)它們是單一模型而不是框架,因此與其他高級GNN架構不兼容;(3)他們忽略了另一個重要的先驗知識,即基于特征的先驗知識,這意味著節點的標簽完全由其自身的特征確定。
為了解決這些問題,我們提出了一個有效的知識蒸餾框架,以將任意預訓練的GNN教師模型的知識注入精心設計的學生模型中。學生模型是通過兩個簡單的預測機制構建的,即標簽傳播和特征轉換,它們自然分別保留了基于結構和基于特征的先驗知識。具體來說,我們將學生模型設計為參數化標簽傳播和基于特征的2層感知機(MLP)的可訓練組合。另一方面,已有研究表明,教師模型的知識在于其軟預測[9]。通過模擬教師模型預測的軟標簽,我們的學生模型能夠進一步利用預訓練的GNN中的知識。因此,學習的學生模型具有更可解釋的預測過程,并且可以利用GNN和基于結構/特征的先驗知識。我們的框架概述如圖1所示。 圖片
圖1:我們的知識蒸餾框架的示意圖。學生模型的兩種簡單預測機制可確保充分利用基于結構/功能的先驗知識。在知識蒸餾過程中,將提取GNN教師中的知識并將其注入學生。因此,學生可以超越其相應的老師,得到更有效和可解釋的預測。
我們在五個公共基準數據集上進行了實驗,并采用了幾種流行的GNN模型,包括GCN[12]、GAT[30]、SAGE[8]、APPNP[13]、SGC[33]和最新的深層GCN模型GCNII[4]作為教師模型。實驗結果表明,就分類精度而言,學生模型的表現優于其相應的教師模型1.4%-4.7%。值得注意的是,我們也將框架應用于GLP[15],它通過操縱圖過濾器來統一GCN和標簽傳播。結果,我們仍然可以獲得1.5%-2.3%的相對改進,這表明了我們框架的潛在兼容性。此外,我們通過探究參數化標簽傳播與特征轉換之間的可學習平衡參數以及標簽傳播中每個節點的可學習置信度得分,來研究學生模型的可解釋性。總而言之,改進是一致,并且更重要的是,它具有更好的可解釋性。
本文的貢獻總結如下:
圖卷積網絡(GCNs)在推薦方面表現出巨大的潛力。這歸功于他們通過利用來自高階鄰居的協作信號來學習良好的用戶和項目嵌入的能力。與其他GCN模型一樣,基于GCN的推薦模型也存在著臭名昭著的過平滑問題——當疊加更多層時,節點嵌入變得更加相似,最終無法區分,導致性能下降。最近提出的LightGCN和LR-GCN在一定程度上緩解了這一問題,但是我們認為他們忽略了推薦中出現過平滑問題的一個重要因素,即在圖卷積操作中,用戶的嵌入學習也可以涉及到與用戶沒有共同興趣的高階鄰域用戶。因此,多層圖卷積會使不同興趣的用戶具有相似的嵌入性。在本文中,我們提出了一種新的興趣感知消息傳遞GCN (IMP-GCN)推薦模型,該模型在子圖中進行高階圖卷積。子圖由具有相似興趣的用戶及其交互項組成。為了形成子圖,我們設計了一個無監督的子圖生成模塊,該模塊利用用戶特征和圖結構來有效識別具有共同興趣的用戶。為此,我們的模型可以避免將高階鄰域的負面信息傳播到嵌入學習中。在三個大規模基準數據集上的實驗結果表明,我們的模型可以通過疊加更多的層來獲得性能的提高,顯著優于目前最先進的基于GCN的推薦模型。
圖卷積網絡(GCN)已經成為協同過濾的最新技術。然而,其推薦的有效性的原因還沒有很好地理解。現有的將GCN用于推薦的工作缺乏對GCN的深入消融分析,GCN最初是為圖分類任務而設計的,并配備了許多神經網絡操作。然而,我們實證發現,兩種最常見的設計-特征轉換和非線性激活-對協同過濾的性能貢獻很小。更糟糕的是,包括他們增加了訓練的難度,降低了推薦的效果。在這項工作中,我們的目標是簡化GCN的設計,使其更簡潔,更適合推薦。我們提出了一個新的模型LightGCN,它只包含GCN中最重要的組件——鄰域聚合——用于協同過濾。具體來說,LightGCN通過在用戶-項目交互圖上線性傳播用戶和項目嵌入來學習它們,并使用在所有層上學習到的嵌入的加權和作為最終的嵌入。這種簡單、線性、簡潔的模型更容易實現和訓練,在完全相同的實驗設置下,比神經圖協同過濾(NGCF)——一種最先進的基于GCN的推薦模型——有了顯著的改進(平均大約16.0%的相對改進)。從分析和實證兩方面進一步分析了簡單LightGCN的合理性。我們的實現在TensorFlow和PyTorch中都可用。
標簽傳播(LPA)和圖卷積神經網絡(GCN)都是圖上的消息傳遞算法。兩者都解決了節點分類的任務,但是LPA將節點標簽信息傳播到圖的邊緣,而GCN傳播并轉換節點特征信息。然而,雖然概念相似,LPA和GCN之間的理論關系還沒有得到研究。這里我們從兩個方面研究了LPA和GCN之間的關系:(1)特征/標簽平滑,分析一個節點的特征/標簽如何擴散到它的鄰居;(2)一個節點的初始特征/標簽對另一個節點的最終特征/標簽的影響程度。在理論分析的基礎上,提出了一種統一GCN和LPA的節點分類端到端模型。在我們的統一模型中,邊緣權值是可學習的,LPA作為正則化幫助GCN學習合適的邊緣權值,從而提高分類性能。我們的模型也可以看作是基于節點標簽的注意力學習權重,它比現有的基于特征的注意力模型更面向任務。在真實圖數據的大量實驗中,我們的模型在節點分類準確度方面顯示出優于目前最先進的基于gcn的方法。