亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

美國國防部的主要項目,如 F-22 猛禽和 F-35 閃電 II 項目,都面臨著軟件方面的挑戰。鑒于最近自上而下地指示要提高關鍵軟件采購、開發和部署的敏捷性,了解阻礙改進的其他因素至關重要。這項研究包括對政府報告和建議、私營部門的最佳實踐和創新以及軍方與私營部門合作的努力的廣泛回顧。這些工作揭示了阻礙進步的因素,包括國防部項目的結構往往是自說自話,開發時間漫長,預算資金周期僵化。理想情況下,軟件的采購流程與硬件的采購流程有所不同,但在實踐中往往沒有區別。項目領導者往往過于專注于有限的開發方法,對軟件專家的建議持抵制態度。這項研究指出了國防部采購項目中的幾個領域,在這些領域中可以對現行做法進行改革。這些改變應能使項目在成本、進度和性能方面得到改善。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

在美國海軍及其盟國海洋行動中,最重要的是在海軍交戰中制定有效的戰略。盡管人們寄予厚望,但諸如 "約翰-麥凱恩 "號和 "菲茨杰拉德 "號這樣的事例表明,在每一次互動中確定有利的行動都具有挑戰性。本研究利用機器學習(ML)和人工智能(AI)的進步,開發了一個基于模擬的程序,將強化學習(RL)應用于海軍場景。該程序是對現有陸基兵棋推演模擬程序 Atlatl 的改編,旨在識別六種場景中己方兵力的高效行動。對深度 Q 網絡(DQN)、蒙特卡洛樹搜索(MCTS)和 AlphaStar 人工智能體在不同場景中的表現進行評估后發現,DQN 和 MCTS 能夠識別出更優越的策略,其中 DQN 一直表現出較高的得分,在某些場景中甚至超過了人類玩家。AlphaStar 顯示出的結果較少,但提供了如何改變它以在未來取得更好結果的見解。這些發現強調了人工智能作為海軍作戰決策輔助工具的潛力,有助于增強美國海軍的決策能力。建議今后開展研究,進一步挖掘這一潛力。

付費5元查看完整內容

軍事決策過程(MDMP)包括分析地形以確保任務成功的關鍵任務。然而,傳統的地形分析方法,如二維(2D)模擬地圖、PowerPoint 演示文稿和任務式指揮系統,資源密集、耗時長,而且會使決策者無所適從。因此,本研究側重于使用移動頭戴式增強現實(AR)顯示技術進行三維(3D)地形可視化,以應對這些挑戰。AR 技術可讓用戶觀察到疊加在物理環境上的虛擬物體,從而增強身臨其境的體驗。該工具允許用戶查看和操作三維地形,添加軍事資源的表示,檢查由此產生的配置,并參與 MDMP。可用性研究評估了界面的有效性、效率和用戶滿意度,重點是三維可視化任務、衍生地形信息提取以及在有爭議的潮濕空隙穿越場景中的部隊部署。結果表明,AR 地形可視化原型為決策者提供了更全面、更準確的信息,使任務規劃和執行取得了成功。這項研究凸顯了三維地形可視化和 AR 技術在改進 MDMP、讓決策者更好地了解環境并做出更明智決策方面的潛力。

A. 研究領域

本研究側重于利用增強現實(AR)技術來支持軍事決策過程(MDMP),這是任務規劃的一個重要方面。該工具可使用戶與描述地形的本地三維(3D)數據集進行交互,并允許使用一套 3D工具。因此,該工具具有增強決策過程和提高 MDMP 會議效率的潛力。

傳統上,美國陸軍在規劃任務時依賴于二維(2D)圖形信息。然而,獲取更詳細的地形信息需要大量的時間和資源,例如創建額外的二維圖形表示法。相比之下,如果地形已被捕獲并表示為三維數據集,工作人員就能獲得所有必要信息,從而參與 MDMP 并做出更明智的決策。

論文研究包括設計和開發一種增強現實(AR)可視化工具,該工具可與三維虛擬地形一起操作,并支持 MDMP,尤其強調濕間隙穿越(WGC)的任務規劃。本論文旨在通過提供虛擬地形的精確數據、允許使用三維工具和更好地做出決策,改善 MDMP 期間的人員協作。此外,這項研究還有助于理解在 MDMP 中促進小團隊合作所需的技術前提條件。

B. 問題與動機

技術進步往往會超越其采用和融入現有系統和流程的速度,這是一種常見現象。例如,在軍事任務中使用 AR 和虛擬現實(VR)技術進行信息共享,可以顯著改善復雜多變行動的規劃和執行。然而,將這些技術納入現有的任務式指揮系統和程序可能具有挑戰性且耗時較長,這主要是由于軍事行動對安全性和可靠性的要求。此外,用戶可能會抵制引入他們不熟悉的新解決方案和技術。因此,盡管信息共享技術進展迅速,但其融入軍事部門的速度卻慢得多。因此,復雜多變的軍事行動仍在使用過時的協議進行規劃和執行,任務式指揮系統長期以來也只是略有改進。

美國陸軍在 MDMP 期間使用各種方法提取信息和分析地形。主要是陸軍的每個作戰職能部門使用二維地圖提取地形信息;參謀部門通過情報地形科請求獲得更詳細的信息。然后,參謀部門將從二維地圖上收集的信息和情報科提供的信息制作成 PowerPoint 演示文稿。指揮官利用這套演示文稿做出最終決定。然而,由于二維地圖的固有局限性及其表現形式(在 PowerPoint 幻燈片中展示靜態二維地圖),參謀部無法始終從地形中提取衍生信息,從而做出明智的決策。如果能以本地三維數據格式顯示地形,并使用一系列合適的三維工具,工作人員就能從地形中提取衍生信息,加強協作,并更好地理解共同行動圖(COP)。

增強現實技術在軍事領域并不新鮮,但在 MDMP 期間尚未得到廣泛應用。通過在 MDMP 期間使用 AR 可視化工具,工作人員可以獲得以前無法用于工作和協作的系統功能。通過 AR 顯示三維虛擬地形并與之互動,每個 WWF 都可以使用簡單的手勢在地形周圍導航,操作這些數據集,操縱和放大縮小地形,并提取決策所需的衍生信息。因此,WWF 可以通過對地形具體情況的透徹了解來證實他們的決策,并更好地闡明他們向指揮官推薦特定行動方案的原因。此外,因誤解二維數據集而可能產生的錯誤也會減少,甚至消除。

關注 WGC 是部署 AR 技術和使用 3D 數據表示的沃土,這是有充分理由的。對于美國陸軍人員來說,WGC 是最具挑戰性的聯合武器任務之一;由于需要投入大量資源和人力資本,這類任務的規劃非常復雜(美國陸軍聯合武器中心,2019 年)。美國陸軍中的六個 WFF 必須緊密配合,以確保 WGC 的安全進行。在 MDMP 開始時,美國陸軍的每個 WFF 都要聽取情報部門關于地形分析的簡報;這一階段稱為戰場情報準備(IPB)。IPB 代表了對部隊行動區(AO)內地形的高層次審視,并提供了有關地形預期的歷史數據(陸軍部總部,2019 年);他們的大部分決策都是基于二維地圖做出的。進行 IPB 后,WFF 根據情報科提供的信息制定行動方案 (COA)。然而,依賴二維地圖有許多固有的局限性。例如,無法從任何給定點查看地形(數據集沒有三維記錄),因此缺少富有成效的 MDMP 所需的豐富地形信息。因此,使用卓越的數據表示,最大限度地減少出錯的可能性,并投入時間有效地研究替代方案和決策,有可能為此類復雜的軍事行動帶來急需的改進和戰略優勢。

C. 研究問題

本論文探討以下研究問題:

1.有可能為聯合武器 MDMP 提供最有效支持的技術框架是什么?

2.AR 支持的 MDMP 工具能否通過提供有關地形分析的衍生信息來增強作戰職能部門對地形的理解?

3.AR 支持的 MDMP 工具能否有效協助資源管理?

4.AR 支持的 MDMP 工具能否有效協助軍事參謀人員在聯合作戰場景中開展協作?

D. 研究范圍

本論文僅限于開發一種 AR 可視化工具和虛擬環境,以支持 "濕間隙穿越 "和提取 MDMP 期間每個 WWF 所需的地形衍生信息。此外,同一工具還可實現軍事參謀部門之間的人員協作和信息交流。

E. 研究方法

用于解決所有研究問題的方法包括以下步驟:

1.文獻綜述:進行文獻綜述,提供論文中使用的基本構造的背景信息。

2.任務分析:對當前開展 MDMP 的實踐進行分析,以跨越濕間隙。這包括但不限于詳細分析行動方案制定過程中不同作戰功能之間的報告和互動、當前地形可視化實踐以及團隊協作。

3.設計 AR 可視化工具: 為工具和用戶界面設計支持系統架構。此外,選擇一套支持用戶任務所需的三維對象和地形。

4.可用性研究:開展可用性研究,重點關注支持 AR 的 MDMP 工具的功能和性能。

5.數據分析:分析在可用性研究中收集的綜合數據集。

6.得出結論并提出未來工作建議。

F. 論文結構

第一章:導言。本章介紹研究空間的最關鍵要素:領域、問題、研究問題、范圍以及用于解決所有研究問題的方法。

第二章:背景和文獻綜述。本章討論美國陸軍如何開展 ADM 和 MDMP 以規劃軍事行動。本章還討論了 VR 和 AR 過去和當前的使用情況,以及在 MDMP 過程中軍事人員合作時 AR 的潛在用途。

第三章:任務分析: 當前 MDMP 實踐。本章分析了當前陸軍參謀人員在 MDMP 期間分析地形時使用的方法和工具,以及如何向指揮官推薦 COA。此外,本章還討論了向指揮官提供 2D 信息時存在的知識差距。

第四章:原型系統設計與實施。本章討論了 AR 可視化工具、系統架構、用戶界面和模擬環境的設計與開發。文中還描述了 WGC 場景和為可用性研究所需的虛擬環境而構建的 3D 模型。

第五章: 可用性研究。本章討論了使用 AR 可視化工具進行可用性研究的方法,包括制定完整的機構審查委員會文件。此外,文中還討論了虛擬環境、技術要求以及在可用性研究中收集的客觀和主觀數據集。最后,本章分析了可用性研究的結果。

第六章:結論和未來工作。本章概述了研究的要點,并對今后的工作提出了建議。

付費5元查看完整內容

本文提出了一個海軍作戰管理系統(CMS)架構,考慮到電子戰(EW)與人工智能(AI),以應對現代高超音速和低觀測能力的威脅,其中反應時間可能很短,需要自動化。它使用一個反制措施案例研究作為數據要求,拍賣傳感器任務,人工智能過程,以及認知復合感應的數據融合。該文件還強調了已經公布的關鍵認知電子戰能力,以證明該架構的合理性。該架構的方向是用高反應時間的自動化人工智能驅動的認知DM來取代人類決策者(DM)。

引言

當把人工智能(AI)應用于電子戰(EW)時,它不僅要幫助決策者(DM)進行態勢感知(SA),還要滿足點、區域和區域防御以及反目標活動的需要。電磁波譜是密集的,有許多通信和雷達發射器。因此,挑戰在于如何將人工智能應用于能夠滿足管理部門需求的EW系統。因此,它必須能夠整理出感興趣的信號(SoI)[1],如部隊的信號和與指定任務無關的信號。這項工作的基礎是 "常規戰爭 "中的反導彈反應,以便與傳統的交戰進行更直接的比較。影響反艦導彈(ASM)成功的一些主要因素是雷達橫截面(RCS)、紅外橫截面(IRCS)、視覺和紫外線(UV)特征。因此,目標艦的特征是決定被動軟殺傷[2]反措施(也叫伎倆)性能的一個基本因素。然而,反坦克導彈也可以使用主動雷達尋的方式進行瞄準和跟蹤。因此,射頻(RF)和微波(MW)的截面特征是重要的,同時還有光輻射量子(或光子)、方位角和機動中的方位率,以及它們的戰術影響。因此,現代操作環境在處理電磁波譜方面存在挑戰,人工智能的自動化和自主性是解決這一挑戰的理想選擇。

A. 動機、方法和限制

本文描述了一個架構,其中包括用糠和干擾器進行軟殺傷;用導彈、火炮和火控系統進行硬殺傷;以及一個跟蹤目標并協調軟殺傷和硬殺傷反應的指揮和控制系統。本文僅限于假設反坦克導彈是使用射頻主動雷達尋的目標和跟蹤的海上滑行。因此,這項工作的中心是簽名管理、大型目標船的規避動作、船上被動型誘餌系統(如金屬箔片和反射器)的操作性能,涉及反坦克導彈的跟蹤方案和交戰環境,包括風速和風向。擊敗導彈威脅的一個基本因素是反應時間;隨著高超音速的出現,時間因素成為反應殺傷鏈的決定性因素。潛在導彈平臺的識別標準是最基本的;它們將允許更精確的SA,迅速讓DM消除發射平臺。鑒于反導鏈反應的時間很短,人的頭腦無法計算巨大的信息量,并在短時間內決定反應的類型,要么是硬殺傷,要么是軟殺傷,要么是兩者兼而有之;那么人工智能就成為反導系統中的基礎[3] [4]。因此,人類的DM理論不能用于遙遠的未來,因為它要求對形勢的分析速度、識別能力、對威脅的立即反應,以及在人類思維的指揮鏈中進行計算和決定,因此不能提供所需的反應時間。本文的最后部分介紹了幫助平臺保護速度的架構,朝著定義CMS中的設備連接方向發展,同時還介紹了一些已經發表的關鍵技術。

B. 論文的結構

第1節是介紹、動機、方法和論文結構。第2節提供了一個常規條令性例子戰術和反擊方法,用于在架構中需要支持的硬殺和軟殺。同時,在第2節中,還介紹了軟殺傷反擊方法的主動、被動和綜合方法。此外,第3節是一個使用飛毛腿和機動性的交戰例子,展示了所需的關鍵數據。第4節介紹了所提出的AI/EW技術的架構。最后,第5節是結論。

AI/EW技術的架構

人工智能應用于電子戰時,不僅要保證DM(決策者)的SA(態勢感知),而且還必須滿足點和區防御以及反目標活動的需要。電磁波譜因無線電和雷達發射器而加劇,一個挑戰是將人工智能應用于能夠滿足DM需求的EW系統,因此它必須能夠分出感興趣的信號,例如其海軍部隊的信號。另外,哪些信號對指定的任務沒有影響。

一個陸軍師的基本 "有機 "通信和電子設備,在一個典型的70公里乘45公里的地區作戰,是超過10,700個單獨的發射器。一個支持性的空中遠征部隊(AEF)會帶來另外1400個,而一個典型的海軍航母戰斗群會帶來另外2400個發射器[20]。比如說: 在沙漠盾牌/沙漠風暴中,六個陸軍師和一個海軍陸戰隊師都占據了相同的地理和電磁波譜空間,還有許多其他聯軍和指揮控制網絡[21]。鑒于這種信息密度,認知型EW也必須與人工智能概念和認知循環階段的相關挑戰相一致。

A. EW活動和AI對應的術語

為幫助EW和AI的受眾,我們提供了一個AI和EW術語的表格,在表1中,這些術語有一些對應關系。

表1 等效AI和EW術語

B. EW核心概念

電子戰被正式定義為三個部分:

  • ES(電子支持):了解誰在使用頻譜,出于什么目的。使用寬窄帶探測和攔截過程,它定位、識別、辨認、轉錄、分析可能的意圖,并評估致命性、敵對性和忠誠度。現代形式包括多層次的情報產品,如網絡電磁活動(CEMA),從地理到人物網絡。
  • EA(電子攻擊):利用頻譜,以EW效應爭奪該頻譜對自己的優勢。
  • EP(電子保護):是為保護和抵制干擾等攻擊而采取的行動。反干擾也可能包括抵抗ES、EA和CEMA產品的措施。

C. 查找、定位、追蹤、瞄準、攻擊、評估

在圖10中,Haigh和Andrusenko[15]提出了一個EW和AI的組合架構,它跨越了殺傷鏈階段,將AI的特征和分類輸入一個融合引擎,以建立一個意圖,這個意圖是由因果關系和異常檢測階段推斷出來的。

圖10 與EW功能相關的EW和AI能力[15]。

Haigh和Andrusenko的論文與EA之前的ES的數據融合觀點一致,同時保持EP。因此,人工智能方法被應用于特定發射器的分析、特征描述和分類,作為數據融合之前的模式匹配工作。然后,這些方法被用于異常檢測和因果關系搜索,以實現意圖識別。這是一個信息漏斗,在EA/EP方面,這些方法更多的是優化適應性,而不是智能,這貫穿于整個殺傷鏈,并應用于任務管理的決策援助和與電子戰令(EOB)和網絡管理有關的人為因素。不難看出,AI態勢評估、DM和機器學習(ML)能力與所有EW功能相關。每個認知型EW系統的第一步是電子支持(ES),以了解射頻頻譜。在人工智能界被稱為情況評估,ES確定誰在使用頻譜,他們在哪里和何時使用,以及是否有可以 "利用 "的模式。AI/ML技術可以使用特征估計、發射器特征和分類、數據融合、異常檢測和意圖識別。圖11顯示了任務前準備和任務后分析與任務中需求的重疊。

圖11 任務中、任務前和任務后的重疊部分

ES對環境進行分析,并創造出驅動決策者(DM)的觀測數據。日益復雜的情況將頻譜態勢感知(SSA)定義為 "收集有關頻譜使用的不同信息并處理這些信息以產生一個融合的頻譜圖"[15]。SSA收集、組織和處理EW所需的頻譜數據。SSA必須以近實時(NRT)的方式進行,以滿足任務中的決策者的需要,SSA必須結合各種支持技術,包括傳統的和認知的。然而,一個挑戰在于相關技術的整合和展示,其中只有少數是認知的,以減少脆性和處理新的發射器。人工智能和ML能力可以在每個層面上改善SSA,這是在其他相關SSA技術背景下對這些AI/ML技術的看法。一個完整的EW系統必須有多層面的SSA。未來的SSA系統可以用深度學習模型來生成潛在的特征,用經典的ML模型來進行任務中的更新,以及用混合模型來抵消有限的數據。此外,SSA不一定要完全依賴射頻數據: 它可以與非射頻數據融合,如視頻和靜態圖像、自由空間光學、或開源、戰術或作戰情報。跨越多個異質來源的分布式數據融合必須創建一個在空間、時間和頻率上都準確的連貫的戰地頻譜共同作戰圖。異常檢測、因果推理和意圖推理使作戰圖更加完整,以了解事件的影響并支持管理部門。

D. 影響范圍

Rudd-Orthner等人[14]用圖12中的 "影響范圍 "概念[18]擴展了這一概念,并增加了一個 "保護洋蔥 "框架,以根據數據需要選擇對策。

圖12 影響范圍

他們指出,威脅武器系統有變得更加復雜的趨勢,這種復雜性的增加至少可以部分歸因于:戰術的演變、技術發展的速度和數字化的現代化,但也有一種趨勢,即隨著人類決策和反應時間的減少,威脅的作用也在擴大;隨著自主系統的效力和使用的增加,這種情況也許更加明顯。自主系統的崛起在所有領域都在發展: 陸地、空中、海上、太空和網絡。自主系統的規模各不相同,從無人值守的槍支系統到自主空中平臺。這些自主平臺運作的作用也在不斷擴大,因此在打擊它們時,可能需要在綜合防御輔助系統中匹配復雜性,作為打擊復雜威脅系統的戰略。這些復雜平臺的作用和能力的增加,可能導致單一平臺的作用不大,并為其他平臺提供 "保護投射 "的要求。與此相結合,利益相關者群體也更加多樣化,科學家/工程師、機組人員和任務生產程序員之間的溝通機制也是挑戰,這樣他們都可能做出有意義的貢獻,并與他們的利益相關者群體的價值互補,正如Rudd-Orthner等人所說。

E. 拒止、降級、擾亂、欺騙、毀壞

圖12中的維恩圖顯示了數據可用性的 "影響范圍":保護平臺/部隊、威脅或武器系統和防御限制與反措施設計考慮相疊加。Rudd-Orthner等人指出,這些不同的反措施考慮加上不同的可用數據,可能對反措施戰術設計形成影響范圍。

F. 保護洋蔥的映射

Rudd-Orthner等人在[14]和[19]中應用了多視角威脅分析圖解技術,該技術基于判別器、操作視角、系統視角以及對策設計考慮和影響范圍的維恩圖,適用于保護的洋蔥。他們在維恩圖中描述了反措施的設計考慮,將反措施的設計意圖描繪成一種規范,而不是ECM干擾器技術設施。在這種情況下,反措施設計考慮表示戰術的反意圖。論文[14]和[19]還建立了一個保護洋蔥的概念,利用反措施設計的影響因素和組織成洋蔥層的數據源,將揭示的數據分層管理。其中這些層級建議的對策方法也是與該威脅殺傷鏈階段的威脅意圖直接相反的,使得它也是一個測量的反應和保護數據模型在所揭示的數據。表2顯示的是保護洋蔥的層級(第1層是最外層)和反措施設計考慮,影響范圍與威脅系統的殺傷鏈意圖的映射。表2提供了保護洋蔥的六個層次。

表2 保護洋蔥

洋蔥層/影響范圍/CM設計考慮因素 注釋
第1層發現/受保護的平臺/減少的可探測性 對抗早期預警、空中搜索或地面控制攔截雷達的探測或行為,使被保護平臺脫穎而出。該戰術針對的是殺傷鏈的意圖,并不顯眼,是利用對自身平臺數據的了解。
第2層定位/受保護的平臺/降低可探測性 誘餌和欺騙 具有欺騙性和誘騙性的反目標獲取或高度查找雷達可用于降低信息或反擊某個范圍或高度。
第三層識別/保護平臺 武器系統/降低可探測性 誘餌和欺騙 分散注意力 拒絕破壞 用旨在造成混亂的措施來對抗識別,以延遲對你的分類或身份的評估,識別可以基于行為或使用特殊雷達模式,如NCI。
第4層跟蹤/保護平臺武器系統/降低可探測性 誘餌和欺騙性分散注意力 用干擾、分散注意力和拒絕的方式來對抗威脅,可以是目標獲取雷達或更高數據率的搜索模式,如窄掃描軌道,同時掃描模式。
第5層 交戰/防御限制 武器系統保護平臺/降低可探測性 誘餌和欺騙 分散注意力 拒絕 破壞 破壞 使用所有可用的能力擊敗威脅,硬殺和軟殺取決于ROE,是傳統的平臺自我保護。可以使用破鎖和信號處理以及跟蹤目標的戰術。
第6層 處置和效應/防御性限制 武器系統保護平臺/減少可探測性 誘餌和欺騙 分散注意力 拒絕 破壞 毀滅 使用所有可用的軟硬殺傷能力擊敗威脅,是傳統的平臺自我保護。可能使用破鎖和信號與跟蹤處理的目標戰術,并可能同時采用針對尋的器和雷達的技術。

G. 認知電子戰系統

認知型電子戰系統的設計必須提供態勢感知、決策和學習能力。一般來說,系統要求推動了一系列關于哪些問題和它可能需要回答的問題的決定。決策可能是反復的,要么是集中的,要么是隨部隊效應范圍分布的。他們將一個問題表示為規格,并受制于AI代理的拍賣。就我們如何定義和調整優化函數而言,利用領域的物理學與參與的進展可能會減少狀態和交易空間。問題來自于像干擾這樣的設計結果所需的緊迫性和缺失的數據。因此,選擇對策和感覺的C4L參數、'while'或'if'條款都是數據要求,可能形成問題對話鏈或問題樹,在殺傷鏈的不同處置路線中需要。因此,這些對話鏈或問題樹就像專家系統的規則庫格式。因此,所需的數據就以拍賣的方式給投標的傳感器。這樣一來,邏輯路線總是有目的性的結果,而DM和傳感器的使用也是如此。另外,隨機森林[22]可以減少熵,增加信息增益。

雖然具有高度的適應性,但先進的雷達和軟件定義無線電(SDR)架構通常依賴于定制的API,單獨暴露每個參數。這種方法不適合EW系統中的近實時認知控制,因為緊密的耦合意味著人工智能不能做出全局性的決定。組成模塊必須是高度模塊化和可組合的,以消除這一障礙。通用接口允許模塊暴露其參數和依賴關系,從而實現全局優化和跨多個處理器的計算負載平衡。通常,由RESM(雷達電子支持措施)攔截的發射物是通過發射物數據庫識別的。發射者被識別出來,并在本地認可的海上圖像(LRMP)中得到體現。當通過數據庫確認為一種威脅時,它可以接受DM的詢問和拍賣:

  • RECM C4L反措施規范可能需要威脅、獲取類型、速度、仰視距離和威脅的各種電子反措施(ECCMs)邏輯;
  • DLS(誘餌發射系統)可能需要C4L數據并計算出發射角度和時間;
  • CMS可能會要求C4L說明采取的最佳路線(避免武器系統的盲弧)。

為此,我們需要一個中間代理,提供一個模塊化的結構組件,允許不同的技術提供不同的服務,并確保信息/控制的一致流動,與John Boyd的OODA循環[23]一致,但適用于數據處理和DM。

圖13 模塊化架構

軟件架構的一個例子是ADROIT。自適應動態無線電開源智能團隊(ADROIT):用中間代理認知控制SDR節點之間的協作。ADROIT項目正在建立一個開源的軟件定義的數據無線電,旨在由認知應用程序控制。模塊暴露了它的參數和它們的屬性(特別是讀/寫)。當一個模塊發生變化時(例如,增加一個新的參數),它只需揭示新的參數,并在一個發布-訂閱機制中公開參數(名稱、屬性),而不是為該新參數增加一個新的API函數;這也可以擴展為一個組播目的地,給后來仍需要定義的模塊。ADROIT用圖14所示的模塊實例化了中間代理。

圖14 ADROIT體系結構支持認知代理

處理不同的或變化的傳感器的一種可擴展的方式是,如果所有的設備可以減少不確定性或提供額外的數據來回答一個殺戮鏈階段的問題,就將它們定義為傳感器。因此,這些傳感器可以成為拍賣算法的參與者,以其回答問題的能力來競標。在不同的操作環境下,拍賣算法中的分數可以改變,因此,不同的傳感器選擇提供較低的可觀察性或與當前的ROE、受限的EMCON或當前的傳感器利用相一致。通過這種方式,形成了一個問答循環,完善了對情況的理解,同時在提問的基礎上做出增量決定,并使環境情況有利于他們的部隊使用保護洋蔥的一個版本。此外,同樣的拍賣優化可以與反措施一起執行,其概念是,如果一切都能影響當地的殺戮鏈決策或導致結論或問題發生在受害者身上,那么它就是一個影響者。由此可見,C4L提供了一種以標準形式指定反措施行動和傳感規格的方法;這些規格可以一起拍賣,以便在一個可適應的模型中獲得最佳效果和傳感,然后該模型將優化殺戮鏈的進展,為跟蹤的對手的殺戮鏈進展提供優勢。在圖15中,本文展示了EW系統如何在拍賣優化的基礎上與具有認知DM的作戰管理系統(CMS)集成。威脅的檢測/識別/鑒定/分類被轉移到不同的數據庫中,但這些過程和數據庫的不確定性導致了傳感器的重新任務。這些都是拍賣,根據傳感器解決情況的不確定性的能力來分配任務,并根據緊急程度來確定優先次序;這使用了從保護的角度預測威脅的殺傷鏈意圖。這些過程越可靠,立即識別和反應的概率就越高。為了進一步提高這一結果,管理部門必須考慮機器學習中的其他參數,以適應當地環境的傳感任務和對策效果的拍賣。

圖15 數據布局EWS與CMS集成

有些參數可能不為人所知,也可能沒有方法或傳感器來提供這些參數;因此,Rudd-Orthner等人[24]的專家系統的神經網絡形式作為數據庫的疊加,在這些情況下提供一個估計值。它還可以提供一個由貝葉斯網絡進一步引導的值,該網絡可以將從環境中收集的傳感器事實與來自其規則的知識結合起來,使其不容易被收集的事實所欺騙。此外,在圖16中,也是在人工智能的背景下,所提出的架構將EW系統與CMS結合起來。它通過一個反饋回路支持 "態勢感知",根據威脅殺傷鏈的位置重新安排傳感器的任務,以快速解決識別和確認的不確定性,更新跟蹤的準確性,并為CMS和EW系統資源提供戰術清單作為選擇。

圖16 ID標準交互模型

在圖16中,DM能力因此積極主動地利用感知能力直接處置威脅,并為反制措施/部署制定了時間表。這些反措施/部署應按照RuddOrthner等人的保護理念,利用推斷出的威脅的殺傷鏈位置階段,直接對抗威脅的意圖。因此,傳感要求可以在拍賣算法中與可供選擇的策略/反措施交錯安排。同樣,在威脅分析和處置的關鍵時刻,一些所需信息可能無法在DM中獲得,但可以使用RuddOrthner論文中提出的神經符號-AI專家系統方法的代數專家系統部分進行估計。可控的可觀察數據可能來自人工智能環境中的數學或認知學習發展過程。我們可以認為這些有助于識別目標的元素是可觀察的,這些元素在DM中是可控的。

圖17 CMS和EW CM系統中的威脅數據路徑

在圖17中,本文展示了一個威脅發射器從EW系統進入CMS部分的順序。從EW系統的庫或數據庫中識別截獲的發射器;該數據庫包含物理雷達特征: PRI、頻率、PW、振幅、掃描類型、掃描周期平臺等級和威脅名稱;采集類型的特征,ECCM,如原點干擾(HOJ)Chaffs辨別,紅外,雙導射頻和紅外。如果發射物未被識別為威脅,則在本地識別的海上圖像中直接代表發行者。如果被確認為威脅,它將遵循不同的路徑,如前所述。導彈的獲取和ECCM的類型在反應鏈中具有巨大的價值。如果它有HOJ能力,最好是通過C4L中捕獲的特定計算直接干預硬殺傷和誘餌發射;該選定的C4L規格是由保護的洋蔥頭選擇的,它與頻譜中的感應計劃一起安排。該規格將誘餌定位在C4L所確定的與發射船的一定距離和特定的β值。除了在CMS上表示威脅的到達方向外,EW系統還將C4L搜索數據和傳感規范發送到多功能雷達(MFR)和火控雷達(FCR)作為即時硬殺傷系統。本文在圖18中畫出了由人工智能支持的戰斗管理系統(CMS)的架構基礎。在標準環境塊中,還有四個相互關聯的組件:

1.傳感器管理,提供設備監視器(資源管理器)的管理,傳感器信息的收集和軌道管理;在這個塊中,所有的相關數據都匯聚到機載傳感器,如雷達、聲納、ESM雷達、通信ESM、導航輔助設備和氣象數據。在這個架構中,一個傳感器的任務和它的優先權來自于它的成熟度和殺傷鏈。在這方面,關于Rudd-Orthner等人,威脅意圖的成熟度被評估為使用保護洋蔥的反意圖對策,并嵌入到Haigh和Andrusenko的殺傷鏈階段,其中的整合是通過ADROIT架構的發布和訂閱機制,這允許快速和靈活的整合和擴展。

2.在架構的第二塊,有信息管理,其中本地軌道與來自鏈接網絡的軌道相關聯,根據識別標準識別目標的追蹤,管理技術決策輔助工具和信息,共享共同的操作畫面,該畫面中的不確定性和異常情況引起了傳感器的任務。

3.第三塊代表戰斗管理,它提供了對威脅的評估計劃和武器優先權的分配--演習的計算和艦隊內與戰斗有關的信息交流。

4.最后一個區塊是資產管理,使用C4L規范和序列,允許艦艇同時協調幾個進攻和確定的目標。

圖18 AI應用于CMS結構

在DM處理環境之外,人工智能也同樣適用于智能處理環境,類似的技術疊加數據庫和ML提取,走向專家系統規則捕獲[25]。在人工智能輔助的CMS中,數據流入信息管理數據融合,使計算機系統在沒有明確編程的情況下利用歷史數據進行預測或做出一些決定。機器學習使用從IMDF(信息管理數據融合)獲得的大量結構化和半結構化的數據,這樣機器學習模型就能產生準確的結果,或根據這些數據提供預測。

付費5元查看完整內容

FAST項目(基于智能體的系統基礎技術)是一項為期三年的研究和開發工作,與位于紐約州羅馬的空軍研究實驗室簽訂合同。該項目從一開始就由美國海軍贊助,在項目的后期,美國空軍也做出了額外的貢獻。

該項目的主題是探索新的建模方法和基于模型的軟件生產技術,以提高所開發軟件的質量,同時縮短開發時間,提高設計的可重復使用性。在模型驅動的軟件和系統開發,以及海軍的任務工程有很大的相似性。傳統上,這兩個過程都是以自下而上的方式開發,而自上而下的方法則更有針對性和前景。這種自上而下的方法的最初步驟必須是一個概念模型,概述基于一組給定事實達到預期目標所需的所有(概念)決策。對于任務工程來說,這個決策建模器有助于確定所有需要做出的關鍵決策,以及相應的任務,以便規劃和執行一個成功的任務。對于軟件或系統工程師來說,決策建模器概述了設計中的系統的關鍵語義和相應結構。雖然存在對系統工程的建模支持,在某種程度上也存在對軟件工程的建模支持,但沒有任何工具支持將決策建模器作為系統或軟件設計模型的一個完全集成部分來建立。因此,由于其根源在于系統建模語言(SysML),任務工程也缺乏決策建模能力。

我們通過為統一建模語言(UML)建模工具MagicDraw(又名Cameo)開發決策建模器能力,作為一個可加載的插件,與商業上可用的插件,如SysML、UAF等兼容,縮小了這一差距。決策建模器實現了決策模型和符號OMG標準所定義的決策需求圖的增強型變體,但在其他方面偏離了OMG標準,以提供更復雜的決策表達建模、決策仿真能力,以及與SysML(v1.x)的無縫集成能力。為了在更大的仿真場景中進行協作,我們為MagicDraw開發了第二個插件(名為SimCom),允許決策建模器的仿真能力與外部仿真系統(如高級仿真、集成和建模框架(AFSIM))之間進行實時協作。SimCom插件實現了一個受 "高級架構"(HLA)仿真協議啟發的輕量級協議。我們用決策建模器和AFSIM之間的協作場景展示了這種能力。

雖然決策建模器的工作使我們偏離了開發時間和空間(4D)、基于模式建模方法的最初計劃,但我們的深入合作和對SysML v2的貢獻,在很大程度上彌補了這一點,提交給OMG。SysML v2已經達到了與我們最初計劃的相似的4D特征。在SysML v2環境下重建決策建模器將是一項有趣和有益的任務。除了參與SysML v2的工作,該項目還在其他幾個OMG標準的開發中起到了主導作用。

方法、假設和程序

相關標準及技術

許多建模方法包括隱含或嵌入的決策制定。這些建模案例有流程圖、活動圖、業務流程模型等等。決策建模作為一門專門的學科是比較新的。對象管理小組創建了決策建模和符號(DMN)規范,最初是為了使BPMN1業務流程模型中的決策更加明顯,并支持更詳細的決策過程。這段歷史的缺點是,DMN現在與BPMN的關系非常緊密,尤其是在元模型層面。因此,DMN,不能直接與UML或SysML集成。為了使DMN風格的決策建模與UML和SysML模型協作,特別是使現有的UML建模工具能夠進行DMN風格的決策建模,必須創建一個決策建模UML配置文件,與DMN元模型密切相關。

目標建模環境

決策建模器的開發和目標部署平臺是MagicDraw 19.0 SP4版本。MagicDraw(也被稱為Cameo)是一個UML建模工具,由No Magic公司開發和銷售。No Magic最近被Dassault Systèmes收購,Dassault Systèmes將繼續進一步開發和銷售這個工具,可能會用不同的名字。

MagicDraw是一個用Java實現的UML建模工具。它支持并使用一個插件架構來擴展其建模能力,涵蓋其他基于UML的建模語言和方法,如SysML、UAF和其他。一個OpenAPI工具箱可以用來支持自定義插件的開發。

圖 2 - MagicDraw(又名 Cameo)環境中的決策建模器

決策建模器和SimCom通信引擎是由FAST項目為MagicDraw開發的兩個定制插件。SimCom插件沒有任何先決條件,而決策建模器插件的功能需要SysML和Alf插件的存在。由于UAF是基于SysML的,決策建模器也可以用于基于UAF的企業模型。決策建模器和SimCom插件的安裝程序都與MagicDraw資源管理器一致。

標準制定

雖然在整個FAST項目中開發的技術是朝著符合相關標準的方向做出的最大努力,像OMG規范的元對象設施(MOF)、統一建模語言(UML)、系統工程建模語言(SysML)等;或者像世界網絡聯盟(W3C)開發的網絡本體語言(OWL)、資源描述符框架(RDF)或其他,但我們自己也大力參與了新標準的開發,即在對象管理小組內。

雖然標準的制定是繁瑣的工作,但它的回報是許多好處。某一主題的標準化要求它處于該主題發展的第一線。這項工作通常是在研究實驗室或高級開發部門的隱蔽處進行的。然后,標準化要求開發人員開放并與世界各地同行討論該主題,這在所有案例中都是有益的。

在FAST項目期間,我們參與了對象管理小組的幾個標準化任務。所有這些任務都是在FAST項目之前的某個時間開始的,但這些任務的持續工作和討論為FAST項目提供了重要的投入和科學效益。我們所參與的任務是: MOF到RDF的轉換,元模型擴展設施,系統工程建模語言第二版,智能體和事件元模型,以及不確定性建模的精確語義學。另見本文件后面的標準化活動一章,以及項目技術報告(CDRL A010)中的相應章節。

決策模型

決策模型由兩類元素組成:主動和被動元素。

  • 主動元素是決策元素,它在模型執行過程中影響模型結果的整體結果(最高目標值)。根據OMG DMN規范,這些主動元素被定義: Decision、DecisionService和BusinessKnowledgeModel。

  • 被動元素不包含任何決策邏輯,因此不直接影響模型的結果。它們可能需要協助連續的活躍元素之間的信息流,或者注釋決策模型。OMG DMN規范定義了以下兩個被動元素: InputData和KnowledgeSource。

我們決策模型的所有元素,無論是主動還是被動,都有相同的基本結構:它們將接受一個到多個輸入,稱為 "輸入事實",并產生一個單一的輸出,稱為 "結果事實"。所有的事實都可以是單值或復值,在這種情況下,它們是單值的結構。

付費5元查看完整內容

人工智能(AI)的最新進展預示著一個信息周期加速和技術擴散加劇的未來。隨著人工智能的應用變得越來越普遍和復雜,特種作戰部隊(SOF)面臨著辨別哪些工具能最有效地滿足作戰需要并在信息環境中產生優勢的挑戰。然而,SOF目前缺乏一個以終端用戶為中心的評估框架,它可以幫助信息從業者確定人工智能工具的操作價值。本論文提出了一個從業人員的評估框架(PEF),以解決SOF應該如何評估人工智能技術以在信息環境中開展行動(OIE)的問題。PEF通過信息從業者的角度來評估人工智能技術,他們熟悉任務、行動要求和OIE過程,但對人工智能的技術知識有限甚至沒有。PEF包括一個四階段的方法--準備、設計、執行、推薦--評估九個評價領域:任務的一致性;數據;系統/模型性能;用戶體驗;可持續性;可擴展性;可負擔性;道德、法律和政策考慮;以及供應商評估。通過一個更加結構化、方法化的方法來評估人工智能,PEF使SOF能夠識別、評估和優先考慮OIE的人工智能工具。

人工智能(AI)的最新進展預示著一個加速信息周期和加強技術傳播的未來。特種作戰部隊(SOF)目前缺乏一個以終端用戶為中心的評估框架,該框架可以幫助信息從業者確定人工智能工具的操作價值。這篇論文提出了一個從業人員的評估框架(PEF),以解決SOF應該如何評估人工智能技術以在信息環境中開展行動的問題(OIE)。

PEF通過信息從業者的角度來評估人工智能技術,他們熟悉任務、操作要求和OIE過程,但對人工智能的技術知識有限甚至沒有。該框架包括一個簡單的四階段方法--準備、設計、執行、建議--評估九個評價領域,如圖1所示。

根據現有文獻和對美國政府、工業界和學術界的人工智能和世界動物衛生組織專家的采訪,PEF是通過對四個主要研究領域的分析制定的。

1.OIE的潛在AI應用。論文發現,人工智能可以幫助從業者解決OIE中的四個傳統挑戰:分析信息環境,實現內部產品開發,提高信息傳播的及時性和規模,以及提高衡量有效性的能力。

2.人機合作(HMT)的主要原則和考慮。研究強調了 "合理的信任 "對有效的HMT的重要性。 由于OIE的認知性、以人為本的性質,信息部隊在HMT中面臨著額外的復雜性,這就需要人工智能系統進一步透明和可解釋。

3.技術接受和采用理論。理論分析揭示了相對優勢、兼容性和復雜性在技術采用中的突出作用。對技術的信任和用戶可用的時間也影響到人工智能在OIE的采用潛力。組織層面的因素,如準備情況、管理支持和政府政策也是重要的考慮因素。

4.正在進行的增加人工智能透明度的倡議。對現有框架的分析--國防創新股的負責任的人工智能(RAI)指南、模型卡、數據表、概況表和系統卡--揭示了考慮透明度和評估人工智能有效性的關鍵因素。這些要素包括對預期用途、數據出處、模型性能、模型的局限性和道德考慮有一個清晰的認識。

為了測試擬議框架的可行性,PEF被用來評估Pulse,這是一個目前由美國陸軍特種作戰內部的OIE單位使用的數據收集和參與平臺。評估發現,PEF使從業者在使用人工智能工具時,能夠劃分出優勢以及需要額外考慮的領域。特別是,對系統/模型性能和用戶體驗的評估突出了兩個關鍵點。首先,與系統相關的復雜程度需要重點了解誰是目標用戶。第二,為了正確地評估人工智能,模型的性能指標--這些指標在傳統上沒有被傳達給終端用戶--應該被從業者所接受并可以解釋。

這篇論文建議美國特種作戰部利用PEF作為從業人員對人工智能技術進行初步評估的準則。通過一個更加結構化、有條不紊的方法來評估人工智能,這個框架使SOF能夠識別、評估和優先考慮人工智能支持的工具,這些工具能夠有效地解決行動需求,并在信息環境中產生優勢。PEF還確保從業人員考慮納入美國防部RAI戰略的評價標準。

本論文包括六個主要部分(第二章至第七章)。第二章建立了基礎,首先解釋了人工智能和OIE的關鍵概念和定義。該章還討論了從業者在計劃、執行和評估OIE時面臨的挑戰,并確定了可以解決其中一些挑戰的人工智能技術。第三章闡述了信任在人機協作中的關鍵作用,它影響了人工智能在軍事行動中的有效使用。第四章深入研究了技術接受和采用理論,以確定影響OIE單位內人工智能技術采用性的重要因素。第五章評估了現有的框架,這些框架有助于提高人工智能系統的透明度,并可由SOF利用這些框架來評估技術。進行了定性分析,以確定通過開源研究發現的50個模型卡的共同主題。第四章和第五章的發現被用來建立第六章提出的從業人員評價框架(PEF)。在第七章中,該框架被用來評估Pulse--一個目前被OIE單位采用的人工智能工具。第八章最后提出了對未來研究的總體建議和意見。

付費5元查看完整內容

這項研究是由本世紀以來自主系統的增加以及測試和評估其性能的挑戰性所驅動。對當前文獻的回顧顯示,提出了驗證自主系統的方法,但很少有實施。它暴露了當前驗證和確認方法中的一些差距,并提出了填補這些差距的目標。通過使用建模、軟件循環(SITL)和飛行測試,這項研究驗證了無人駕駛航空系統(UAS)的自主蜂群算法,并驗證了測試框架的一個典范。

在兩天的飛行測試中產生的13組三飛行器群數據提供了一個基線算法分析。在這些測試中,飛行器分離距離平均偏離理想狀態5.61米,分離距離違規率<6.39%。蜂群在最佳情況下實現了0.27米的平均偏差和0.43%的違規率。在5赫茲的更新率下,飛行器之間的平均數據包損失為4.94%,最佳通信滯后< 0.04秒。

通過定性和定量分析的搭配所創建的多方位經驗分析提供了對飛行器行為的完整理解。該分析還確定了算法和測試框架的各種改進領域。這項研究的結果形成了一個基線測試連續體,可用于對自主系統的正式驗證的各種后續調查。

付費5元查看完整內容

美海軍部依靠目前海軍的方式,如簡報、聊天和語音報告來提供艦隊的整體作戰評估。這包括網絡領域,或戰斗空間,描繪了艦船的網絡設備和服務狀態的單一快照。然而,這些信息可能是過時的和不準確的,在決策者了解網絡領域的設備服務和可用性方面造成了混亂。我們研究了持久性增強環境(PAE)和三維可視化的能力,以支持通信和網絡操作、報告和資源管理決策。我們設計和開發了一個PAE原型,并測試了其界面的可用性。我們的研究考察了用戶對多艘艦艇上的海軍網絡戰斗空間的三維可視化理解,并評估了PAE在戰術層面上協助有效任務規劃的能力。結果是非常令人鼓舞的:參與者能夠成功地完成他們的任務。他們發現界面很容易理解和操作,原型被認為是他們目前做法的一個有價值的選擇。我們的研究提供了對新型數據表示形式的可行性和有效性的密切洞察,以及它在不同社區之間復雜的操作技術(OT)環境中支持更快和更好的態勢感知和決策能力。

引言

A.研究領域

持久性增強環境(PAE)是一個系統,它使用共享(多用戶)環境、增強現實(AR)技術和一系列傳感器的概念來創建過程和數據集的可視化表示,這些數據集被持久地(在很長一段時間內)添加、操作、可視化和分析,以支持人類操作員所做的一系列任務[1]。PAE被認為有可能給許多領域和人類任務帶來好處,包括網絡系統的可視化、網絡態勢感知和決策工作領域。

PAE的重要概念包括將實時信息傳遞給人類操作者,并以一種比傳統的信息記錄和傳遞形式更容易理解的格式。后者提高了解決整個海軍領域不同社區的許多用戶的需求的潛力,減少了錯誤的數量,并將大部分時間用于決策過程。

由于用戶數量眾多,社區各異,必須準確及時地解決收集、處理和操作大量數據的需求。此外,網絡領域的復雜性促使人們需要簡化、準確和及時的信息。與AR系統非常相似,PAE允許用戶在現實世界中處理和操縱虛擬物體,并同時看到眾多用戶之間的系統實時自動同步變化。這種虛擬和現實信息的實時無縫整合解決了網絡領域的復雜性,最終在大量用戶和不同社區之間提供了行動的準確性和及時性。

我們設計和開發了一個PAE系統原型,并分析了它如何支持海軍領域的網絡系統可視化和任務規劃操作。我們努力的主要目標是提高單用戶對水面資產上復雜網絡的理解和態勢感知,以及對設備當前網絡狀態的實時表示,從而使海軍部(DON)的任務規劃更加有效。在戰術層面上,這項研究將使我們進一步了解為支持有效的任務規劃而需要建立的技術基礎設施和流程。該系統有可能為美國防部所有部門帶來明顯的好處。

B.研究問題和動機

在美國海軍中,為了完成不同的任務,多個作戰群體依靠網絡群體來顯示網絡和通信狀態,以維持作戰畫面并提供通信。美國水面艦艇上的網絡和作戰系統的整合,在將信息和網絡狀態顯示為二維(2D)物體時,會在作戰人員中造成混亂。特別是當網絡設備發生意外變化時(即失去電力、拒絕服務、失去衛星覆蓋等),情況更是如此。設備的變化不僅影響到船上的通信,而且還影響到領導人的整體態勢感知。利用PAE系統整合三維(3D)數據和立體顯示,有可能通過實時自動顯示系統變化,大大幫助決策者了解復雜的網絡。

1. 網絡對通信至關重要(我們為什么關心)

網絡對于海軍資產之間在作戰層面的通信是至關重要的。如果沒有網絡設備,一艘水面艦艇就失去了與指揮系統(CoC)進行快速和準確溝通的能力。同樣,CoC也不能有效地將他們的信息傳達給各個水面艦艇。現在,我們可以把單艦沒有能力接收任務或發送狀態更新的想法,然后把可用的水面資產數量增加到一個多資產的航母打擊群(CSG)。這導致整個CSG中的五到六艘艦艇沒有能力與CSG指揮官就當前的任務甚至是日常行動進行溝通。即使海軍可以使用傳統的通信方式,如摩爾斯電碼和旗語信號來傳遞簡單的信息,但更復雜的信息必須以容易消化的格式來表示,以便決策者能夠了解當前的行動并迅速作出最佳決策。

通過在地面資產之間利用PAE系統,PAE系統有可能改善對復雜信息的理解,它將從紙質手冊或電子圖書館中獲取的二維信息轉化為三維可視化系統,并不斷更新三維可視化,以反映用戶的互動和該系統接收和生成的數據集的不斷更新。PAE系統也有可能訪問歷史數據,這在分析歷史趨勢或行動后報告(AAR)中可能是至關重要的。歸根結底,網絡領域值得采用新技術并尋找更好的解決方案。

2. 網絡設備狀態

為了了解單位層面的網絡設備狀態,戰略層面的決策者依賴于目前海軍傳統上使用簡報、聊天和語音報告的做法。然而,這些信息可能是過時的和不準確的,最終在需要了解網絡領域的服務和設備可用性的決策者中造成了混亂。網絡領域是一個復雜的領域,需要有效的管理和理解網絡操作,包括海軍艦隊之間的共享態勢感知(SA)。網絡設備在不斷變化,這取決于設備的狀態和水面艦艇的地理位置,這些都會影響連接性。

海軍操作員和領導傳統上使用各種格式的二維網絡拓撲圖和微軟文件來描述網絡系統的運行狀態并維護資源管理。這些二維模型最初是為了協助領導和操作員對網絡進行清晰的可視化;然而,隨著時間的推移,網絡資產的增加,從而增加了二維模型的復雜性,使得理解這些綜合系統變得更加困難。正因為如此,二維網絡圖和拓撲結構的顯示更成為理解新系統集成或系統變化的障礙。理解傳統的、印刷的二維信息(圖1)所花費的時間已經不能滿足操作人員和作戰人員的需要,也不能及時為決策者提供簡明清晰的信息。

3. 從PowerPoint幻燈片(2D信息)到增強現實(3D信息)

當代支持人類操作和決策的技術已經從過去適度的形式上有了飛速的發展。數據的表現形式現在可以采取三維信息的形式,不再是靜態的,而是動態變化的,支持用戶與相同數據集的實時互動。然而,今天大多數水面資產的重要通信包括不同級別的互聯網連接,便于分享PowerPoint簡報和接收在二維空間表示的語音或書面報告。這些傳統的通信途徑是艦艇當前作戰狀態的快照或對即將到來的任務的一系列預期;它們推動了美國海軍 "維持、訓練和裝備能夠贏得戰爭、阻止侵略和維護海洋自由的戰斗準備的海軍部隊 "的能力[3]。正如Timmerman的論文研究[4]中所認識到的,目前的二維可視化將復雜的操作技術(OT)系統顯示為網絡社區所習慣的平面信息技術(IT)圖,從而過度簡化了這些系統。另一種更優越的表示方法是在三維空間中顯示邏輯網絡元素,反映這些網絡的物理和邏輯的復雜性。通過研究數據的三維表示法,海軍可以加快關鍵的時間敏感數據的流動,這些數據原本是在二維空間,變成更容易理解的三維信息。

研究的總體目標是對PAE系統原型進行定量評估,通過可用性研究分析其如何支持海軍領域的網絡系統可視化和任務規劃操作。對復雜網絡及其相應拓撲結構的傳統理解是基于技術手冊中的藍圖的二維圖紙。這種信息的翻譯再由非主題專家(SME)通過PPT簡報(或口頭簡報)進一步稀釋,以告知高層決策者的指揮系統當前在水面資產上的通信狀態。最終,在二維信息、口頭或PowerPoint簡報和向高層決策者提供綜合信息之間會有時間損失。向決策者展示復雜系統的解決方案是通過PAE將二維信息表現為三維信息。

C. 研究問題?

本論文探討了以下問題。

  • 什么是有可能為任務規劃提供更有效支持的技術框架?

  • 網絡通信能力的三維可視化和PAE系統能否為網絡領域特定的任務規劃要素提供有效支持?

  • PAE系統能否有效地協助戰術層面的任務規劃任務,具體到網絡通信的管理?

D. 范圍?

本論文將限于開發一個PAE系統原型,以幫助可視化用戶研究所需的網絡基礎設施。可用性研究有兩個不同的目的:檢查用戶對海軍網絡戰斗空間的三維可視化的理解,跨越多個艦艇的通信和網絡基礎設施,并評估PAE在戰術層面上有效協助任務規劃的能力。雖然海軍領域的PAE的大概念被設想為支持許多作戰任務和訓練情況[1],并包括與作戰系統的互連性,但為本論文開發的原型系統將有足夠的功能來支持用戶研究。

E. 研究方法

本研究的研究方法包括以下步驟:

1. 進行文獻回顧。在AR、虛擬現實(VR)、SA、潛在多用戶環境、網絡可視化實踐以及應用于AR的持久性系統等領域進行文獻回顧。

2. 執行任務分析。進行任務分析,分析當前網絡操作、決策以及整個艦隊的設備和服務可用性的資源管理的做法。這包括但不限于詳細分析航母上的戰斗值班長(BWC)與巡洋艦或驅逐艦上的作戰指揮官(CRUDES)之間的報告和互動,當前的網絡可視化做法,以及PAE的有效性。我們還將對目前的報告標準和現有的SA任務和實踐進行詳細的任務分析。

3. 確定三維模型。確定一套支持虛擬環境和可用性研究所需的用戶任務的三維模型。

4. 設計和開發一個PAE原型。設計和開發一個支持可用性研究的PAE系統原型。

5. 設計和執行可用性研究。設計一個可用性研究,制定機構審查委員會(IRB)文件,對人類參與者進行研究,并檢查用戶執行所需任務的經驗。可用性研究的設計將針對網絡領域的可視化,側重于用戶更好地理解網絡設備如何與其他系統相互連接的能力,并實時描述網絡戰斗空間。此外,該設計將被定制為展示多艦情況下的決策,并衡量界面在支持任務規劃和資源管理方面的有效性。

6. 分析數據。分析研究中收集的人類性能數據,并檢查PAE原型系統的技術性能。

7. 確定建議和未來工作。收集并確定對未來可能的工作的建議。

F. 論文結構

第一章:導言。本章介紹了研究空間的最關鍵要素:領域、問題、研究問題、范圍和用于解決所有研究問題的方法。

第二章:背景和文獻回顧。本章強調了VR、AR、混合現實(MR)、持久性系統和SA的定義。文中回顧了關注AR和VR技術的研究經驗,并討論了多用戶環境、現有網絡可視化實踐和持久性系統與AR技術結合應用時帶來的潛力。

第三章:任務分析。本章分析了目前整個艦隊的網絡操作、決策以及設備和服務可用性的資源管理的做法。

第四章:系統原型。本章闡述了PAE系統的設計和開發、系統結構和模擬環境。本章還描述了訓練場景和一套支持建立可用性研究所需的虛擬環境的三維模型。

第五章。可用性研究。本章介紹了可用性研究的要素,文中還討論了從可用性研究中收集的數據集中得出的結果。

第六章:結論和未來工作。本章概述了本研究的主要內容,并對未來的工作提出了建議。

付費5元查看完整內容

這個項目的目標是開發在具有挑戰性的多目標環境中自主分布式傳感器管理和融合所需的基礎方法。這涉及到開發能夠自動跟蹤多個目標的算法,根據從具有數據關聯不確定性和高誤報率的多個平臺收到的信息進行分類并分配資源。在研究者最近在多目標跟蹤和分布式傳感器融合方面的發展基礎上,該工作方案開發了能夠在大規模多傳感器多目標跟蹤應用中基于信息理論標準實現自主傳感器分配的方法。這是通過重新評估信息理論中的關鍵工具來實現的,這些工具適用于基于點過程理論的多目標監視的挑戰,該理論旨在適應單個目標的狀態和目標數量的不確定性。所開發的信息理論方法被應用于多傳感器問題,使人們能夠決定如何分配傳感器資源,以及完善對場景的認識。所開發的工具將有助于減少監測單一傳感器饋電的勞動密集型負擔,并能做出適應性決定,以優化多模式網絡的運行,并增強對監測區域的整體認識。對多目標跟蹤情景的信息理論表述的關注,將使人們能夠驗證傳感器饋電是否能夠可靠地融合,以避免數據損壞的可能性。該項目在智能傳感方面提供了關鍵的先進技術,以實現動態環境中的連續和適應性監視。這些將是可擴展的,可用于從多個分布式傳感器對許多目標進行大規模跟蹤。

該項目的總體目標是研究和開發基于信息理論原則的分布式多傳感器多目標系統的自主傳感器控制的新策略:

  • 為大規模系統的多目標跟蹤開發可擴展的解決方案。

  • 開發基于信息論原理的多傳感器融合的分布式解決方案。

  • 確定多傳感器多目標跟蹤系統可以交換多少信息。

該項目為多傳感器多目標跟蹤開發了基本的解決方案:

  • 對許多目標進行大規模跟蹤。問題的規模越來越大,因此解決方案需要可擴展,跟蹤許多目標需要減輕組合復雜性的算法。多目標跟蹤的低復雜度解決方案將被開發出來,并在復雜環境中進行測試。開發了一種用于穩健地跟蹤大量目標的方法,該方法在目標數量和測量數量上是可擴展的,這使得數百萬目標可以被跟蹤。

  • 確定多傳感器多目標跟蹤系統的信息含量。在具有高密度信息的傳感器網絡中,帶寬可能是多傳感器多目標跟蹤的一個制約因素。這個項目得出了確定用于多目標跟蹤的傳感器網絡的信息含量的結果。預計這將有助于評估傳感網絡的效率和有效性,并與發送數據的數量和頻率相平衡。

  • 來自多個傳感器的數據的分布式整合。操作員需要根據來自多個跟蹤系統的信息做出決定,以提高整體的態勢感知。為多傳感器集成開發了一種分布式多傳感器多目標跟蹤的新方法,該方法可減輕來自不準確或誤導性數據源的損壞。

  • 對多目標監視應用中的威脅進行評估。對許多物體的大規模跟蹤能夠識別直接威脅。然而,有些威脅可能比其他威脅更有針對性。開發了一種新的對抗性風險的表述,為操作人員提供態勢感知,以幫助確定傳感資產的優先次序。

  • 目標跟蹤估計器的性能界限。費舍爾信息的倒數,即克拉默-拉奧約束,為參數的估計器提供了一個約束,是統計分析的基礎。它為一個參數提供了一個可實現的最小方差或協方差。根據量子場理論的數學概念,為點過程推導出克拉默-拉奧約束,將這一概念推廣到具有空間變量的變量。

付費5元查看完整內容

數字工程和數字設計是美國空軍(USAF)的一個新興重點領域,特別是用于現代復雜系統。高復雜度系統的一個例子是網絡合作自主彈藥群(NCAM),它優先考慮廣域搜索和多視角目標確認。首先,本研究討論了在基于模型的系統工程(MBSE)工具中建立行為模型的方法。然后,本研究介紹了NCAM在兩個環境中的并行建模工作:Cameo系統建模器中的MBSE模型,以及仿真、集成和建模高級框架(AFSIM)中的基于物理學的模型。每個數字模型在其環境中都為設計過程中的利益相關者提供了不同的好處,所以這些模型必須呈現出一致和平行的信息。因此,這項研究也提出了在模型之間翻譯設計信息的自動化方法。總的來說,這對協同工作的模型通過系統認知和數字場景模擬對自主過程的理解,與決策部門建立信任關系。

引言

1.1 一般問題

在始于1903年萊特兄弟首次飛行的重于空氣的飛行歷史中,美國軍隊促進了空對地攻擊能力的持續和快速發展。最初,飛行在軍事上的應用僅限于1909年美國陸軍信號部隊的偵察和監視;然而,第一次世界大戰和后來的第二次世界大戰的爆發創造了軍用飛機技術和理論的繁榮。到1946年,簡單的偵察雙翼飛機被可以超過音速的噴氣機所取代。美國看到了這種快速發展的技術的可行性,并在1947年創建了獨立的美國空軍(USAF)服務。空中力量的勢頭一直持續到現在,現代美國空軍的飛機可以隱藏他們的雷達信號,并精確地投擲制導彈藥,在地面上的同一個洞里投擲5枚炸彈!這就是美國空軍。

在美國空軍這個令人難以置信的組合中,一個合乎邏輯的下一個能力是合作和自主的彈藥,它利用相互通信來尋找、識別和打擊一個目標,同時評估對目標的損害。國防部研究與工程助理部長(USD(R&E))對這種能力有兩個關鍵定義。

  • "自動化。該系統的功能沒有或很少有人類操作者的參與。然而,系統的性能被限制在它被設計為做的具體行動上。通常,這些都是定義明確的任務,有預先確定的反應(即基于規則的簡單反應)。

  • 自主性。系統有一套基于智能的能力,使其能夠對系統部署前沒有預先編程或預期的情況做出反應(即基于決策的反應)。自治系統具有一定程度的自治和自我指導行為(由人類代理決策)"。[4]

目前的制導彈藥非常嚴格地遵循自動化的定義。通過激光或全球定位手動指定目標,然后彈藥執行程序化的行動以擊中指定位置。在這種情況下,控制權被操作者緊緊抓住,對目標開火的決定需要多個人為步驟。這些人為步驟使操作者對自動化有一種信任感,因為扣動扳機時風險最小化;與操作者使用無制導彈藥相比,彈藥利用其自動化技術更準確地擊中目標。當討論下一步的自主化發展時,人們有一種理性的擔心,即人類通常控制的決定將由自主系統的機器大腦來代替。這種不信任導致人們對部署旨在自主摧毀目標的武器猶豫不決。

理解與系統自主決策相關的行為是建立對自主性信任的絕佳方式。有多種方法可以將行為理解傳達給人類評估者:首先是提供描述系統各個方面的正式文件,接下來是創建一個數字模型,用圖表表示系統結構和行為,另一個是運行涵蓋廣泛場景的模擬,最后演示可以證明物理系統在測試和評估中的能力。文檔方法一直是所有國防部采購的標準,可以追溯到手繪示意圖的設計時代。然而,最近,國防部對使用建模和仿真來記錄和管理系統表示了興趣。已經出現的一個概念是數字孿生,系統的每個方面都被虛擬建模,以實現快速的修改原型和精確的配置控制。[5]這種數字孿生的焦點也為它所代表的系統的物理結構和行為創造了清晰的、可瀏覽的數據,從而使系統得到合理的理解。

1.2 問題陳述

如Reed[6]所示,基于模型的系統工程(MBSE)已經迅速被美國空軍的數字工程工作所采用,用于程序和系統結構建模項目。然而,復雜系統的行為MBSE建模在美國空軍的相同項目中并不常見。對于自主系統,算法的復雜性和這些自主系統協作時出現的突發行為使得評估邏輯行為和性能影響變得困難。對系統行為進行建模的能力是MBSE過程所固有的,但MBSE模型通常缺乏提供詳細的基于物理學的模型的能力,無法對系統的運行情況進行性能評估。有一些專門建立的基于物理的仿真平臺,如高級仿真、集成和建模框架(AFSIM),就是為了這后一種目的而存在的,但它們往往與MBSE工具中的定義模型脫節[3]。一種將復雜系統的MBSE行為模型和同一復雜系統的基于物理學的仿真模型聯系起來的方法和工具是必要的。要確保這對模型之間的行為一致,需要有能力在建模平臺之間傳輸設計數據。

1.3 研究目標和問題

本研究的目的是建立一個復雜的合作彈藥系統的行為MBSE模型,并建立一個自動和可重復的方法,將數據從MBSE模型轉移到AFSIM場景中,以執行相同的合作彈藥行為的模擬。MBSE模型將足以驗證單個自主彈藥的邏輯行為,以及在合作概念中同一彈藥的數量。AFSIM模擬將反過來為建模者提供反饋,以便對彈藥模型進行潛在的修改,從而實現更高的性能。

合作彈藥模型的研究問題包括:

  • SysML在行為建模中的優勢和劣勢是什么?

  • 哪些MBSE元素和/或屬性適合翻譯成AFSIM的原生語言用于情景模擬?

  • SysML數字模型在多大程度上可以代表AFSIM模擬中使用的合作彈藥的行為?

  • 在SysML模型和AFSIM場景之間可以利用哪些自動和可重復的方法進行數據交換?

1.4 方法學總結

這項研究必須首先確定連接點和集成到AFSIM的所需變量,這將有助于定義合作彈藥的MBSE系統模型的邏輯接口。這些接口有助于定義合作彈藥的MBSE模型的邊界,并為整合到AFSIM的場景模型提供數據點。設計和測試的關鍵領域是:為AFSIM實體所需的變量和基本方程建模;提供從MBSE模型到AFSIM的彈藥和場景參數的自動導出可用性;以及確定MBSE模型中會影響模擬的可修改區域。基于對連接點的評估,研究將轉向創建一個MBSE模型,以保持連接點,同時建立與AFSIM模型平行的行為。MBSE模型中的行為將根據AFSIM模型的情況進行評估。

1.5 假設和局限性

本研究僅限于虛擬彈藥的建模和模擬。此外,本研究定義的合作彈藥概念是名義上的;因此,彈藥模型將由名義上的數據填充。

1.6 提綱

第2章是對與彈藥建模、AFSIM集成、自主無人機系統行為建模和美國空軍先進彈藥的歷史應用有關的出版物的文獻回顧。第3章介紹了合作彈藥概念的設計方法和將數據自動傳輸到AFSIM場景模擬的方法。第4章討論了已完成的網絡化合作自主彈藥(NCAM)MBSE模型的行為分析、自動轉換結果和平行模型之間的比較。第5章總結了研究的重要發現,并推薦了未來的研究課題。

付費5元查看完整內容

在聯合全域指揮與控制(C2)傳感器網絡和美海軍的 "超配項目"中,無人系統(UxS)是一種共享能力,它擴展了軍事力量的范圍和能力,以加強在有爭議空間的戰術。這增加了對可互操作的網絡框架的研究,以安全和有效地控制分布式無人系統部隊。迄今為止,陳舊的技術、分離和專有的商業慣例限制或掩蓋了對新興產業技術的追求,這些技術提供了當今現代化部隊所需的安全功能,留下了更多的問題而不是事實。此外,UxS的功率和處理限制以及受限的操作環境禁止使用現有的現代通信協議。然而,消息層安全(MLS)的發展,一種安全和高效的團體通信協議,可能是UxS團隊的理想選擇。這篇論文記錄了從一項定性研究中收集到的結果,發現MLS是UxS小組安全和效率的最佳選擇。它還記錄了MLS與ScanEagle無人機(UAV)和海軍信息戰太平洋CASSMIR無人水面艇(USV)的整合。該實施方案提供了一個作戰概念,以證明使用MLS在多域特設網絡配置中為無人機和USV之間提供安全和高效的C2和數據交換。所進行的實驗是在一個虛擬環境和物理UxS中進行的。

引言

對聯合全域指揮與控制(JADC2)架構至關重要的是多樣化的無人系統(UxS)和傳感器。這些不同的設備將使以人機協作為中心的未來海上力量相互連接。

例如,考慮一個聯合全域用例,即無人系統提供針對近距離對手的能力。UxS的指揮和控制(C2)依賴于通信鏈路--其安全性和設計決定了在對手攻擊的情況下的速度、互操作性和傷害能力。相反,在相同的C2通信鏈路中的不足或使用傳統的架構會轉化為戰術和戰略上的劣勢,有可能將傳統的作戰部隊置于危險境地。我們的研究旨在確定和實施一個可行的C2鏈路安全方案,該方案有可能為分布式多域環境中的UxS提供一個安全、可擴展和可互操作的解決方案。

目前,美國防部(DOD)和美海軍部(DON)正在取得重大進展,以利用整個企業的獨特任務和機會[1]。這些新的可能性包括增加對無人系統和傳感器的使用,使之超越目前的使用案例平臺。在實現無人平臺和系統的數據共享時,網絡安全必須被視為眾多核心技術中的重中之重。這些努力必須考慮確保關鍵的推動因素,如網絡、基礎設施和C2,以及強大的安全協議和認證方法。這些考慮將變得至關重要,因為JADC2企業試圖從分離轉向更統一的數據環境,在對手已經開發出高度復雜的反介入和區域拒止(A2/AD)能力的情況下,所有的人都可以訪問[2] 。

在今天的現代戰爭中,作為分布式力量倍增器的UxS將取決于安全和高效的C2。隨著UxS發展的成熟,對互操作性的需求將增加。這項研究分析了當前和新興的安全協議,并將其與JADC2和 "超配項目"的要求相匹配,以評估和確定支持這些要求的最佳屬性和協議。然后,這項工作根據所需的安全排列選擇消息層安全(MLS)協議,以便在UxS平臺上實現可行性,特別是記錄程序ScanEagle無人駕駛飛行器(UAV)。

近鄰的對手繼續追求A2/AD能力,以擊敗傳統的美國軍事力量。假設UxS的網絡和物理安全屬性沒有得到解決或設計得不好。那么其他的核心技術,如定位、導航和定時、可靠性、互操作性、通信以及平臺的感知和決定能力都會退化或受到損害。從目前孤立和陳舊的認證過程遷移到一個有效的集成開發、安全和操作環境,對于成功地將用戶體驗平臺和傳感器納入JADC2環境是至關重要的。這種遷移也受到了挑戰,因為需要從傳統的技術和開發框架迅速發展到快速出現的技術,這些技術更有能力在近距離威脅的進展中保持相關性[3]。解決這一挑戰將需要將技術障礙與文化、財政、程序和政治上的孤島融合起來[4]。一旦美國防部解決了這一挑戰,它將有能力實現無縫整合、同步和安全,這對無人機成為多領域作戰的力量倍增器是必要的。

1.1 問題陳述

在一個技術競爭迅速的時代,JADC2基礎設施依賴于20世紀90年代構思的技術(如IPSec[互聯網協議安全]和TLS[傳輸層安全]),同時被限制在美國家安全局(NSA)制定的通用協議和標準下進行安全通信[5]。這些網絡安全協議是點對點的,每增加一個新的網絡設備,都需要與每一個現有的網絡設備建立單獨的信道,這就是指令概述。盡管在成立之初是最前沿的,但值得注意的是,幾十年后的今天,我們仍然依賴這種點對點的安全連接,在動態自治設備網狀網絡之上強行建立一個高延遲和過時的安全覆蓋層。整合改進不僅需要評估適當的現代替代方案,還需要一個能夠及時有效地用新興的行業解決方案解決UXS安全挑戰的操作授權(ATO)程序。

為了解決這些問題,我們提出了以下研究問題:

  • JADC2和Overmatch項目的C2協議安全要求是什么?

  • 根據在JADC2相關領域工作的國防部主題專家,現代C2安全協議需要哪些功能來滿足JADC2環境的需要?

  • 哪種安全協議能最好地滿足所有這些需求,以及UxS C2鏈接的使用可行性是什么?

1.2 范圍

這項研究支持整個美國防部和美海軍部關于當前規范的討論,不充分的網絡安全做法和認證程序決不能阻礙無人駕駛系統的通信安全的未來狀態。這些方法必須不斷發展,以充分解決我們的傳感器和無人駕駛資產在高度技術性的同行競爭威脅中對速度和安全的日益增長的需求。

這項研究支持整個美國防部和美海軍部關于當前規范的討論,不充分的網絡安全做法和認證程序不得阻礙未來的無人機通信安全狀態。這些方法必須不斷發展,以充分解決我們的傳感器和無人駕駛資產在高度技術性的同行對手威脅中對速度和安全的日益增長的需求。

基于研究結果,一個選定的協議在受控的實驗室環境中被實施、測試并進行虛擬基準測試。在成功完成受控的虛擬測試后,虛擬實施過渡到在NPS自主飛行器研究中心(CAVR)ScanEagle無人駕駛飛行器(UAV)和海軍信息戰中心-太平洋(NIWC-PAC)合作自主系統對峙海上檢查和響應(CASSMIR)無人地面飛行器(USV)上的實際應用。

在本論文中,無人系統和無人車之間沒有任何區別,不分領域,即空中和水面;都被稱為UxS。

然而,在實驗過程中,測試將發生在無人機和USV上。這項研究的目的是解決對不依賴平臺的C2鏈路安全協議解決方案的需求。

通過混合方法(定性和定量)的研究工作,實現以下主要目標是本論文的貢獻

  • 進行定性研究,確定JADC2和Overmatch項目的UxS安全協議需求。

  • 將定性研究結果與對當前軍事和工業安全協議選項的評估結合起來。

  • 為多域作戰(MDO)UxS用例選擇一個可行的安全協議選項。

  • 在最佳網絡條件下實施和評估選定的安全協議,用于UxS模擬。

  • 在ScanEagle和CASSMIR上實施和評估所選擇的安全協議。

1.3 相關研究

UxS的研究空間是巨大和不斷發展的。正如本節所討論的,UxS安全的主題已經在各個研究領域得到了研究和記錄。然而,將不同的協議與軍事要求進行比較,以制定C2協議標準,提高安全性、效率和互操作性的研究有限。盡管如此,選定的先前研究提供了與我們的研究有關或支持我們研究的見解。

來自俄勒岡大學、南佛羅里達大學、海軍研究生院和凱斯西儲大學的研究人員,專注于建立基于性能和安全之間平衡的最有效的密碼文本算法或密碼框架[6]-[8]。這些論文解釋說,我們目前最常用的密碼套件對于小型UxS來說,計算量和功率都太大,例如Craziefile 2.0,它使用ARM Cortex M-4架構,工作頻率為168 MHz。其他研究則是研究用于開發UxS的軟件的安全基元,如機器人操作系統(ROS),并解釋了安全漏洞和緩解措施,以實現無人系統的安全、可靠部署[9]。最后一項研究揭示了這些基礎技術的脆弱性和保護它們的必要性。

從相關的研究來看,重點是尋找最佳的拓撲結構、路由協議或數據信息傳遞,以支持越來越多的無人駕駛系統和傳感器一起工作和運行[10], [11]。這些工作大多旨在通過將傳輸的開銷成本降到最低,找到維持C2的最有效方法[10], [11]。其他的UxS研究課題側重于網絡安全的最佳實踐,強調在無人系統中發現的漏洞到可能的新攻擊載體和可能的緩解技術之間的范圍[12]。

有過多的指導和研究概述了要求和解決方案;然而,沒有一個真正量化了國防部和海軍內部無人系統平臺和傳感器的C2鏈接安全的重要性。更少的指導和研究將協議和算法與這種需求相匹配。相關研究表明,這些觀點并沒有直接涵蓋選擇和使用標準化協議的整體性,以提高UxS C2鏈路安全、效率和互操作性。這些方法考慮了密碼器的內部性能、ROS軟件的安全服務和能力、UxS的脆弱性和整體網絡性能。本論文旨在研究一個標準化安全協議的實施,該協議可以作為應用層的安全軟件,與設備和互聯網協議網絡無關。

有大量的指導和研究概述了UxS的安全需求;然而,沒有一個真正量化了這些軍事用途的安全需求。從美國防部和海軍部的UxS平臺和傳感器的C2鏈路安全的重要性的現實世界經驗。

1.4 論文組織

本論文的其余部分組織如下。

第2章概述了JADC2和Project Overmatch倡議,以了解這些倡議的安全協議要求。本章還討論了美國國家標準與技術研究所(NIST)和美國國家安全局在加密協議的標準化和選擇方面發揮的作用。它回顧了安全通信協議的工業和軍事安全方法、相關性能以及通過使用專有和基于標準的安全協議解決的安全問題。

第3章提供了一個定性研究,包括面向網絡安全的訪談問題。研究的對象是在安全、自主設備和傳感器網絡、獲取或重疊方面有經驗的軍事、民事和承包商人員。從訪談中收集到的數據為國防部和國防部深入了解UxS的通信安全現狀以及相關的網絡安全和認證程序提供了更深的理解。

第4章根據第3章和第2章的結果進行交叉分析,提供了協議的比較和選擇。它討論了專有的和標準化的安全協議,這些協議是第2章中討論的網絡和倡議的關鍵網絡安全組成部分。它還將美國防部和美海軍部的UxS安全要求與定性研究的結果以及所討論的當前和新興的安全協議相匹配,以選擇UxS平臺的C2所需的最有能力的安全協議。

第5章概述了MLS在MDO UxS情況下的方法和實施。它描述了MLS和ROS的結構。它概述了協議功能概述,代碼開發階段,以及為支持實施而創建的核心功能。它還涵蓋了用于創建MLS指揮和控制(C2)應用程序(MLS C2)與ROS接口的分步方法概述。

第6章討論了在5中開發的各種MLS應用程序的實驗,并分析了其對研究用例的影響。這一章包括對測試過程的描述和對結果的描述。

第7章提供了一個結論,涵蓋了本論文研究的意義,對研究進行了總結,并推薦了繼續工作和替代方法的選項。

付費5元查看完整內容
北京阿比特科技有限公司