在美國海軍及其盟國海洋行動中,最重要的是在海軍交戰中制定有效的戰略。盡管人們寄予厚望,但諸如 "約翰-麥凱恩 "號和 "菲茨杰拉德 "號這樣的事例表明,在每一次互動中確定有利的行動都具有挑戰性。本研究利用機器學習(ML)和人工智能(AI)的進步,開發了一個基于模擬的程序,將強化學習(RL)應用于海軍場景。該程序是對現有陸基兵棋推演模擬程序 Atlatl 的改編,旨在識別六種場景中己方兵力的高效行動。對深度 Q 網絡(DQN)、蒙特卡洛樹搜索(MCTS)和 AlphaStar 人工智能體在不同場景中的表現進行評估后發現,DQN 和 MCTS 能夠識別出更優越的策略,其中 DQN 一直表現出較高的得分,在某些場景中甚至超過了人類玩家。AlphaStar 顯示出的結果較少,但提供了如何改變它以在未來取得更好結果的見解。這些發現強調了人工智能作為海軍作戰決策輔助工具的潛力,有助于增強美國海軍的決策能力。建議今后開展研究,進一步挖掘這一潛力。
該研究探討了如何利用博弈論來模擬俄羅斯、中國和美國之間的多極升級動態。此外,該研究還重點分析了影響潛在沖突結果的各種參數,以便在三極環境中進一步提出新的威懾思想。
本文建立了一個初步的博弈論模型來模擬和分析升級動態。該模型以扎加雷和基爾古爾在其著作《完美威懾》中提出的框架為基礎。該模型基于博弈前設定的假設和規則。然后,根據這些假設,采用一種適用于博弈理論家的數學逆向歸納法對模型進行分析。然后,對潛在結果進行評估,以提出威懾建議。
為了實現這一目標,設定了一個假設,然后與最終研究結果進行比較。在比較的基礎上,提出最終結論和建議。通過博弈論和研究獲得的結果符合設定的假設,本論文描述了滿足假設背后的原因和理論。
俄羅斯已經與美國達到了粗略的戰略均勢。中國將很快加入美國和俄羅斯的核同行或近鄰行列,從而創造一個新的多極地緣政治環境。美國傳統的核威懾政策植根于兩極背景,需要重新考慮威懾戰略。博弈論模型為探索提供了一個途徑,因為這些模型模擬了參與特定局勢或博弈的多個參與者之間的戰略局勢。戰略局勢涉及的結果取決于所有參與者的行動及其不同的動機。要制定新的威懾政策和戰略以領先于競爭對手,就必須了解和分析結果與形勢。通過對博弈進行正式建模,建模者不得不闡明模型中的任何假設和結論,從而為知情和新的威懾思維創造機會。在建立兩極沖突的博弈論模型方面已經做了大量工作,但在三極領域的研究卻嚴重不足。例如,2000 年,Zagare 和 Kilgour 提出了一種非對稱升級博弈來研究兩極威懾的動態。他們的工作可以擴展到多玩家框架。本論文旨在利用之前的兩極博弈論模型來建立三極模型,分析俄羅斯、中國和美國之間的升級和威懾動態,更具體地說,評估影響沖突結果的關鍵因素,從而解讀不斷變化的地緣政治環境。雖然本項目的大部分內容更廣泛、更具體地研究了這些方面,但首先必須分析以往的兩極博弈論威懾戰略,以理解并擴展以往的理論和研究。目標是找到兩極博弈論模型與當前地緣政治環境之間的相關性,從而建立新的三極博弈論分析模型。本研究的目標是利用博弈論分析俄羅斯、中國和美國之間的多極升級動態。分析將在三種可能的情況下進行。第一種情景假定所有參與者都各自為政、互不協調,模擬等邊三角形環境。第二種假設是中國和俄羅斯之間的協調,第三種假設是中國和美國之間的協調。雖然還有一種可能的情況是俄羅斯和美國之間的協調,但認為這種情況并不可靠。目前雙方在烏克蘭緊張局勢中的敵對行動使得結盟對抗第三方的可能性很小。因此,所有方案都假定兩國繼續對立。
假設在多極化環境中,全面戰略沖突的風險將增加,而緩和沖突的時間將縮短。在從理論和實證兩方面全面分析和建立新模型之前,有必要對威懾和博弈論方面的現有文獻進行調查。下文將簡要概述迄今為止的多項學術研究。
本論文研究如何將無人水面航行器整合到分布式海上作戰的戰斗序列中。目的是設計一種成本效益高、作戰效率高的無人系統,能夠在 2030-2035 年期間為 DMO 概念做出貢獻。本論文確定了在常規航母打擊群、遠征打擊群和/或水面行動群中既具有作戰影響力又具有成本效益的 USV 任務集和組合,以及無人系統是否有可能取代或補充當前有人系統的一些任務集。主要發現是,在以下兩個任務領域,無人潛航器可以極大地補充有人資產:(1)情報、監視和偵察任務集,以及(2)反導彈防御任務集。次要發現是,要達到本論文中描述的效果衡量標準,必須投資 5 億美元建造約 10 個 USV 平臺,并執行上述任務集。作者對美國海軍的建議是采用標準化的 USV 設計,重點關注 AMD 和 ISR 任務包。其次,投資約 5 億美元建造 10 艘這樣的平臺,并將其集成到目前的 CSG、ESG 或 SAG 之一,這將是過渡到在未來艦隊中實施 USV 的墊腳石。
本論文通過開發系統架構和相關離散事件模擬,研究如何將無人水面航行器(USV)融入分布式海上作戰(DMO)概念。目的是研究 DMO 概念中無人水面兵力的潛在任務領域,然后構建標準化 USV 的功能和物理架構。作者采用了與瀕海戰斗艦(LCS)類似的概念,為已確定的任務領域提供可安裝在標準化 USV 上的外部任務模塊包。結構定義完成后,使用離散事件仿真軟件開發了一個模型。該模型的場景被定義為在 2030-2035 年期間與近鄰對手的艦隊對艦隊交戰。在整個模擬過程中,使用了有效性衡量標準來分析擬議 USV 提供的作戰影響。在完成模型分析后,作者最后分析了擬議 USV 平臺的成本與其對艦隊對艦隊交戰結果的總體作戰影響。
A. DMO 和 USV 概述
2017 年,海軍作戰發展司令部創造了 "分布式海上作戰 "一詞,該詞源自 ADM Rowden(2017 年)的 "分布式致命性"(DL)。DMO 更多地以全方位的艦隊為中心的戰斗力來看待分布式兵力,而不是 DL 定義中描述的小兵力組合。DMO 概念的最高目標是讓指揮官有更多的選擇或傳感器/平臺/武器組合,并有足夠的時間超越對手。DMO 考慮到了資源、信息和技術與組織各級關鍵決策者的融合。當美國海軍將一個系統視為一個分布式網絡時,這就很好地概括了 DMO 的概念。分布式網絡具有跨所有作戰領域的所有可用平臺的集成能力,將增強美國海軍的進攻和防御能力。本論文的重點是設計和采購這種分布式網絡中的無人水面飛行器,這不僅將為載人資產提供一種具有成本效益的替代方案,而且由于人工干預有限,還將提供一種更低的風險管理場景。
無人系統有可能成為美國海軍未來兵力結構中的關鍵兵力倍增器。海軍作戰部長理查德森(ADM Richardson,2016 年)在其海軍戰略愿景中列出了四條關鍵的 "努力方向"。其中一條是 "加強海上海軍力量",鼓勵探索 "替代艦隊設計,包括動能和非動能有效載荷以及有人和無人系統"(6)。本論文介紹了無人水面運載工具的基本原理,包括目前可用的等級、類別和任務類型。論文還論述了無人水面飛行器在未來艦隊兵力建設中對 DMO 概念的潛在貢獻,以及對無人水面飛行器未來研發至關重要的關鍵使能技術。
為撰寫本論文,通過建模和仿真分析了三種可供選擇的 USV 及其三種適用的任務包。所選擇的調查平臺是 USV ISR 任務平臺、USV 水面戰任務平臺和 USV 反導彈防御任務平臺,因為它們被認為與 DMO 最為相關。作者指出,按照本論文的規定,這三種備選方案在當前市場上并不容易獲得,但提出功能和物理架構的目的是使未來工作的發展具有可行性,并符合美國海軍有關無人系統的愿景和目標。
表 1 總結了作者利用建模和仿真分析的三種備選 USV,并注釋了其適用的級別類型和有效載荷。
B. 模型定義
為便于分析備選 USV,作者開發了一個模擬模型。為確保在現實場景和作戰環境中分析 DMO 概念,重點放在了南海沿岸沖突上。該模型分為四個主要階段:威脅產生階段、發現階段、目標定位階段和交戰階段。模型中采用了表 1 所示的三種備選 USV。USV AMD 分成兩個獨特的平臺: 這些配置分別用于防御空中平臺和來襲導彈。所有可供選擇的 USV 都為友軍戰斗序列帶來了額外的反制措施,包括箔條、主動和被動誘餌、照明彈以及紅外和可視煙霧。如表 1 所示,攜帶導彈的 USV 還攜帶了特定的有效載荷,為友軍的分布式資源庫提供了額外的軍械。USV ISR 具有其他 USV 備選方案所不具備的能力。該平臺的能力是在對方目標定位和交戰階段增加的,使每一枚潛在的友軍導彈都能在更大范圍內擊中來襲的對方平臺或導彈。
C. 作戰效能分析
數據分析顯示,就多種不同的效能衡量標準(MOEs)而言,一些概念化 USV 不僅在統計上有意義,而且在作戰上也有意義。在分析 USV 如何為 DMO 概念做出貢獻時,有三項效果衡量指標值得關注,它們是 (1) MOE #2:幸存的兵力;(2) MOE #4:10 海里內對方導彈的百分比;(3) MOE #6:防御措施成功率(注意,編號慣例與論文全文一致)。在整個分析過程中,對作戰影響最大的備選 USV 是 USV ISR 平臺、USV AMD AIR 平臺和 USV AMD MISSILE 平臺,而 USV SUW 平臺被證明對作戰沒有影響。分析結果并無定論:在 DMO 概念的范圍內,無人水面航行器在兩個主要任務集中補充有人海軍資產最為有效:(1) 情報、監視和偵察任務集,以及 (2) 反導彈防御任務集(防空和反導彈防御)。這就為 USV 的實施設想了更多的防御態勢方法,即在縱深防御分層戰略中反擊對方平臺或導彈。
D. 成本分析
為了加強作戰效能分析,作者選擇使用參數方法來推導成本模型,預測本論文中描述的備選 USV 的成本。作者確定了 40 個具有歷史采購成本的平臺,并研究了它們的設計規格,以便采用參數方法。生成了等值線圖,以便于對多種投資場景下的運行效果和成本進行權衡分析。分析表明,至少需要投資 5 億美元,才能購置約 10 艘有能力的 USV,從而實現顯著的作戰效能。追加投資 1.000 億美元(總計 1.5 億美元)后,USV 總數有可能增加到 35 艘,與基線投資場景相比,友軍 10 海里范圍內對方導彈的比例提高了 31.2%(MOE #4),成功反制的比例提高了 9.9%(MOE #6)。
E. 結論
與美國海軍 CSG、ESG 和 SAG 的常規兵力結構相比,將 USV 納入 DMO 提供了一種既經濟又有效的作戰命令。事實證明,情報、監視和偵察任務以及反導彈防御任務在本摘要 C 部分所注釋的規定有效性措施方面具有最大的統計意義和作戰影響。以下要點解釋了 USV 在作戰影響方面最值得關注的三項指標:
MOE2:對方兵力存活率。USV ISR 平臺的存在與否對這一 MOE 有重大影響。如果 USV ISR 平臺存在,預計對方兵力存活率最多可降低約 5.9%。
MOE 4:10 NM 范圍內對方導彈的百分比。模型中 USV AMD MISSILE 和 USV AMD AIR 平臺的數量對該 MOE 有很大影響。如果 USV AMD 平臺的組成正確,預計到達 10 海里的對方導彈數量最多可減少約 8.5%。
MOE6:防御措施成功。模型中 USV AMD MISSILE 和 USV AMD AIR 平臺的數量對該 MOE 有重大影響。如果 USV AMD 平臺的構成正確,預計防御措施成功率最多可提高約 4%。
就本摘要 D 部分所述的成本效益而言,值得投資的 USV 只有 USV ISR、USV AMD AIR 和 USV AMD MISSILE 平臺。對于具體的作戰概念和固定的戰斗序列,筆者認為,在戰斗序列中實施 USV 的特定組合是一種具有成本效益的方法,可實現所需的有效性措施。
美國國防部的主要項目,如 F-22 猛禽和 F-35 閃電 II 項目,都面臨著軟件方面的挑戰。鑒于最近自上而下地指示要提高關鍵軟件采購、開發和部署的敏捷性,了解阻礙改進的其他因素至關重要。這項研究包括對政府報告和建議、私營部門的最佳實踐和創新以及軍方與私營部門合作的努力的廣泛回顧。這些工作揭示了阻礙進步的因素,包括國防部項目的結構往往是自說自話,開發時間漫長,預算資金周期僵化。理想情況下,軟件的采購流程與硬件的采購流程有所不同,但在實踐中往往沒有區別。項目領導者往往過于專注于有限的開發方法,對軟件專家的建議持抵制態度。這項研究指出了國防部采購項目中的幾個領域,在這些領域中可以對現行做法進行改革。這些改變應能使項目在成本、進度和性能方面得到改善。
受赭石藻啟發的微電子機械系統(MEMS)傳感器可按一定配置排列,以探測入射聲波的到達方向(DoA)。先前的研究結果表明,可以確定方位角 360 度范圍內的明確到達方向。迄今為止,一直使用實驗室儀器進行模擬讀數。本研究的目標是開發、構建和測試一種電路配置,包括 MEMS 傳感器的外殼和電源,以及設計一種圖形用戶界面(GUI),以便從傳感器陣列中讀取 DoA,并利用 GPS 定位數據對多旋翼小型無人機的位置進行三角測量。測試場使用兩個節點的配置來探測小型旋翼無人機。操作場景顯示在地圖上。這種新配置可以探測到來自任何可探測來源的聲音,并提供聲音來源的坐標。
本論文提出開發一種彈性機器學習算法,可對海軍圖像進行分類,以便在廣闊的沿海地區開展監視、搜索和探測行動。然而,現實世界的數據集可能會受到標簽噪聲的影響,標簽噪聲可能是通過隨機的不準確性或蓄意的對抗性攻擊引入的,這兩種情況都會對機器學習模型的準確性產生負面影響。我們的創新方法采用 洛克菲勒風險最小化(RRM)來對抗標簽噪聲污染。與依賴廣泛清理數據集的現有方法不同,我們的兩步流程包括調整神經網絡權重和操縱數據點標稱概率,以有效隔離潛在的數據損壞。這項技術減少了對細致數據清理的依賴,從而提高了數據處理的效率和時間效益。為了驗證所提模型的有效性和可靠性,我們在海軍環境數據集上應用了多種參數配置的 RRM,并評估了其與傳統方法相比的分類準確性。通過利用所提出的模型,我們旨在增強艦船探測模型的魯棒性,為改進自動海上監視系統的新型可靠工具鋪平道路。
藍色亞馬遜管理系統
機器學習(ML)發展迅速,使機器能夠根據數據分析做出決策。計算機視覺(CV)是這一領域的一個專業部門,它使用先進的算法來解釋視覺信息,通過創造創新機會來改變汽車、醫療、安全和軍事等行業。在軍事領域,這些工具已被證明在改進決策、態勢感知、監視能力、支持行動以及促進在復雜環境中有效使用自主系統等方面大有裨益。
我們的研究主要集中在將 CV 原理應用于海軍領域,特別是解決二元分類問題,以顯示船只的存在與否。這構成了更廣泛的監視工具的重要組成部分,并采用了一種名為 "Rockafellian 風險最小化"(RRM)[1] 的新策略。RRM 方法旨在應對海上監控等復雜多變環境中固有的數據集標簽損壞所帶來的挑戰。我們方法的核心是交替方向啟發式(ADH),這是一種雙管齊下的策略,可依次優化不同的變量集。這種兩步迭代的過程可調整神經網絡權重并操縱數據點概率,從而有效隔離潛在的數據損壞。其結果是建立了一個更強大、更準確的海上監視和探測系統,從而增強了海軍行動中的決策和態勢感知能力。
我們的評估使用了兩個不同的數據集,即空中客車船舶探測(AIRBUS)[2] 和海事衛星圖像(MASATI)[3]。為了測試我們方法的魯棒性,我們逐步提高了這些數據集的標簽損壞水平,并觀察了這對模型性能的影響。
我們的研究在 ADH 流程中采用了兩種策略:w-優化和 u-優化。在 w 優化階段,我們試用了兩種不同的神經網絡(NN)優化器 Adam [4] 和 Stochastic Gradient Descent (SGD) [5, Section 3G],以調整神經網絡權重。u優化階段包括實施 ADH-LP(線性規劃)或 ADH-SUB(子梯度)算法,以修改每個數據點的概率,并有效隔離潛在的數據損壞。
ADH-LP 利用線性規劃進行計算優化,可提供全局最優解,但需要更多處理時間。另一方面,ADH-SUB 采用更快的子梯度方法,更適合較大的數據集或有限的計算資源。主要目的不是通過架構調整來提高性能,而是展示 RRM 方法如何提供優于傳統 ERM 方法的優勢,特別是在處理數據損壞和提高模型性能方面。
無論使用何種數據集(MASATI 或 AIRBUS),我們的研究采用 RRM 方法訓練 NN 始終優于或匹配 ERM 方法。RRM下的ADHLP和ADH-SUB算法在保持高性能水平的同時,對數據損壞表現出了顯著的適應能力,其中ADH-LP一直表現優異。總之,我們的研究結果表明,RRM 是一種穩健而有彈性的方法,可用于處理一定程度的數據損壞。
總之,我們利用 RRM 的創新方法為減少對標簽正確數據的依賴提供了一種有前途的解決方案,從而能夠開發出更強大的船舶檢測模型。這項研究在改進船舶自動檢測和整體海事安全方面邁出了一大步。通過有效處理數據損壞和測試創新方法,我們提高了海事監控系統有效監控沿海和劃界海域的能力。
本論文旨在利用深度學習技術提高從二維目標圖像中估計目標姿態的能力。為此,我們采用了一種名為高分辨率網絡(High-Resolution Net)的尖端卷積神經網絡來訓練關鍵點檢測模型并評估其性能。實驗使用了兩個不同的數據集,包括 600,000 張合成圖像和 77,077 張高能激光束控制研究試驗臺(HBCRT)圖像。這些圖像來自六種不同的無人駕駛飛行器,用于訓練和評估目的,高分辨率網在 80% 的圖像上進行訓練,在其余 20% 的圖像上進行測試。運行高分辨率網絡時使用了 MMPose 框架,這是一個 Python 庫,其中包含多種卷積神經網絡選項。研究結果表明,High-Resolution Net 在姿勢估計方面表現良好,但由于目標形狀的對稱性,在左右反轉方面仍存在明顯差距。這項研究為今后利用高分辨率網絡進行目標姿態估計研究奠定了基礎。進一步的研究將集中式提高圖書館中左右分辨的準確性,以增強這些成果。
本論文分為五章。第一章是引言,介紹了本課題的概況及其相關性,以及如何進行實驗。第二章是文獻綜述,通過相關的學術和行業資料更詳細地介紹了這一研究領域。第三章是問題的提出和方法,介紹了將要解決的問題和解決問題的方法。第四章是模擬結果和深度學習性能評估,對結果進行評估,看是否取得了有意義的進展。第五章是結論,從更廣闊的視角看待結果,并討論未來工作的可能性。
最近,機器學習和人工智能的快速發展為改進美國防部(DOD)兵棋推演創造了越來越多的機會。本研究旨在利用現代框架、算法和云硬件來提高美國防部的兵棋推演能力,具體重點是縮短訓練時間、提高部署靈活性,并展示經過訓練的神經網絡如何為推薦行動提供一定程度的確定性。這項工作利用開源并行化框架來訓練神經網絡并將其部署到 Azure 云平臺。為了衡量訓練有素的網絡選擇行動的確定性,采用了貝葉斯變異推理技術。應用開源框架后,訓練時間縮短了十倍以上,而性能卻沒有任何下降。此外,將訓練好的模型部署到 Azure 云平臺可有效緩解基礎設施的限制,貝葉斯方法也成功提供了訓練模型確定性的衡量標準。美國防部可以利用機器學習和云計算方面的這些進步,大大加強未來的兵棋推演工作。
圖 4.1. 未來兵棋推演開發者與用戶在云和本地實例中的關系
人工智能(AI)在過去幾十年中取得了顯著進步。最近在深度學習和強化學習(RL)方面取得的進步使人工智能模型在各種視頻游戲中的表現超過了人類。隨著美國國防部(DOD)繼續投資開發用于兵棋推演和戰爭規劃應用的人工智能模型,許多方面都有了改進。
本研究調查了現代機器學習(ML)技術的應用,以提高兵棋推演的功效。這項研究表明,即使在沒有圖形處理器(GPU)的情況下,并行化也能大幅縮短 RL 問題的訓練時間,而且對平均得分的影響微乎其微。這一發現強調了并行處理框架對未來 RL 訓練工作的重要性。本研究利用 Ray 框架來協調 RL 訓練的并行化,并評估了兩種算法:近端策略優化(PPO)和重要性加權行為者學習者架構(IMPALA),包括使用和不使用 GPU 加速的情況。這項研究成功地表明,在保持總體平均性能的同時,訓練時間可以減少一到兩個數量級。
本研究的第二部分探討了將本地訓練的模型與本地環境解耦的實用方法,展示了將這些模型部署到云環境的可行性。采用的模型是利用開源框架開發的,并部署在微軟 Azure 云平臺上。這項研究成功地將訓練有素的 RL 模型部署到云環境中,并集成到本地訓練和評估中。
最后,本論文證明了貝葉斯技術可以集成到 RL 模型中,從而有可能提高人機協作的價值。這是通過將貝葉斯方法納入模型架構,并在運行時利用這些實施層的獨特屬性來實現的。這項研究取得了成功,并展示了如何將人工智能移動選擇的確定性措施合成并呈現給人類。
總之,這項研究強調了并行化的重要性,為基于云環境的訓練模型提供了概念驗證,并證明了將貝葉斯方法納入人工智能模型以改善人機協作的可行性,從而為推進 ML 和兵棋推演技術做出了貢獻。
本文提出了一個海軍作戰管理系統(CMS)架構,考慮到電子戰(EW)與人工智能(AI),以應對現代高超音速和低觀測能力的威脅,其中反應時間可能很短,需要自動化。它使用一個反制措施案例研究作為數據要求,拍賣傳感器任務,人工智能過程,以及認知復合感應的數據融合。該文件還強調了已經公布的關鍵認知電子戰能力,以證明該架構的合理性。該架構的方向是用高反應時間的自動化人工智能驅動的認知DM來取代人類決策者(DM)。
當把人工智能(AI)應用于電子戰(EW)時,它不僅要幫助決策者(DM)進行態勢感知(SA),還要滿足點、區域和區域防御以及反目標活動的需要。電磁波譜是密集的,有許多通信和雷達發射器。因此,挑戰在于如何將人工智能應用于能夠滿足管理部門需求的EW系統。因此,它必須能夠整理出感興趣的信號(SoI)[1],如部隊的信號和與指定任務無關的信號。這項工作的基礎是 "常規戰爭 "中的反導彈反應,以便與傳統的交戰進行更直接的比較。影響反艦導彈(ASM)成功的一些主要因素是雷達橫截面(RCS)、紅外橫截面(IRCS)、視覺和紫外線(UV)特征。因此,目標艦的特征是決定被動軟殺傷[2]反措施(也叫伎倆)性能的一個基本因素。然而,反坦克導彈也可以使用主動雷達尋的方式進行瞄準和跟蹤。因此,射頻(RF)和微波(MW)的截面特征是重要的,同時還有光輻射量子(或光子)、方位角和機動中的方位率,以及它們的戰術影響。因此,現代操作環境在處理電磁波譜方面存在挑戰,人工智能的自動化和自主性是解決這一挑戰的理想選擇。
本文描述了一個架構,其中包括用糠和干擾器進行軟殺傷;用導彈、火炮和火控系統進行硬殺傷;以及一個跟蹤目標并協調軟殺傷和硬殺傷反應的指揮和控制系統。本文僅限于假設反坦克導彈是使用射頻主動雷達尋的目標和跟蹤的海上滑行。因此,這項工作的中心是簽名管理、大型目標船的規避動作、船上被動型誘餌系統(如金屬箔片和反射器)的操作性能,涉及反坦克導彈的跟蹤方案和交戰環境,包括風速和風向。擊敗導彈威脅的一個基本因素是反應時間;隨著高超音速的出現,時間因素成為反應殺傷鏈的決定性因素。潛在導彈平臺的識別標準是最基本的;它們將允許更精確的SA,迅速讓DM消除發射平臺。鑒于反導鏈反應的時間很短,人的頭腦無法計算巨大的信息量,并在短時間內決定反應的類型,要么是硬殺傷,要么是軟殺傷,要么是兩者兼而有之;那么人工智能就成為反導系統中的基礎[3] [4]。因此,人類的DM理論不能用于遙遠的未來,因為它要求對形勢的分析速度、識別能力、對威脅的立即反應,以及在人類思維的指揮鏈中進行計算和決定,因此不能提供所需的反應時間。本文的最后部分介紹了幫助平臺保護速度的架構,朝著定義CMS中的設備連接方向發展,同時還介紹了一些已經發表的關鍵技術。
第1節是介紹、動機、方法和論文結構。第2節提供了一個常規條令性例子戰術和反擊方法,用于在架構中需要支持的硬殺和軟殺。同時,在第2節中,還介紹了軟殺傷反擊方法的主動、被動和綜合方法。此外,第3節是一個使用飛毛腿和機動性的交戰例子,展示了所需的關鍵數據。第4節介紹了所提出的AI/EW技術的架構。最后,第5節是結論。
人工智能應用于電子戰時,不僅要保證DM(決策者)的SA(態勢感知),而且還必須滿足點和區防御以及反目標活動的需要。電磁波譜因無線電和雷達發射器而加劇,一個挑戰是將人工智能應用于能夠滿足DM需求的EW系統,因此它必須能夠分出感興趣的信號,例如其海軍部隊的信號。另外,哪些信號對指定的任務沒有影響。
一個陸軍師的基本 "有機 "通信和電子設備,在一個典型的70公里乘45公里的地區作戰,是超過10,700個單獨的發射器。一個支持性的空中遠征部隊(AEF)會帶來另外1400個,而一個典型的海軍航母戰斗群會帶來另外2400個發射器[20]。比如說: 在沙漠盾牌/沙漠風暴中,六個陸軍師和一個海軍陸戰隊師都占據了相同的地理和電磁波譜空間,還有許多其他聯軍和指揮控制網絡[21]。鑒于這種信息密度,認知型EW也必須與人工智能概念和認知循環階段的相關挑戰相一致。
為幫助EW和AI的受眾,我們提供了一個AI和EW術語的表格,在表1中,這些術語有一些對應關系。
表1 等效AI和EW術語
電子戰被正式定義為三個部分:
在圖10中,Haigh和Andrusenko[15]提出了一個EW和AI的組合架構,它跨越了殺傷鏈階段,將AI的特征和分類輸入一個融合引擎,以建立一個意圖,這個意圖是由因果關系和異常檢測階段推斷出來的。
圖10 與EW功能相關的EW和AI能力[15]。
Haigh和Andrusenko的論文與EA之前的ES的數據融合觀點一致,同時保持EP。因此,人工智能方法被應用于特定發射器的分析、特征描述和分類,作為數據融合之前的模式匹配工作。然后,這些方法被用于異常檢測和因果關系搜索,以實現意圖識別。這是一個信息漏斗,在EA/EP方面,這些方法更多的是優化適應性,而不是智能,這貫穿于整個殺傷鏈,并應用于任務管理的決策援助和與電子戰令(EOB)和網絡管理有關的人為因素。不難看出,AI態勢評估、DM和機器學習(ML)能力與所有EW功能相關。每個認知型EW系統的第一步是電子支持(ES),以了解射頻頻譜。在人工智能界被稱為情況評估,ES確定誰在使用頻譜,他們在哪里和何時使用,以及是否有可以 "利用 "的模式。AI/ML技術可以使用特征估計、發射器特征和分類、數據融合、異常檢測和意圖識別。圖11顯示了任務前準備和任務后分析與任務中需求的重疊。
圖11 任務中、任務前和任務后的重疊部分
ES對環境進行分析,并創造出驅動決策者(DM)的觀測數據。日益復雜的情況將頻譜態勢感知(SSA)定義為 "收集有關頻譜使用的不同信息并處理這些信息以產生一個融合的頻譜圖"[15]。SSA收集、組織和處理EW所需的頻譜數據。SSA必須以近實時(NRT)的方式進行,以滿足任務中的決策者的需要,SSA必須結合各種支持技術,包括傳統的和認知的。然而,一個挑戰在于相關技術的整合和展示,其中只有少數是認知的,以減少脆性和處理新的發射器。人工智能和ML能力可以在每個層面上改善SSA,這是在其他相關SSA技術背景下對這些AI/ML技術的看法。一個完整的EW系統必須有多層面的SSA。未來的SSA系統可以用深度學習模型來生成潛在的特征,用經典的ML模型來進行任務中的更新,以及用混合模型來抵消有限的數據。此外,SSA不一定要完全依賴射頻數據: 它可以與非射頻數據融合,如視頻和靜態圖像、自由空間光學、或開源、戰術或作戰情報。跨越多個異質來源的分布式數據融合必須創建一個在空間、時間和頻率上都準確的連貫的戰地頻譜共同作戰圖。異常檢測、因果推理和意圖推理使作戰圖更加完整,以了解事件的影響并支持管理部門。
Rudd-Orthner等人[14]用圖12中的 "影響范圍 "概念[18]擴展了這一概念,并增加了一個 "保護洋蔥 "框架,以根據數據需要選擇對策。
圖12 影響范圍
他們指出,威脅武器系統有變得更加復雜的趨勢,這種復雜性的增加至少可以部分歸因于:戰術的演變、技術發展的速度和數字化的現代化,但也有一種趨勢,即隨著人類決策和反應時間的減少,威脅的作用也在擴大;隨著自主系統的效力和使用的增加,這種情況也許更加明顯。自主系統的崛起在所有領域都在發展: 陸地、空中、海上、太空和網絡。自主系統的規模各不相同,從無人值守的槍支系統到自主空中平臺。這些自主平臺運作的作用也在不斷擴大,因此在打擊它們時,可能需要在綜合防御輔助系統中匹配復雜性,作為打擊復雜威脅系統的戰略。這些復雜平臺的作用和能力的增加,可能導致單一平臺的作用不大,并為其他平臺提供 "保護投射 "的要求。與此相結合,利益相關者群體也更加多樣化,科學家/工程師、機組人員和任務生產程序員之間的溝通機制也是挑戰,這樣他們都可能做出有意義的貢獻,并與他們的利益相關者群體的價值互補,正如Rudd-Orthner等人所說。
圖12中的維恩圖顯示了數據可用性的 "影響范圍":保護平臺/部隊、威脅或武器系統和防御限制與反措施設計考慮相疊加。Rudd-Orthner等人指出,這些不同的反措施考慮加上不同的可用數據,可能對反措施戰術設計形成影響范圍。
Rudd-Orthner等人在[14]和[19]中應用了多視角威脅分析圖解技術,該技術基于判別器、操作視角、系統視角以及對策設計考慮和影響范圍的維恩圖,適用于保護的洋蔥。他們在維恩圖中描述了反措施的設計考慮,將反措施的設計意圖描繪成一種規范,而不是ECM干擾器技術設施。在這種情況下,反措施設計考慮表示戰術的反意圖。論文[14]和[19]還建立了一個保護洋蔥的概念,利用反措施設計的影響因素和組織成洋蔥層的數據源,將揭示的數據分層管理。其中這些層級建議的對策方法也是與該威脅殺傷鏈階段的威脅意圖直接相反的,使得它也是一個測量的反應和保護數據模型在所揭示的數據。表2顯示的是保護洋蔥的層級(第1層是最外層)和反措施設計考慮,影響范圍與威脅系統的殺傷鏈意圖的映射。表2提供了保護洋蔥的六個層次。
表2 保護洋蔥
洋蔥層/影響范圍/CM設計考慮因素 | 注釋 |
---|---|
第1層發現/受保護的平臺/減少的可探測性 | 對抗早期預警、空中搜索或地面控制攔截雷達的探測或行為,使被保護平臺脫穎而出。該戰術針對的是殺傷鏈的意圖,并不顯眼,是利用對自身平臺數據的了解。 |
第2層定位/受保護的平臺/降低可探測性 誘餌和欺騙 | 具有欺騙性和誘騙性的反目標獲取或高度查找雷達可用于降低信息或反擊某個范圍或高度。 |
第三層識別/保護平臺 武器系統/降低可探測性 誘餌和欺騙 分散注意力 拒絕破壞 | 用旨在造成混亂的措施來對抗識別,以延遲對你的分類或身份的評估,識別可以基于行為或使用特殊雷達模式,如NCI。 |
第4層跟蹤/保護平臺武器系統/降低可探測性 誘餌和欺騙性分散注意力 | 用干擾、分散注意力和拒絕的方式來對抗威脅,可以是目標獲取雷達或更高數據率的搜索模式,如窄掃描軌道,同時掃描模式。 |
第5層 交戰/防御限制 武器系統保護平臺/降低可探測性 誘餌和欺騙 分散注意力 拒絕 破壞 破壞 | 使用所有可用的能力擊敗威脅,硬殺和軟殺取決于ROE,是傳統的平臺自我保護。可以使用破鎖和信號處理以及跟蹤目標的戰術。 |
第6層 處置和效應/防御性限制 武器系統保護平臺/減少可探測性 誘餌和欺騙 分散注意力 拒絕 破壞 毀滅 | 使用所有可用的軟硬殺傷能力擊敗威脅,是傳統的平臺自我保護。可能使用破鎖和信號與跟蹤處理的目標戰術,并可能同時采用針對尋的器和雷達的技術。 |
認知型電子戰系統的設計必須提供態勢感知、決策和學習能力。一般來說,系統要求推動了一系列關于哪些問題和它可能需要回答的問題的決定。決策可能是反復的,要么是集中的,要么是隨部隊效應范圍分布的。他們將一個問題表示為規格,并受制于AI代理的拍賣。就我們如何定義和調整優化函數而言,利用領域的物理學與參與的進展可能會減少狀態和交易空間。問題來自于像干擾這樣的設計結果所需的緊迫性和缺失的數據。因此,選擇對策和感覺的C4L參數、'while'或'if'條款都是數據要求,可能形成問題對話鏈或問題樹,在殺傷鏈的不同處置路線中需要。因此,這些對話鏈或問題樹就像專家系統的規則庫格式。因此,所需的數據就以拍賣的方式給投標的傳感器。這樣一來,邏輯路線總是有目的性的結果,而DM和傳感器的使用也是如此。另外,隨機森林[22]可以減少熵,增加信息增益。
雖然具有高度的適應性,但先進的雷達和軟件定義無線電(SDR)架構通常依賴于定制的API,單獨暴露每個參數。這種方法不適合EW系統中的近實時認知控制,因為緊密的耦合意味著人工智能不能做出全局性的決定。組成模塊必須是高度模塊化和可組合的,以消除這一障礙。通用接口允許模塊暴露其參數和依賴關系,從而實現全局優化和跨多個處理器的計算負載平衡。通常,由RESM(雷達電子支持措施)攔截的發射物是通過發射物數據庫識別的。發射者被識別出來,并在本地認可的海上圖像(LRMP)中得到體現。當通過數據庫確認為一種威脅時,它可以接受DM的詢問和拍賣:
為此,我們需要一個中間代理,提供一個模塊化的結構組件,允許不同的技術提供不同的服務,并確保信息/控制的一致流動,與John Boyd的OODA循環[23]一致,但適用于數據處理和DM。
圖13 模塊化架構
軟件架構的一個例子是ADROIT。自適應動態無線電開源智能團隊(ADROIT):用中間代理認知控制SDR節點之間的協作。ADROIT項目正在建立一個開源的軟件定義的數據無線電,旨在由認知應用程序控制。模塊暴露了它的參數和它們的屬性(特別是讀/寫)。當一個模塊發生變化時(例如,增加一個新的參數),它只需揭示新的參數,并在一個發布-訂閱機制中公開參數(名稱、屬性),而不是為該新參數增加一個新的API函數;這也可以擴展為一個組播目的地,給后來仍需要定義的模塊。ADROIT用圖14所示的模塊實例化了中間代理。
圖14 ADROIT體系結構支持認知代理
處理不同的或變化的傳感器的一種可擴展的方式是,如果所有的設備可以減少不確定性或提供額外的數據來回答一個殺戮鏈階段的問題,就將它們定義為傳感器。因此,這些傳感器可以成為拍賣算法的參與者,以其回答問題的能力來競標。在不同的操作環境下,拍賣算法中的分數可以改變,因此,不同的傳感器選擇提供較低的可觀察性或與當前的ROE、受限的EMCON或當前的傳感器利用相一致。通過這種方式,形成了一個問答循環,完善了對情況的理解,同時在提問的基礎上做出增量決定,并使環境情況有利于他們的部隊使用保護洋蔥的一個版本。此外,同樣的拍賣優化可以與反措施一起執行,其概念是,如果一切都能影響當地的殺戮鏈決策或導致結論或問題發生在受害者身上,那么它就是一個影響者。由此可見,C4L提供了一種以標準形式指定反措施行動和傳感規格的方法;這些規格可以一起拍賣,以便在一個可適應的模型中獲得最佳效果和傳感,然后該模型將優化殺戮鏈的進展,為跟蹤的對手的殺戮鏈進展提供優勢。在圖15中,本文展示了EW系統如何在拍賣優化的基礎上與具有認知DM的作戰管理系統(CMS)集成。威脅的檢測/識別/鑒定/分類被轉移到不同的數據庫中,但這些過程和數據庫的不確定性導致了傳感器的重新任務。這些都是拍賣,根據傳感器解決情況的不確定性的能力來分配任務,并根據緊急程度來確定優先次序;這使用了從保護的角度預測威脅的殺傷鏈意圖。這些過程越可靠,立即識別和反應的概率就越高。為了進一步提高這一結果,管理部門必須考慮機器學習中的其他參數,以適應當地環境的傳感任務和對策效果的拍賣。
圖15 數據布局EWS與CMS集成
有些參數可能不為人所知,也可能沒有方法或傳感器來提供這些參數;因此,Rudd-Orthner等人[24]的專家系統的神經網絡形式作為數據庫的疊加,在這些情況下提供一個估計值。它還可以提供一個由貝葉斯網絡進一步引導的值,該網絡可以將從環境中收集的傳感器事實與來自其規則的知識結合起來,使其不容易被收集的事實所欺騙。此外,在圖16中,也是在人工智能的背景下,所提出的架構將EW系統與CMS結合起來。它通過一個反饋回路支持 "態勢感知",根據威脅殺傷鏈的位置重新安排傳感器的任務,以快速解決識別和確認的不確定性,更新跟蹤的準確性,并為CMS和EW系統資源提供戰術清單作為選擇。
圖16 ID標準交互模型
在圖16中,DM能力因此積極主動地利用感知能力直接處置威脅,并為反制措施/部署制定了時間表。這些反措施/部署應按照RuddOrthner等人的保護理念,利用推斷出的威脅的殺傷鏈位置階段,直接對抗威脅的意圖。因此,傳感要求可以在拍賣算法中與可供選擇的策略/反措施交錯安排。同樣,在威脅分析和處置的關鍵時刻,一些所需信息可能無法在DM中獲得,但可以使用RuddOrthner論文中提出的神經符號-AI專家系統方法的代數專家系統部分進行估計。可控的可觀察數據可能來自人工智能環境中的數學或認知學習發展過程。我們可以認為這些有助于識別目標的元素是可觀察的,這些元素在DM中是可控的。
圖17 CMS和EW CM系統中的威脅數據路徑
在圖17中,本文展示了一個威脅發射器從EW系統進入CMS部分的順序。從EW系統的庫或數據庫中識別截獲的發射器;該數據庫包含物理雷達特征: PRI、頻率、PW、振幅、掃描類型、掃描周期平臺等級和威脅名稱;采集類型的特征,ECCM,如原點干擾(HOJ)Chaffs辨別,紅外,雙導射頻和紅外。如果發射物未被識別為威脅,則在本地識別的海上圖像中直接代表發行者。如果被確認為威脅,它將遵循不同的路徑,如前所述。導彈的獲取和ECCM的類型在反應鏈中具有巨大的價值。如果它有HOJ能力,最好是通過C4L中捕獲的特定計算直接干預硬殺傷和誘餌發射;該選定的C4L規格是由保護的洋蔥頭選擇的,它與頻譜中的感應計劃一起安排。該規格將誘餌定位在C4L所確定的與發射船的一定距離和特定的β值。除了在CMS上表示威脅的到達方向外,EW系統還將C4L搜索數據和傳感規范發送到多功能雷達(MFR)和火控雷達(FCR)作為即時硬殺傷系統。本文在圖18中畫出了由人工智能支持的戰斗管理系統(CMS)的架構基礎。在標準環境塊中,還有四個相互關聯的組件:
1.傳感器管理,提供設備監視器(資源管理器)的管理,傳感器信息的收集和軌道管理;在這個塊中,所有的相關數據都匯聚到機載傳感器,如雷達、聲納、ESM雷達、通信ESM、導航輔助設備和氣象數據。在這個架構中,一個傳感器的任務和它的優先權來自于它的成熟度和殺傷鏈。在這方面,關于Rudd-Orthner等人,威脅意圖的成熟度被評估為使用保護洋蔥的反意圖對策,并嵌入到Haigh和Andrusenko的殺傷鏈階段,其中的整合是通過ADROIT架構的發布和訂閱機制,這允許快速和靈活的整合和擴展。
2.在架構的第二塊,有信息管理,其中本地軌道與來自鏈接網絡的軌道相關聯,根據識別標準識別目標的追蹤,管理技術決策輔助工具和信息,共享共同的操作畫面,該畫面中的不確定性和異常情況引起了傳感器的任務。
3.第三塊代表戰斗管理,它提供了對威脅的評估計劃和武器優先權的分配--演習的計算和艦隊內與戰斗有關的信息交流。
4.最后一個區塊是資產管理,使用C4L規范和序列,允許艦艇同時協調幾個進攻和確定的目標。
圖18 AI應用于CMS結構
在DM處理環境之外,人工智能也同樣適用于智能處理環境,類似的技術疊加數據庫和ML提取,走向專家系統規則捕獲[25]。在人工智能輔助的CMS中,數據流入信息管理數據融合,使計算機系統在沒有明確編程的情況下利用歷史數據進行預測或做出一些決定。機器學習使用從IMDF(信息管理數據融合)獲得的大量結構化和半結構化的數據,這樣機器學習模型就能產生準確的結果,或根據這些數據提供預測。
人工智能(AI)是一個快速發展的領域,世界各地的政府和軍隊越來越多地將其納入其技術,以創造新的能力。人工智能有可能最終超越人類的智力能力,獲得超級智能。這篇論文研究了超級人工智能(ASI)的影響以及美國的對手如何利用它來獲得不對稱的戰略優勢。本文發現,人工智能在中期和可能的近期對未來的行動構成了極大的風險,并就美國防部應如何思考并將人工智能的威脅納入戰略規劃提出了建議。
人類最偉大的力量之一是我們利用工具的能力。縱觀歷史,工具使我們能夠提高執行任務的效率,使我們的知識專業化,并創造機會反復改進和創造更復雜的工具。機器的發明給了人類一套工具,可以完全取代人類的勞動,而不是放大它,并在勞動的速度和質量上遠遠超過人類。現在,人工智能(AI)的發展正在做同樣的思考。人工智能系統已經在前幾代人認為機器永遠無法完成的任務中超越了人類,例如:圖像和目標識別,復雜的棋類游戲,如國際象棋和明顯更復雜的圍棋,需要實時戰略思考的視頻游戲,讀唇語,甚至通過投資股票市場實現盈利。目前,人工智能的所有應用都是狹窄的,這意味著盡管它們在某項任務上可以超過人類的能力,但它們只能做它們被設計的那件特定的事情,而不是其他。然而,這種情況不會一直存在。
1993年,統計學家Vernor Vinge預測,人類將有能力創造出一種超人類的智能。他推測,這種創造將導致智能爆炸,因為超級智能在自身基礎上不斷改進,變得越來越聰明,將人類的能力遠遠甩在后面。這種能力將對人類生活的各個方面產生深遠的影響。正如人工智能和決策理論家Eliezer Yudkowsky所說的那樣。"沒有困難的問題,只有對某一智能水平來說是困難的問題。向上移動最小的一點[智力水平],一些問題會突然從'不可能'變成'明顯'。向上移動一個相當大的程度,所有的問題都會變得明顯。" 因此,超級智能將為世界舞臺上任何能夠開發和控制它的行為者提供不對稱的優勢。
自第二次世界大戰結束以來,美國一直是占主導地位的世界大國,能夠通過國家權力的四個工具:外交、信息、軍事和經濟來擴大其影響力和追求其利益。然而,歷史告訴我們,占主導地位的世界大國會因為軍事革命而非常意外和迅速地失去這種地位。西方歷史經歷了五次這樣的重大革命:現代民族國家的創建、大眾政治與戰爭的融合、工業革命、第一次世界大戰和核武器的出現。這些革命中的每一次都圍繞著為首先采用這些革命的人提供的不對稱優勢,這使得他們能夠獲得突出的地位,即使只是暫時的,直到其他人也出于需要而采用新的模式。超級智能的人工智能的出現有可能創造出下一次軍事革命,并使美國不再是世界上最大的國家。
默里和諾克斯指出,軍事革命就其性質而言是 "不可控的、不可預測的和不可預見的。"但這是一個觀點問題。納西姆-塔勒布將這些類型的事件稱為黑天鵝,并對其有三個標準:它們是罕見的,有極端的影響,并且是可追溯的。然而,他表明,某件事之所以成為黑天鵝,特別是因為沒有認真對待這種可能性,而不是沒有人想到它。舉例來說,如果有人在9-11事件之前就認為恐怖主義是一種合理的威脅,并要求在飛機艙門上加鎖,那么被劫持的飛機成為武器的黑天鵝事件就不會發生。推動這一變革的人甚至可能會因為他們的假設不正確而受到批評。如果沒有這個事件的發生,就沒有證據表明所實施的變革具有防止恐怖主義的預期效果。
對未來的正確預測在被認真對待時一般是不可能被驗證的,因為他們成功地防止了他們預測的結果。因此,被認為不值得適當考慮或規劃的想法成為決定性的。"看到一個事件的發生正是因為它不應該發生,這不是很奇怪嗎?" 如果美國希望在一個正在迅速發展并變得越來越復雜的世界舞臺上保持主導地位,它就必須對可能的和不可能的事情進行思考。正如參議院軍事委員會前參謀長克里斯蒂安-布羅斯在其《殺戮鏈》一書的結論中所說,"問題是想象力的失敗"。
技術正在以指數級的速度發展,并將在某一時刻導致下一次范式轉變和軍事革命。人工超級智能(ASI)有可能在國際行為者揮舞國家權力工具的能力方面創造不對稱優勢,并導致這樣一場軍事革命。從歷史上看,軍事革命的結果往往是,誰最先發揮新革命的不對稱優勢,誰就能推翻當時的世界霸主。下一次革命也會如此,美國可能會發現自己被剝奪了世界主導地位,除非它能預測并為即將到來的事情做好準備。僅僅為今天挑戰美國主導地位的差距尋求解決方案是不夠的,因為今天的問題在下一次范式轉變后將變得無關緊要。因此,如果下一次軍事革命以超級人工智能為中心,美國防部如何確定可能被利用的漏洞?
美國防部在超級智能方面的文獻有一個明顯的空白。這次探索的目的是填補文獻空白,確定這種技術所帶來的風險程度,并確定對手可能利用ASI攻擊美國的潛在漏洞。這將為國防界的決策者提供關于該主題的相關觀點,并告知在規劃和預測中應考慮該技術的程度。通過額外的研究,如果對手率先獲得ASI,可以減輕已確定的漏洞以防止其被利用。最終,本研究的目的是防止ASI軍事革命的出現成為一個黑天鵝事件,使美國失去其世界主導地位。
本論文試圖回答的主要研究問題是:對手如何利用ASI來取代美國作為世界主導力量的地位?為了回答這個問題并達到研究的目的,還需要回答幾個問題。 1.ASI有什么獨特的能力,使它能夠影響國家權力的信息和軍事要素? 2.對美國有敵意的行為者如何利用ASI的能力來實現作戰和戰略效果? 3.在信息和軍事領域有哪些弱點可以被擁有ASI的美國對手所利用?
作為對一項理論技術如何在未來作戰環境中使用的探索,必須對該未來環境的狀態做出若干假設。因為本論文的目的是確定脆弱性和評估風險,所以對該環境的假設是那些被認為有可能造成最大風險的假設。這些關鍵的假設在文獻回顧中都有更深入的闡述。
1.通用人工智能(AGI)將在2035年之前初步開發,并在2040年之前推進到人工智能。
2.美國的一個對手將是第一個開發AGI/ASI的人,并且該技術不會在他們的控制范圍之外被分享或擴散。
3.一個發達的人工智能是可控的,不具備獨立于其控制者的驅動力和動機,并作為其控制者意志的延伸而發揮作用。
4.2040年的作戰環境將如國家情報委員會2040年報告中描述的競爭性共存情景,主要特點是美國和中國之間的競爭。
雖然近年來國防界的成員們在文獻中充斥著關于人工智能的著作,但從國防的角度來看,關于超級智能主題的文獻存在著明顯的空白。雖然人工智能本身有可能在軍事和民用領域產生變革,但本研究將開始填補有關人工智能的未來及其創造軍事革命的潛力的知識空白。此外,這項研究還試圖確定潛在的弱點,這些弱點可能被控制人工智能的對手所利用,以廢止或取代美國作為世界主導力量的地位。這項研究的結果將為預測未來部隊需求的戰略計劃者提供洞察力。識別弱點是緩解的第一步;然而,還需要更多的研究來為識別的弱點找到解決方案。矛盾的是,本研究的真正意義只有在其預測沒有實現的情況下才能實現;也許表明它在防止所設想的負面情況的發生方面發揮了作用。
鑒于對手軍事能力的威脅和擴散的增加,這項研究試圖開發合理準確和可計算的模型,以最佳方式操縱航空器攔截巡航導彈攻擊。該研究利用數學編程對問題進行建模,并以代表(時間)差分方程系統的約束條件為依據。研究首先比較了六個模型,這些模型對速度和加速度約束有不同的表述,同時分析了靜止目標的情況。多航空器、多固定目標交戰問題與箱體約束條件(MAMSTEP-BC)模型產生了卓越的整體性能,并通過替代數學編程模型的增強進行了進一步分析,以便在利用有效的機動序列方面創建可行的飛行輪廓。最后,對MAMSTEP-BC模型進行了修改,以操縱飛機來對付移動目標。
在優化交戰所需時間時,該模型被證明對多架航空器和多個目標有效。MAMSTEP-BC通過考慮航空器和飛行員的局限性,能夠保持高水平的顆粒度,同時設法為靜止和移動的目標快速生成最佳解決方案。
本論文的其余部分組織如下。第二章討論了與國防、飛行器路由問題和涉及差分方程的數學編程公式有關的文獻,以操縱或路由實體。下面的研究分三個不同階段進行。第三章介紹了第一階段所研究的工作,該階段開發并測試了操縱多架航空器來對付靜止目標的替代模型。在第四章中提出,第二階段的研究探討了替代的數學編程模型的增強,以創建研究第一階段的可行的飛行輪廓。在第五章中,介紹了第三階段研究的工作,其中開發和測試了一個最終模型,以操縱多架航空器來對付移動目標。第六章以工作的主要成果對論文進行了總結,并介紹了未來關于時空網絡路由模型主題的可能研究途徑。