最近的全球沖突,如烏克蘭戰爭,凸顯了無人機系統(UAS)在軍事場景中的廣泛應用。這些系統不僅在情報、監視和偵察(ISR)任務中舉足輕重,而且還發揮著直接作戰的作用。此外,無人機系統正在徹底改變各種商業行業,如基礎設施、物流、保險、媒體、電信、農業、采礦、石油和天然氣以及零售業。
無人機系統的迅速擴散帶來了新的威脅,如未經授權的監視、隱私泄露、空域受阻以及可能利用無人機攜帶破壞性有效載荷。這些問題在民用空域尤為突出,涉及無人機的事件激增。從 2021 年到 2023 年,美國運輸安全管理局(TSA)報告了 2000 多起在美國機場附近發現無人機的事件,其中包括要求飛行員采取規避行動的事件。僅在 2024 年的前四個月,美國聯邦航空局(FAA)就記錄了 326 起在飛機、直升機和機場附近發生的與無人機有關的事件,凸顯了日益增長的安全風險。
為應對這些挑戰,迫切需要有效的反無人機系統(C-UAS)技術。各國正在越來越多地采購用于探測、識別、跟蹤、警報、干擾、欺騙和消除不法無人機的系統。預計 2021 年至 2031 年,全球 C-UAS 技術市場將翻兩番。值得注意的是,結合各種探測和緩解技術的綜合防御網絡被證明比孤立的系統更有效,美國陸軍的一項評估就是證明。
以下報告將分析當前不斷發展的 C-UAS 市場,研究當前趨勢、技術進步和未來工作,以應對無人機系統擴散帶來的日益嚴峻的挑戰。
2020 年,亞美尼亞和阿塞拜疆就有爭議的納戈爾諾-卡拉巴赫地區發生沖突,最近,俄羅斯烏克蘭戰爭,這一切都證明了無人機系統(UAS)在沖突場景中的無處不在。這些系統越來越多地被廣泛應用,包括情報、監視和偵察(ISR)任務以及直接作戰任務。此外,無人機系統還越來越多地應用于商業行業,如基礎設施、物流、保險、媒體和娛樂、電信、農業、采礦、石油和天然氣以及零售業。事實上,根據麥肯錫的一項研究,在 2021 年至 2023 年期間,全球由無人機投遞的商業包裹數量將增加 85% 以上。
無人機體積、重量和成本大幅降低,電池壽命延長,自主性提高,這些發展都是推動無人機系統在軍事和商業應用中使用的因素。AgileIntel Research 最近進行的一項研究預計,全球無人機市場將從 2023 年的 280 億美元增至 2033 年的近 1500 億美元,復合年增長率為 18.3%。同期,美國無人機市場預計將從 70 億美元增至 400 億美元,復合年增長率為 19%。此外,根據美國聯邦航空管理局(FAA)的估計,商用無人機機隊(用于商業、研究或教育目的)預計將從 2022 年底的約 727,000 架增長到 2027 年的 955,000 架。同期,美國聯邦航空局預測娛樂機隊(為個人興趣和娛樂而操作的機隊)也將從 169 萬架增加到 182 萬架。商用和軍用無人機使用量的指數級增長導致了來自流氓系統的一系列威脅。這些威脅包括未經授權的監視、隱私泄露、空域阻塞以及無人機系統作為破壞性有效載荷的載體運行。全球機構在低空領域正面臨著新的安全挑戰,這主要是由于商業系統的激增,這些系統越來越多地被用于娛樂和專業目的。
僅就美國而言,民用空域中與無人機相關的安全挑戰的規模和嚴重性在過去幾年中已得到充分證實。2021 年至 2023 年期間,美國運輸安全管理局(TSA)報告了 2000 多起在美國機場附近發現無人機的事件,其中一些事件涉及飛行員采取規避行動,包括四起涉及商用飛機的事件。此外,根據美國聯邦航空管理局(FAA)的最新數據,在2024年前4個月(截至4月),已發生多達326起無人機被發現靠近飛機、直升機和機場的事件,從而造成嚴重的安全隱患。
這些趨勢要求在探測、識別、定位/跟蹤、警報、干擾、欺騙和摧毀等領域開發有效的反無人機技術。各國正在采購反無人機系統(C-UAS),如干擾、欺騙和致盲系統,以及基于激光的定向能武器(DEWs),預計全球市場將在 2021 年至 2031 年間翻兩番。有趣的是,這些采購并不局限于孤立運行的獨立系統,而是將互補的探測和緩解技術編織成一個綜合防御網絡,以提高效率。事實上,美國陸軍聯合反小型無人機系統辦公室最近進行的一項行動評估發現,與部署孤立的系統相比,系統的系統方法更為有效。
各種 C-UAS 技術和系統可大致分為兩類: 各種 C-UAS 技術和系統可大致分為兩類:動能和非動能。
探測系統: 利用各種傳感器技術,如雷達、電子光學/紅外(EO/IR)相機、聲學傳感器和射頻(RF)探測器,探測特定空域內的無人機系統并確定其位置。
識別和跟蹤: 一旦被探測到,CUAS 系統可采用先進的算法和軟件來識別和跟蹤無人機系統,根據飛行行為、大小和通信信號等特征來區分授權和未授權的無人機。
電子對抗 (ECM):ECM 技術可破壞或干擾無人機系統的控制和通信系統,使無人機無法接收操作人員的指令,或破壞 GPS 信號以導致導航失靈。
干擾: 干擾是指發射電磁信號干擾無人機系統用于通信和導航的無線電頻率,破壞其控制并使其失效。
欺騙: 欺騙技術是指產生虛假信號欺騙無人機導航系統,使無人機偏離預定飛行路線或安全著陸,從而解除無人機構成的威脅。
網絡安全措施: CUAS 系統可采用網絡安全措施來防范無人機系統帶來的網絡威脅,包括未經授權訪問網絡、數據泄露和針對關鍵基礎設施的惡意軟件攻擊。
聲學威懾: 發射高頻聲音或聲學信號,阻止無人機系統進入限制空域或敏感區域,利用鳥類和其他野生動物的厭惡行為阻止無人機入侵。
定向能武器(DEW): 雖然定向能武器通常被認為是動能武器,但有些定向能武器系統提供非致命選擇,如激光眩暈器或非破壞性光束轉向,在不造成物理傷害的情況下使無人機系統的電子設備或傳感器失效。
指揮與控制(C2)干擾: 瞄準無人機系統與其操作員之間的通信鏈路,破壞指揮和控制信號,阻止無人機接收指令或傳輸數據。
網絡威脅情報: 利用先進的分析和威脅情報來預測和應對無人機系統帶來的網絡威脅,包括惡意軟件、數據外滲和網絡入侵企圖。
攔截: 使用配備網炮、捕獲裝置或其他手段的有人或無人飛機攔截無人機系統威脅,以實際捕獲或禁用未經授權的無人機。
動能彈射系統: 部署火器、大炮或其他基于彈射的武器,通過瞄準關鍵部件或對無人機造成物理破壞,擊落無人機系統威脅或使其失效。
定向能武器(DEW): 利用高能激光束或微波脈沖損壞或破壞無人機系統的電子設備、傳感器或推進系統,使無人機無法操作或出現故障。
爆炸物: 使用爆炸物或爆炸性射彈,通過直接撞擊或在目標附近引爆來摧毀無人機系統威脅。
防撞系統: 為飛機或地面平臺配備防撞系統,旨在與無人機系統威脅發生物理碰撞或擾亂其飛行路線,使其墜毀或失去控制。
電子戰 (EW): 利用電子戰技術,通過干擾、欺騙或其他電子干擾手段,破壞或削弱無人機系統的控制和通信系統。
機動和撞擊: 使用有人或無人飛行器攔截無人機系統威脅并與之發生物理碰撞,使其墜毀或因撞擊力而失效。
專用動能攔截器: 使用專門的動能攔截系統,如導彈防御系統或反無人機彈藥,以精確制導的射彈或導彈瞄準并摧毀無人機系統威脅。
地基防空系統: 部署地對空導彈、高射炮或其他地基武器系統,與在防御系統射程內飛行的無人機系統威脅交戰并使其失效。
遠程武器站(RWS): 在遠程操作平臺或車輛上安裝火器、大炮或其他動能武器,以便從遠處攻擊無人機系統威脅并使其失效,同時最大限度地減少操作人員的暴露。
圖:美國國防部:2024-2029 年C-UAS市場,百萬美元
量子導航技術有望徹底改變軍事行動,尤其是在傳統導航系統難以發揮作用的情況下。隨著戰爭越來越依賴于隱形、自主系統以及在全球定位系統失效環境下的可靠導航,量子技術提供了無與倫比的精確性、自主性和安全性。在陸地、海上或空中的軍事環境中,這些系統有望克服全球導航衛星系統(GNSS)和慣性導航系統(INS)的局限性。量子慣性傳感器、重力儀、磁力計、定位系統和量子通信協議可用于加強軍事行動。
包括全球定位系統在內的全球導航衛星系統一直是現代軍事導航的基石。然而,對衛星信號的依賴使這些系統容易受到干擾、欺騙和物理攻擊。全球定位系統信號很容易受到對手的干擾,在某些環境下,如水下或信號干擾密集的爭議地區,其可靠性會急劇下降。現代沖突,如正在進行的俄羅斯-烏克蘭戰爭和以色列-哈馬斯戰爭,暴露了 GPS 固有的弱點,即信號干擾、欺騙和在有爭議的環境中失去服務,嚴重影響軍事效率。這種局限性迫使軍事戰略家和研究人員探索替代導航系統,而量子技術作為一種潛在的游戲規則改變者走在了前列。此外,全球導航衛星系統在水下無法使用,嚴重限制了其在潛艇或北極條件下的應用。
傳統的慣性導航系統雖然能夠獨立于全球導航衛星系統(GNSS)工作,但會出現 “漂移”--一種由不精確的加速度計和陀螺儀造成的累積誤差。這種誤差會隨著時間的推移而加劇,從而限制了慣性導航系統在不通過全球導航衛星系統重新校準的情況下執行長時間任務的有效性。然而,量子慣性導航系統(QINS)基于原子干涉測量法,可顯著提高精度并最大限度地減少隨時間的漂移。
量子加速度計和陀螺儀利用量子力學原理,將超冷原子(如銣或銫)作為高靈敏度的運動探測器。例如,第一臺使用銫原子的量子陀螺儀的偏置穩定性比最好的商用級光纖陀螺儀好 300 倍,其角度隨機漫步(噪音測量)的準確性也高出 1000 倍。 這意味著量子陀螺儀可以提供長達數月的高精度導航,而無需重新校準,因此非常適合軍用潛艇或在 GPS 信號屏蔽環境中自主運行的無人機。
目前,量子陀螺儀的角漂移率已達到 1e-6°/小時,明顯優于傳統系統,后者的漂移率為 0.001°至 1°/小時,導致 10 公里/小時的誤差。量子陀螺儀的這一精度水平降低了通常與 INS 漂移相關的導航誤差,使軍事資產能夠長時間保持航向,而無需進行地面固定。
量子定位系統(QPS)為全球導航衛星系統(GNSS)提供了一個改變游戲規則的替代方案。通過利用量子加速計、陀螺儀和重力儀,QPS 無需外部信號或衛星數據就能計算出精確的位置,從而使其具有防篡改性,不受干擾或欺騙。
QPS 依靠量子增強慣性傳感器,即使在長時間任務中,也能以精確的精度持續跟蹤飛行器的運動。與量子重力儀和磁力計集成后,這些系統提供的實時位置更新比目前任何基于衛星的系統都更加精確。這對于在全球定位系統禁區內作業的潛艇、飛機和無人機尤為有用。
QPS 技術可將定位精度保持在 1 厘米以內,而 GPS 的精度僅為 1-5 米。這種精度水平對于導彈部署或偵察等隱形行動至關重要,因為在這些行動中,即使是很小的偏差也會影響任務的成功。
圖 1:用于定位導航和定時的量子技術概覽
量子導航系統在各個軍事領域都有廣泛的應用。從提高空中和海上行動的精確度到提高地面部隊的應變能力,量子導航系統有望徹底改變現代戰爭。
圖 2: 英國皇家海軍 XV 帕特里克-布萊克特號艦載量子導航系統
波音公司成功地在飛機上測試了量子導航系統,這是一項關鍵的進步,可以實現無 GPS 的精確導航,尤其是在 GPS 被屏蔽的環境中。這對于戰斗機、無人機和運輸機等軍用飛機來說至關重要,因為在這些飛機上,GPS 經常受到干擾。量子導航在無人機戰爭中也大有可為,可確保在 GPS 受干擾的情況下仍能有效作戰。
圖 3:測試量子導航系統的波音機組人員
最近在烏克蘭、納戈爾諾-卡拉巴赫、敘利亞和利比亞發生的沖突展示了無人機系統(UAS)的多功能性,參與沖突的各方都大量使用了無人機系統。無人機系統提供了精確的情報、電子戰(EW)能力、通信、精確目標捕獲(TA)、近距離空中支援(CAS)、空中攔截以及精確的打擊后戰損評估(BDA)。無人機系統的擴散正在不斷增加。如今,這項技術已不再是富裕國家的專利,因為 "許多發展中國家因財政負擔過重而無法配備航空人員,只能依靠無人機系統作為現成的空軍力量"(Jovanov 2022, 5)。與技術先進的現代飛機相比,無人機系統的采購和運營成本低、續航時間長、操作人員培訓成本低。本文旨在概述采用多功能的無人機系統,可如何促進指揮官執行行動和完成指定任務,從而通過所有作戰功能提高單元的能力。
近幾十年來,學術界對無人駕駛飛行器(UAV)的關注明顯激增。先進的無人飛行器能夠執行復雜的飛行動作、在復雜的空間內飛行,并在不斷變化的環境中執行復雜的任務,因此其發展備受關注。這些環境包括采礦、城市搜索與救援 (USAR)、軍事行動等部門,以及包括維護和修理地下基礎設施在內的一系列工業應用。進入密閉空間并在其中作業的迫切需求已成為迫使研究人員推進無人機技術的驅動力。這些進步旨在克服與在受限環境中工作相關的復雜性,解決無人機當前的局限性,同時提高其整體性能能力。
在本論文中,介紹了一套相互關聯的工具,旨在使無人飛行器能夠在受限空間內自主規劃飛行動作。為實現這一目標,本文提出了一種改進的 "教學-重復-再規劃"(I-TRP)迭代策略。該解決方案是一種離線-在線混合方法,包括三個階段戰略中的四個主要模塊。根據手工繪制的路徑(教學階段)和感知到的環境幾何特征,開發了具有新穎占用檢查特性的先進 3D 飛行走廊。此外,結合生成的飛行走廊,還開發了一種通用全局路徑規劃算法 Field D* 的增強版,以通過離線流程(重復階段)制定出近乎最優和平滑的拓撲等效路徑。最后,通過順序凸優化過程(重新規劃階段),制定出具有在線碰撞檢查和避障功能的局部規劃算法。利用無人飛行器機載傳感器捕捉到的地形信息,這種局部規劃可生成后優化的動態可行路徑。
后置參考路徑被用于制定一套包含飛機位置、姿態、速度和加速度的制導指令,以引導無人機飛行在生成的飛行走廊(可能具有復雜的幾何特征)內飛行。所開發的路徑跟蹤方法是通過使用非線性模型預測公式制定的。
所開發的 I-TRP 策略可引導自主無人機在幾乎任何結構化或非結構化環境中到達目的地,這些環境具有不同程度的幾何復雜性,從開放的自由空間到高度雜亂的環境不等。仿真結果表明,在適合實時飛行導航的高效計算過程中,所開發的 I-TRP 策略的能力優于現有機制。
為了應對一個日益動態的作戰環境的挑戰,必須適應技術發展的快速步伐。無人系統(UxS)在改善美國海岸警衛隊的卓越任務方面發揮著關鍵作用,并擁有巨大的前景。無人系統可以幫助找到遇險的海員。它們可以提高在海上探測非法毒品和移民販運的能力,這樣就可以最有效地分配有限的船只、船舶和飛機。UxS可以成為監測世界各地非法、未報告和無管制(IUU)捕撈活動的有力工具。在不斷變化的北極地區,UxS可以幫助破冰船的導航,跟蹤冰山和增加的船只交通,并監測其他商業活動的增長。未來將在一個可互操作的系統的互聯范圍內采用UxS,并使人工智能得到有效的整合,以便在這樣的情況下和更多的情況下向海岸警衛隊的操作員提供可操作的數據。能夠實現最佳人機協作的UXS為海岸警衛隊提供了改變游戲規則的機會。
海岸警衛隊還將有目的地在復雜的海洋環境中抵御和管理無人系統。將采用適合海岸警衛隊在所有領域的海上安全作用的反無人系統能力,以幫助確保海洋運輸系統(MTS)的安全。此外,自動化、自主化和無人駕駛系統的采用有望改變海運業。
雖然海岸警衛隊成功的關鍵一直是人,但無人駕駛系統提供了提高勞動力的性能和效率的前景,并作為一個真正的力量倍增器。海岸警衛隊將尋求調整要求、采購、收購和資金,以確保UXS能夠以需要的速度交付,并與勞動力和現有資產相結合。擁抱和整合UxS將在復雜和不斷變化的環境中促進海上安全和保障。
海岸警衛隊的一系列廣泛的任務要求海岸警衛隊的人員和漁船、艦艇、飛機和海岸站都要做到最好。然而,海洋領域繼續迅速變化并提出新的挑戰。"當今世界的變化步伐正在加快。地緣政治戰略競爭、經濟動蕩、氣候變化影響、勞動力期望值的變化、不斷發展的技術和新興的海洋用途正在匯聚在一起,推動服務發生變化。" 非法、無管制和未報告的捕撈活動已取代海盜行為成為最大的全球海事威脅之一。毒品和移民的非法販運正在向更遠的地方轉移,并持續對公眾構成威脅。北極地區的海事活動正在增加。自然災害繼續威脅著海洋上和海洋附近的人們。對海岸警衛隊服務的需求是強烈的,并繼續增長。
在一個不斷變化的海洋領域中保持意識和執行管理,仍然是幾乎所有海岸警衛隊任務的核心。在國內,"海洋環境的新興用途--包括近海能源生產、無人駕駛船只和航空系統的使用以及商業空間活動--正在迅速擴大,對現有的監管和操作框架提出了挑戰。" 更廣泛地說,"國家競爭者、暴力極端分子以及日益強大和有能力的跨國犯罪組織(TCOs)都在繼續試圖利用海上的薄弱治理、岸上的腐敗和海洋領域意識的差距來獲得經濟和政治優勢。" 這些變化給海岸警衛隊的任務執行帶來了威脅和機遇,同時也增加了對海岸警衛隊海上領域意識的需求,以支持美國和全球利益。
技術在不斷進步,提供了新的工具和能力,可以幫助執行海岸警衛隊的任務。"技術的快速發展,對海岸警衛隊服務不斷增長的需求,越來越多的動態操作環境,以及全球戰略競爭,使目前執行任務的方式更加緊張。必須加強競爭優勢,以配合影響海洋領域的變化速度。這是對行動的呼吁"。
UxS創造了機會,以新的方式將人員、資產、系統和數據結合起來,以創造一支更加靈活的部隊。UxS可以填補覆蓋面的空白,提高對形勢的認識。UxS還可以提供新的能力,以增強載人任務。UxS可以將人類從一些任務中經常是骯臟的、偶爾是枯燥的、有潛在危險的工作中解放出來。UxS不能單獨執行任務,但它們可以幫助保持人員準備狀態,直到正好需要海岸警衛隊人員的時刻。
海岸警衛隊已經雇用了一些UXS,但主要是以分離和以平臺為中心的方式進行的。海岸警衛隊已經經歷了一些項目的成功,如國家安全快艇上的中程無人駕駛航空系統(UAS),以及在海岸警衛隊各水上和岸上單位使用的短程UAS。當與其他技術無縫整合時,作為技術生態系統的一部分,無人機系統可以成為一個力量倍增器,將傳感器與作戰決策者通過資產、網絡、數據系統、高級分析和信息共享平臺聯系起來,并具有更高的速度和效率。必須保持靈活和適應性,以追求這一變革性變化。
雖然無人駕駛系統為海岸警衛隊的就業提供了機會,但它們已經被海洋環境中的所有類型的行為者所使用,而且應該預期它們的存在將大幅增長。公民使用無人駕駛系統正在無意中影響著政府和商業船只以及沿海設施的日常運作。商業航天公司正在使用無人駕駛的駁船進行作業,航運公司正在將自主系統甚至完全自主的車輛納入其船隊。麻醉品販子已經建造了小型的自制無人潛水艇,以秘密地在海上邊界非法運輸毒品。應該預料到,無人駕駛系統將在海洋環境中變得無處不在,必須為其影響做好準備。
了解海岸警衛隊任務的變化、機會和風險,使能夠構建一個愿景,為戰略制定方向。
在未來的空戰中,無人協同系統的整合將是一個潛在的巨大力量倍增器。其成功的關鍵因素將是編隊情報、協調任務規劃和跨平臺任務管理。因此,構思下一代機載武器系統的任務需要一個整體的系統方法,考慮不同的航空飛行器、其航空電子任務系統和針對未來威脅的整體作戰概念。為了盡早驗證可能的解決方案概念并評估其作戰性能,在過去幾年中,在空中客車防務與航天公司未來項目中開發了一個動態多智能體戰斗仿真。除了比實時更快的工程功能外,該仿真還可以進行實時人機對話實驗,以促進工程師、操作員和客戶之間的合作。本文介紹了動態任務仿真方法,以及在未來戰斗航空系統(FCAS)研究中應用此工具所得到的啟示,在此期間,我們清楚地認識到什么是未來應用的一個關鍵挑戰。實施一個強大的高層規劃算法,為復雜的空中行動生成臨時任務計劃,同時考慮反應性的低層智能體行為、人類操作員和在線用戶輸入。
每一代新的戰斗機都可以通過一個或多個技術飛躍來定義,這些技術飛躍使其與上一代的設計有很大區別。毫無疑問,自從大約15年前第一架第五代戰斗機投入使用以來,幾乎所有的設計學科都有了顯著的進步。不同的飛機制造商,包括空客,已經宣布他們目前正在構思或研究第六代戰斗機[1] [3]。與目前最先進的飛機相比,這些項目很可能在各個領域都有改進,如飛行性能、全方面和全模式隱身、低概率攔截雷達和通信或武器裝備。但問題仍然存在:什么將是這一代的決定性因素,一個真正改變未來戰斗空間的因素?
一個常見的假設是,未來的戰斗空間將是 "高度網絡化 "的,即所有參與的實體都可以交換他們的態勢視圖,并以近乎實時的方式創建一個共享的戰術畫面。一方面,這使得多個平臺在空間和時間上可靠同步達到了以前不可能達到的程度。許多算法,特別是發射器定位或目標測距的算法,如果能從多個位置產生測量結果,會產生明顯更好的效果。另一方面,高質量數據的可靠交換通過分配以前由單一平臺執行的任務,使戰術更加靈活。對作戰飛機的主要應用可能是所謂的合作交戰概念(CEC),這已經是美國海軍針對反介入/區域拒止(A2/AD)環境的海軍綜合火控-反空(NIFC-CA)理論的一部分[4],但其他應用也是可能的,例如合作電子攻擊。所提到的概念主要適用于任務期間單一情況的短期范圍,例如偵察或攻擊薩母基地、空對空(A2A)作戰等。然而,就整個任務而言,還有一個方面需要提及。鑒于所有參與實體之間的可靠通信,規劃算法可以交換任務計劃變更的建議,并根據其目標和當前的戰術情況自動接受或拒絕。這在一個或多個不可預見的事件使原來的任務計劃無效的情況下特別有用,盡管所有預先計算的余量。與其估計一個替代計劃是否可行,并通過語音通信與所有其他實體保持一致(考慮到船員在某些任務階段的高工作負荷和參與實體的數量,這是一項具有挑戰性和耗時的任務),一個跨平臺的任務管理系統可以快速計算出當前任務計劃的替代方案,并評估是否仍然可以滿足諸如開放走廊等時間限制。然后,一組替代方案被提交給機組人員,以支持他們決定是否以及如何繼續執行任務。
將上述想法與現在可用的機載計算能力結合起來,由于最近在硬件和軟件方面的進步,可以得出結論,未來一代戰斗機將很有可能在強大的航空電子系統和快速可靠數據交換的基礎上,采用卓越的戰術概念進行作戰。然而,這還不是我們正在尋找的明確游戲改變者--甚至現有的第五代戰斗機已經應用了一些提到的概念,例如,在NIFC-CA背景下的F-35[4]。因此,下一步不僅要改進飛機的航電系統,而且要在完全網絡化環境的前提下連貫地優化航電、戰術和平臺設計。這種方法允許思考這樣的概念:如果得到網絡內互補實體的支持,并非每個平臺都需要擁有完整的傳感器套件和完整的決策能力。因此,不同的平臺可以針對其特殊任務進行高度優化,從而與 "單一平臺做所有事情 "的方法相比,減少了設計過程中需要的權衡數量。很明顯,一個專門的傳感器平臺不需要或只需要非常有限的武器裝備,因此現在可用的空間可以用來建造更好的傳感器或更大的燃料箱。這已經可以使該平臺專門從事的任務性能得到顯著提高,但有一樣東西可以去掉,它的影響最大:飛行員。在這一點上,必須明確指出,目前沒有任何算法或人工智能能夠接近受過訓練的機組人員態勢感知和決策能力。這就是為什么在不久的將來,人類飛行員在執行戰斗任務時將始終是必要的。然而,如果飛行員(或更準確地說,決策者)被提供了指揮無人駕駛同伴的所有必要信息,那么就不需要在同一個平臺上了。因此,我們提出了一個概念,即一個或多個載人平臺由多個無人駕駛和專門的戰斗飛行器(UAV)支持。在下文中,我們將把至少一個載人平臺和一個或多個由載人平臺指揮的專用無人機組成的小組稱為包。我們聲稱,由于以下原因,無人平臺將作為有人平臺的力量倍增器發揮作用:
無人機是可擴展的,而空勤人員是不可擴展的。因此,無人機可以執行高風險的任務,并允許采用只用載人平臺無法接受的戰術。
無人機更便宜(即使不考慮機組人員的價值),因為它們可以在性能相同的情況下比載人平臺建造得更小。這意味著,在相同的成本下,更多的平臺可以執行任務,更多的平臺會導致更高的任務成功率。首先,因為有更多的冗余,其次,如果有更多的資產參與其中,一些任務可以更好地完成,例如發射器的定位。
不同的無人機和載人平臺可以任意組合。在任務開始前,可以根據需要組成包。在任務期間,在某些限制條件下,也可以重新組合軟件包,例如,如果交戰規則禁止不受控制的飛行,則指揮平臺之間的最大距離。這使得任務規劃和執行有了更大的靈活性,預計也能保持較低的運行成本和材料損耗("只使用你需要的東西")。
像往常一樣,沒有免費的午餐這回事。在我們的案例中,所有上述優勢對飛機設計師來說都是有代價的。不是按照一組技術要求優化單一設計的性能,而是必須設計多個平臺及其子系統,使其在各種任務和組合配置中最大限度地提高整個系統的性能。在本文的其余部分,我們將介紹FCAS原型實驗室(FPL),這是一個在FCAS背景下開發的模擬環境,用于解決這一高度復雜的問題。在第2章中概述了它在概念設計和跨學科技術原型開發中的作用后,我們將在第3章中介紹底層動態多智能體任務仿真的概念和架構。在第4章中,我們將介紹選定項目的結果,以概述該工具的多功能性。本文最后將介紹可能是未來最大的挑戰之一,不僅對模擬,而且對一般的無人系統的引進。實施一個強大的高層規劃算法,為復雜的空中行動生成臨時任務計劃,同時考慮反應性的低層智能體行為、人類操作員和在線用戶輸入。
FPL的核心是一個動態多智能體任務仿真,可以在一臺計算機上運行,也可以分布在多臺機器上,并使用不同的附加硬件組件。為了方便兵棋推演的進行,對人機界面技術進行原型測試,或用于一般的演示目的,模擬中的所有載人機載資產都可以選擇由硬件駕駛艙控制。如果沒有人類操作員參與,模擬必須能夠比實時運行更快。這對于在可能需要數小時的大規模任務中進行有效的開發和權衡分析尤為必要。為了以客觀和公正的方式評估概念和技術,每個模擬任務的過程都是由預先定義的系統屬性、物理效應的模擬和可配置的智能體行為和合作演變而來。不存在任何腳本事件,每一次新的模擬運行的結果都是完全開放的。藍軍和紅軍是在相同的假設下,以可比的抽象水平進行模擬。以下各章概述了如何在FPL中動態地模擬當前和未來機載系統的任務。介紹了我們的仿真結構,在對這類系統進行建模時最重要的設計權衡,以及行為建模的高層次規劃/低層次控制方法。
FPL的仿真架構由三個邏輯部分組成:應用、仿真控制和通信中間件。該架構的一個核心特征是,模擬被分割成幾個應用程序。每個應用程序運行不同的模型,例如,有一個應用程序用于模擬自己的(藍色)航空器、敵方(紅色)航空器、綜合防空系統(IADS)以及更多的模型,如下所示。所有的應用程序共享相同的標準化接口,并且可以任意組合。這種模塊化允許只運行某個任務或項目所需的部分模型。所有的應用程序都是獨立的可執行文件,可以在同一臺計算機上以并行進程運行,也可以分布在幾臺機器上。通過交換編譯后的二進制文件,來自不同公司的模型的整合是可能的,而不會暴露詳細的基本功能。一般來說,不同公司之間的快速和容易的合作是FPL架構的一個主要驅動力。為此,提供了一個基礎應用類,它提供了所有與仿真有關的功能,如仿真控制狀態機、通信中間件接口和通用庫,例如用于不同坐標系的地理空間計算。通過簡單地實現一個新的基礎應用實例,新的模型可以被添加到仿真框架中。所有應用程序的執行都由一個中央仿真控制實例控制。它提供了一個圖形化的用戶界面,可以根據需要啟動、停止和加速模擬。在執行過程中,所有應用程序的運行時間被監控,仿真時間被動態地調整到最慢的模型。這使得分布式的比實時更快的模擬具有自適應的模擬時間加速。應用程序之間的通信是通過數據分配服務(DDS)標準[2]實現的。它使用發布-訂閱模式在網絡中實現了可靠和可擴展的數據交換。兩個不同的分區用于廣播仿真數據(如實體狀態、仿真控制命令等)和多播命令和控制數據(如通過BUS系統或數據鏈路實際發送的數據)。DDS標準的開放源碼實施被用來進一步方便與外部伙伴的合作。
圖1提供了我們的模擬架構的概況,包括大多數任務所需的應用程序。如前所述,這個架構并不固定,幾乎任何應用都可以根據需要刪除或交換。如黑色虛線箭頭所示,通過DDS中間件在仿真控制處注冊一個基本的應用實現,可以集成新的模型。藍色/紅色背景的方框描述了己方/敵方系統,混合顏色的方框可供雙方使用。仿真基礎設施組件的顏色為灰色,用戶界面的顏色為橙色。黑色箭頭表示模擬過程中的通信,灰色箭頭代表模擬運行前后的數據交換。
對于兵棋推演環節,不同的應用程序分布在FPL的多個房間內運行,以模仿真實的空中作業程序。在設置好一個場景后,藍方和紅方的操作人員使用任務配置工具,在不同的房間里計劃他們的任務。空中行動指揮官留在這些房間里,而飛行員則分成兩個房間,每個房間有兩個駕駛艙來執行任務。藍方和紅方空軍應用的任何飛機都可以從駕駛艙中控制,因此飛行員可以接管不同的角色,并相互對抗或作為一個團隊對抗計算機控制的部隊。所有房間都配備了語音通信模擬。任務結束后,各小組在簡報室一起評估任務,可以從記錄的模擬數據中回放。一個額外的房間配備了多個連接到模擬網絡的PC,可以選擇用于特定項目的任務,例如硬件在環實驗。
為FPL選擇正確的建模范式事實上并不簡單,因為它涵蓋了操作分析工具(通常是隨機的)以及工程模擬(通常是確定性的或混合的)的各個方面。這個決定的影響可以用一個例子來說明,即如何確定一架飛機是否被導彈擊中。在隨機模型中,這個決定是基于可配置的概率,例如,被擊中的概率(導彈)和回避動作成功的概率(飛機)以及一個隨機數。為了使最終的任務結果對單一的隨機數不那么敏感,在實踐中經常用不同的隨機種子進行多次模擬運行。按照確定性的方法,導彈的飛出是根據導彈的發射方向、制導規律和固定的性能參數如推力、最大加速度等來模擬的。飛機在規避機動過程中的軌跡也是基于其初始狀態、空氣動力學、反應時間等。例如,當彈頭引爆時,如果導彈和飛機之間的距離低于某個閾值,那么飛機就會被認為被殺死。在一個確定性的模型中,在導彈發射時已經知道飛機是否會被擊中。確定性模型中必要的簡化通常是通過引入固定參數來完成的,比如導彈例子中的距離閾值。混合模型允許使用隨機數進行這種簡化,例如,作為失誤距離的函數的殺傷概率。
為了有效地測試和分析大規模的空中作業,在單臺機器上有幾十種藍色和紅色資產運行的情況下,模擬運行的速度至少要比實時快10倍(平均)。這對所用算法的時間離散性和運行時的復雜性提出了重大限制。為了保持快速原型設計能力,為新項目設置仿真或開發/集成新組件所需的時間應保持在較低水平。太過復雜的模型會帶來更多的限制,而不是顯著提高結果的質量。在這些方面,(更多的)隨機模型在運行時間和開發時間上都有優勢,更快。然而,在我們的案例中,有兩個主要因素限制了隨機模型的使用,使之達到最低限度。首先,模擬只有在給出他們的戰術和演習成功與否的確切原因時才會被操作者接受。此外,隨機模型是由數據驅動的,但對于未來自己和/或敵人的系統來說,所需的數據往往無法獲得。對于已經服役多年并在測試或實際作戰中多次射中的導彈,有可能估計其殺傷概率。然而,僅僅為未來的導彈增加這一概率是非常危險的,特別是因為隨機模型對這些參數非常敏感。從我們的觀點來看,通過將所有系統建模為基于技術系統參數的通用物理模型,可以實現對未來系統更健全的推斷。第一步,通過模擬已知技術和性能參數的現有系統,對模型本身進行驗證。對于未來的系統,技術參數會根據預期的技術進步、領域專家知識和他們的工具進行推斷。堅持最初的例子,未來戰斗機的回避機動性能的推斷,例如,基于從CAD和流體動力學模型計算出的更高的升力系數,或基于更高的導彈接近警告器的分辨率和靈敏度。
客觀評價未來概念在模擬中的表現的一個關鍵方面是環境和威脅的建模。必須考慮到,系統的方法在紅方和藍方都是有優勢的。現代國際防空系統的危險來自于結合不同的系統,從非常短的距離到遠距離。所有這些系統都有它們的長處和短處,但它們被組織起來,使個別的短處被其他系統所補償,并使整個系統的性能最大化。因此,第一個困難是必須對大量的系統進行模擬,并且必須確定這些系統的個別優勢和劣勢。通用物理模型的方法可用于這兩個方面。在通用防空系統模型被開發和驗證后,它可以迅速將新的系統整合到模擬中。根據模擬的物理效果,可以估計敵方系統的作戰優勢和弱點或未來可能的威脅概念。另一方面,使用通用模型的困難在于,必須將真實系統的功能映射到通用模型中,以便保留所有重要的單個系統屬性。這不可避免地導致了相當復雜和詳細的通用模型。我們將以地基雷達組件為例,概述我們平衡復雜性和保真度的方法。如圖2所示,IADS模擬中的一個實體由不同的組件組成。這些組件可以任意組合,以快速配置新系統。從功能角度看,地面雷達組件由控制器、探測模型和目標跟蹤器組成。根據實體的當前任務,控制器選擇所需的雷達模式,例如,360°搜索的監視或戰斗搜索,如果一個特定的部門必須優先考慮。為了對付干擾或地面雜波,可以使用不同的波形。根據雷達的類型,如機械或電子轉向的一維或二維,控制器有不同的可能性來適應搜索模式。在為一個波束位置選擇了波形的類型和數量后,探測模型根據目標、地面雜波、地形陰影、大氣衰減和電子對抗措施等方面的雷達截面模型,產生測量結果。測量誤差是由取決于隨機模型的信噪比引起的。由此產生的測量結果然后由目標跟蹤器處理,它執行測量-跟蹤關聯和跟蹤過濾。
這種詳細模型產生的另一個困難是必須估計的參數總數。在這一點上也要注意,模擬中的所有數據都是不受限制的。這一方面是由于大多數項目的限制,但另一方面,它在日常工作中也有實際優勢。我們必須牢記,模擬是用于概念驗證,而不是用于詳細的系統設計,所以在這個早期階段使用機密的威脅數據會對基礎設施和開發過程造成重大限制,而不會給結果帶來重大價值。基于此,所有的威脅數據都必須根據公開的來源或來自內部項目和外部合作伙伴的非限制性數據進行估算。這再次導致了大量的數據,而這些數據的詳細程度往往是非常不同的,或者是不一致的,例如,由于對限制性數據的去分類。隨著我們模型的不斷發展和多年來獲得的工程專業知識,我們有可能為不同的當前和推斷的未來威脅系統估計出一致的參數。這主要是在一個自下而上的迭代過程中完成的。根據現有的技術和性能參數,對缺失的模型參數進行估計以適應組件的性能。然后對單一系統的不同組件之間的行為和相互作用進行調整,以達到理想的系統性能。最后,在不同的情況下測試IADS內這些系統的協調,以使整個系統的性能最大化。
21世紀,沖突地區的上空出現了無人駕駛飛行器(UAVs),也就是眾所周知的無人機。過去二十年來,在武裝沖突地區內外,無人機的部署已變得非常普遍。無論它們是否有武器,無人機都在當代沖突的作戰方式上留下了印記,并為國家和非國家行為者提供了使用致命武力的新方法。無人機為交戰各方提供了 "天空中的眼睛",是關于敵人行蹤的全天候情報來源。 無人機在沖突地區上空盤旋,借助廣泛的機載傳感器系統和相機,通過執行情報、監視、目標獲取和偵察(ISTAR)來收集戰場信息。這些功能支持了無人機的作用,將其與地面或空中的其他武器系統聯系起來,并利用傳感器數據來確定目標,或者用機載火箭、導彈或炸彈直接攻擊目標。無人機在戰爭中的應用給軍隊帶來了多種優勢,如提高態勢感知能力和消除飛行員的風險,同時也相對便宜。
最初,美國(US)主導了武裝和非武裝無人機的生產和部署,以色列和中國緊隨其后。2001年9月11日恐怖襲擊發生后不久,美國就在阿富汗上空使用無人機追蹤基地組織成員,它很快感到有必要在其 "捕食者 "無人機上加裝導彈,而在此之前,這些無人機都是非武裝的。 武裝無人機是奧巴馬總統領導下的美國秘密定點清除計劃的標志。以色列在2011年之前已經在其定點清除計劃中使用武裝無人機,但直到2022年夏天才公開承認。在過去五年里,土耳其等其他國家在利比亞、敘利亞北部、土耳其南部和伊拉克的行動中大量使用無人機,發揮了主導作用。無人機正在成為反叛亂行動和軍事干預行動的首選武器,利比亞戰爭就是一個例子,它通常被稱為 "世界上最大的無人機戰區"。 在這些地方,人們可以看到各種類型的軍用無人機的廣泛傳播和擴散。
談到無人機的生產和出口,土耳其、伊朗和中國等國家已經加入了無人機生產國的行列,渴望在無人機市場上發揮巨大作用。這些新的無人機大國一直在向一系列以前不是無人機用戶的非西方國家,如埃塞俄比亞、尼日利亞、利比亞和阿塞拜疆出口他們的Bayraktar TB-2s、Mohajer-6s和Orlan-10s,而且還向非國家武裝團體,如真主黨和也門的Ansar Allah(更有名的Houthis)。根據無人機研究中心的數據,2019年有95個國家有活躍的軍事無人機計劃,而2010年有此類計劃的國家為60個,增加了58%。這些國家總共擁有約30,000架無人機。同樣,在這些國家擁有的武裝無人機的數量和類型方面,也有明顯的擴大和多樣化。 技術先進的軍隊不再享有對無人機使用和出口的壟斷;其他幾十個國家也加入了它們的行列,擴大其無人機能力。正如無人機專家丹-格納所解釋的那樣,這一發展不可避免地影響到武裝沖突的未來。
除了使用武裝無人機的國家行為體領域的轉變,擁有和部署無人機的非國家武裝團體(NSAG)也在增加。他們從其盟友那里獲得了無人機技術和培訓;例如,也門的胡塞武裝從伊朗獲得了無人機部件。此外,非國家武裝團體還能獲得商業無人機,對其進行改裝,使其成為可用于戰斗的武器。像伊拉克和敘利亞伊斯蘭國(ISIS)和真主黨這樣的武裝團體已經將其制造具有打擊能力的民用無人機的工作專業化和產業化,徹底改變了非國家武裝團體的無人機能力。他們的無人機制造和使用知識已經轉移到其他NSAG,擴大了軍用無人機的部署領域。這些商用現成(COTS)無人機說明了軍用和民用無人機之間的模糊區別:一架業余無人機只需花幾百歐元甚至幾十歐元就能在網上買到,但只需在上面裝上彈藥,就能輕易變成武器。非國家武裝團體對消費類技術的使用與商業無人機公司的激增相輔相成,使各種國家和非國家行為者都能獲得廉價的技術。非國家武裝團體手中武器化的COTS無人機的發展,加上各種國家生產、出口和使用無人機,導致了重要的法律、倫理和政治問題,例如,出口管制條例、保護平民和降低使用武力的門檻。
不幸的是,國際規則和條例沒有跟上無人機生產、出口和部署的爆炸性國際增長的步伐。盡管在95個擁有積極軍事無人機計劃的國家中,有63個被認為主要擁有外國制造的無人機,但沒有多邊機制來全面監管無人機和無人機技術的出口和后續使用。現有的幾個軍控制度--導彈技術控制制度(MTCR)、瓦森納協議、歐盟關于武器出口的共同立場和國際武器貿易條約(ATT)--提供了一些指導。然而,由于無人機生產商或用戶的參與度有限,對某些類型的無人機關注度狹窄,或者缺乏強有力的、具有法律約束力的規則,這些協議都未能有效地監管無人機出口。專門指導無人機部署和出口的第一次嘗試是美國2015年的一項政策,該政策導致了關于武裝無人機出口和使用的聯合宣言,該宣言由54個國家簽署并在2016年發布。然而,該宣言被各國、專家和民間社會組織批評為非包容性的,因為它是由美國起草的,幾乎沒有其他國家或專家的意見,它的范圍有限,措辭模糊,而且由于宣言的自愿性質,沒有現實意義。基于這一聯合聲明,美國一直在與一小群國家合作制定 "武裝無人駕駛飛行器的出口和后續使用的國際標準",然而,完整的文件尚未公布。
無人機系統(UAS)在美國軍事行動中越來越突出。作為其現代化戰略的一部分,美國防部(DOD)目前正在開發先進的無人機,以及可選的載人飛機。在過去幾十年中,軍隊使用無人機執行各種任務,包括:
分析人士和美國防部認為,無人機可以在許多任務中取代載人飛機,包括
此外,美國防部正在開發一些實驗概念,如飛機系統體系、群集和致命自主武器,以探索使用未來幾代無人機的新方法。在評估潛在新的和未來無人機項目、任務和概念的撥款和授權時,國會可能會考慮以下問題:
小型無人駕駛飛機系統(sUAS)的指數式增長為美國防部帶來了新的風險。技術趨勢正極大地改變著小型無人機系統的合法應用,同時也使它們成為國家行為者、非國家行為者和犯罪分子手中日益強大的武器。如果被疏忽或魯莽的操作者控制,小型無人機系統也可能對美國防部在空中、陸地和海洋領域的行動構成危害。越來越多的 sUAS 將與美國防部飛機共享天空,此外美國對手可能在美國防部設施上空運行,在此環境下美國防部必須保護和保衛人員、設施和資產。
為了應對這一挑戰,美國防部最初強調部署和使用政府和商業建造的物資,以解決無人機系統帶來的直接風險;然而,這導致了許多非整合的、多余的解決方案。雖然最初的方法解決了近期的需求,但它也帶來了挑戰,使美國防部跟上不斷變化問題的能力變得復雜。為了應對這些挑戰,美國防部需要一個全局性的戰略來應對無人機系統的危害和威脅。
2019年11月,美國防部長指定陸軍部長(SECARMY)為國防部反小型無人機系統(C-sUAS,無人機1、2、3組)的執行機構(EA)。作為執行機構,SECARMY建立了C-sUAS聯合辦公室(JCO),該辦公室將領導、同步和指導C-sUAS活動,以促進整個部門的統一努力。
美國防部的C-sUAS戰略提供了一個框架,以解決國土、東道國和應急地點的sUAS從危險到威脅的全過程。國防部的利益相關者將合作實現三個戰略目標:(1)通過創新和合作加強聯合部隊,以保護國土、東道國和應急地點的國防部人員、資產和設施;(2)開發物資和非物資解決方案,以促進國防部任務的安全和可靠執行,并剝奪對手阻礙實現目標的能力;以及(3)建立和擴大美國與盟友和合作伙伴的關系,保護其在國內外的利益。
美國防部將通過重點關注三個方面的工作來實現這些目標:準備好部隊;保衛部隊;和建立團隊。為了準備好部隊,國防部將最大限度地提高現有的C-sUAS能力,并使用基于風險的方法來指導高效和快速地開發一套物質和非物質解決方案,以滿足新的需求。為了保衛部隊,國防部將協調以DOTMLPF-P考慮為基礎的聯合能力的交付,并同步發展作戰概念和理論。最后,作為全球首選的軍事伙伴,國防部將通過利用其現有的關系來建設團隊,建立新的伙伴關系,并擴大信息共享,以應對新的挑戰。
通過實施這一戰略,美國防部將成功地應對在美國本土、東道國和應急地點出現的無人機系統威脅所帶來的挑戰。在這些不同操作環境中的指揮官將擁有他們需要的解決方案,以保護國防部人員、設施、資產和任務免受當前和未來的無人機系統威脅。